CN107814363A - 一种模板法制备膨胀六方氮化硼的方法 - Google Patents

一种模板法制备膨胀六方氮化硼的方法 Download PDF

Info

Publication number
CN107814363A
CN107814363A CN201610822221.6A CN201610822221A CN107814363A CN 107814363 A CN107814363 A CN 107814363A CN 201610822221 A CN201610822221 A CN 201610822221A CN 107814363 A CN107814363 A CN 107814363A
Authority
CN
China
Prior art keywords
boron nitride
hexagonal boron
expansion
graphite
prepares
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610822221.6A
Other languages
English (en)
Inventor
仲洋
刘磊
姜晶
张莉
陈克新
田兆波
葛瑶
葛一瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Rogers Corp
Original Assignee
Rogers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rogers Corp filed Critical Rogers Corp
Priority to CN201610822221.6A priority Critical patent/CN107814363A/zh
Priority to JP2019513942A priority patent/JP2019536717A/ja
Priority to PCT/US2017/051267 priority patent/WO2018052934A1/en
Priority to EP17784056.8A priority patent/EP3512806A1/en
Priority to KR1020197010547A priority patent/KR20190096935A/ko
Priority to US16/330,442 priority patent/US20210284893A1/en
Priority to CN201780056369.6A priority patent/CN109982965A/zh
Publication of CN107814363A publication Critical patent/CN107814363A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0645Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种碳热还原制备膨胀六方氮化硼的方法,特别涉及一种利用模板法一步制备膨胀六方氮化硼的工艺,属于无机非金属粉体材料领域。具体步骤:(1)将硼化物、膨胀石墨或可膨胀石墨和有机溶剂按照一定比例进行混合,搅拌,然后蒸发干燥,得到硼化物和膨胀石墨或可膨胀石墨的混合物;(2)将(1)中所得混合物置于石墨坩埚,并在流动氮气中碳热还原氮化反应1~10h;(3)将(2)中得到的产物除去多余的碳,最终得到比表面积为20~100m2/g、膨胀容积100~200mL/g的纯净膨胀六方氮化硼。该膨胀石墨六方氮化硼制备方法操作简单,具有较强普适性,使用的硼源、碳源不危害人体和环境,同时易分解,避免了后续的酸洗、水洗等步骤,最重要的是完全复制了石墨模板的形貌,可以大批量的制备纯净的高膨胀度的六方氮化硼。

Description

一种模板法制备膨胀六方氮化硼的方法
技术领域
本发明涉及一种碳热还原制备膨胀六方氮化硼的方法,特别涉及一种利用模板法一步制备膨胀六方氮化硼的工艺,属于无机非金属粉体材料领域。
背景技术
膨胀石墨是由天然石墨鳞片经高温膨化得到的一种疏松多孔的蠕虫状物质,除具备天然石墨本身的优良性能以外,还具有天然石墨所没有的柔软、压缩回弹性、吸附性、生态环境协调性、生物相容性、耐辐射性等特性,在高能电池材料、密封材料、、生物医学、相变储热材料和环保等领域逐步获得许多重要应用。但石墨是电的良导体,不能用于需要绝缘的,如微电子封装等许多领域。
六方氮化硼的晶体结构与石墨相似,属于六方晶系,具有层状结构,且层间亦通过分子键结合,有很好的润滑效果,因此六方氮化硼常被称为“白石墨”。六方氮化硼不但具有类似于石墨材料的结构和性能,还有一些石墨没有的优良性能,如电绝缘性、耐腐蚀性和良好的高温性能等。若能制备出类似膨胀石墨结构特征的膨胀六方氮化硼,将在电子、机械、环保和原子能等领域具有广阔的应用前景。但是六方氮化硼层间结合的分子键远强于石墨层间结合的分子键。采用通常制备膨胀石墨的插层、水洗、干燥、高温膨化方法很难打开的六方氮化硼层间结合的分子键,不能得到膨胀六方氮化硼,因此目前尚没有膨胀六方氮化硼产品,也没有关于制备膨胀六方氮化硼的文献报道。如何高效、低成本制备出纯净膨胀六方氮化硼是创新性新技术;并且膨胀六方氮化硼也具有重要广泛的应用前景。
发明内容
本发明的目的在于提供一种高效、低成本制备膨胀六方氮化硼的方法,为制造近似各向同性高导热绝缘复合材料打下坚实的基础,同时也为进一步提高二维六方氮化硼纳米片质量和产率开辟了一条新的捷径。本发明提出的一种采用模板法制备膨胀六方氮化硼的方法,包含以下步骤:
(1)将硼化物、石墨和有机溶剂混合,搅拌,然后蒸发干燥,得到硼化物和石墨的混合物;
(2)将(1)中所得混合物置于石墨坩埚中,并在流动氮气下碳热还原氮化反应1~10h;
(3)将(2)中得到的产物除去多余的碳,最终得到比表面积为20~100m2/g、膨胀容积100~200mL/g的纯净膨胀六方氮化硼。
本发明所述硼化物为五硼酸胺,硼砂,硼酸,焦硼酸,氧化硼中的一种或多种。其中优选硼酸,焦硼酸,氧化硼中的一种或多种。所述有机溶剂为乙醇,甲醇,聚乙二醇和聚丙醇中的一种或多种。石墨和硼化物摩尔比为1:(0.2~1),并采用有机溶剂混合,固液比为1g:(25~200)mL。所述混合液搅拌时的温度为0~60℃,搅拌的时间为0.5~10h。所述碳热还原制备膨胀六方氮化硼过程中,N2流量为40~1000mL/min。加热温度区间为200~1700℃,升温速率为3~10℃/min。制备出的膨胀六方氮化硼可用在污水处理、聚合物复合材料、军事及航天等诸多领域。
本发明的创新之处在于以膨胀石墨为模板和反应物,在合适的分散剂和合理的加热工艺的辅助下,采用成熟的碳热还原方法,高效一步制备出了纯净膨胀六方氮化硼。采用合适的分散剂可以保证硼化物较高的溶解度,并保持对石墨较好的分散性,从而使得硼化物和石墨可以均匀的混合,同时保持相互之间较好的浸润性。采用合理的加热制度可以避免硼化物在碳热还原反应开始之前发生其他反应,从而避免硼化物的过度消耗引起的,膨胀六方氮化硼产率降低。采用膨胀石墨作为原料,这样既可以作为碳热还原反应的碳源,又可以以膨胀石墨为模板原位发生碳热还原氮化反应生成六方氮化硼。
本发明具备工艺简练高效,原料廉价等特点,制备的六方氮化硼蓬松多孔,比表面积大,其突出优点为:
1.采用易挥发的有机溶剂作为分散剂,既保证了硼化物和膨胀石墨的均匀混合,同时易挥发的有机分散剂可以在低温的烘箱中加热去除,简化了其他制备方法中后续复杂的分离去除杂质工艺;
2.反应过程中以膨胀石墨过量为原则,这样可以保证生成物中没有残留的硼化物,同时多余的石墨可通过一步简单的加热排碳工艺完全去除,生成高纯的六方氧化硼;
3.碳热还原过程中采用合理的加热工艺,保证了硼化物可直接与石墨模板和氮气完全反应,产品的转化率较高;
4.采用的原料膨胀石墨,硼化物和有机溶剂都容易获取,且价格低廉,为工业生产节约了成本,便于大批量的工业生产纯净的膨胀氮化硼;
5.本发明生成的膨胀氮化硼疏松,片层之间易于剥离,为后续研究高效生成大片尺寸的二维六方氮化硼片层提供了一条捷径。
附图说明
附图1:实施例1中合成的膨胀六方氮化硼的X射线衍射图谱;
附图2:实施例1中合成的膨胀六方氮化硼的扫描电子显微镜微观形貌照片;
附图3:实施例2中合成的膨胀六方氮化硼的X射线衍射图谱;
附图4:实施例4中合成的膨胀六方氮化硼的X射线衍射图谱;
附图5:实施例4中合成的膨胀六方氮化硼的扫描电子显微镜形貌照片;
附图6:实施例4中合成的膨胀六方氮化硼的扫描电子显微镜形貌照片。
具体实施方式
下面将结合附图及实施方式对本发明的六方氮化硼纳米薄片的制备方法作进一步的详细说明。本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例1:
将5g硼酸溶解在75mL的乙醇溶剂中,然后将1g的膨胀石墨添加到硼酸乙醇溶液中,并通过磁力搅拌混合8h,后将搅拌后的粘稠混合液放入90℃的烘箱中干燥,得到硼化物和膨胀石墨的混合物;将所得混合物平铺在石墨坩埚,并放入在管式炉内。在100mL/min N2流速下,管式炉以10℃/min的速率升温到400℃并保温2h,以10℃/min的速率升温到800℃并保温2h然后以5℃/min的速率加热至1400℃保温2.5h后随炉冷却至室温。反应完成后,将所得到的产物置于马弗炉中,于620℃保温5h以排除多余的碳,最终得到比表面积为73m2/g、膨胀容积为148mL/g白色粉末。利用X射线衍射仪分析产物的成分,利用电子扫描电镜观察产物形貌。
实施例2:
将9g硼酸溶解在75ml的乙醇溶剂中,然后将1g的膨胀石墨添加到硼酸乙醇溶液中,并通过磁力搅拌混合8h,后将搅拌后的粘稠混合液放入90℃的烘箱中干燥,得到硼化物和膨胀石墨的混合物;将所得混合物平铺在石墨坩埚,并放入在管式炉内。在100mL/min N2流速下,管式炉以10℃/min的速率升温到400℃并保温2h,以10℃/min的速率升温到800℃并保温2h然后以5℃/min的速率加热至1400℃保温2.5h后随炉冷却至室温。反应完成后,将所得到的产物置于马弗炉中,于620℃保温5h以排除多余的碳,最终得到比表面积为30m2/g、膨胀容为94mL/g的白色粉末;利用X射线衍射仪分析产物的成分;利用电子扫描电镜观察产物形貌。
实施例3:
将5g氧化硼溶解在75ml的甲醇溶剂中,然后将1g的膨胀石墨添加到硼酸乙醇溶液中,并通过磁力搅拌混合1h,后将搅拌后的粘稠混合液放入90℃的烘箱中干燥,得到硼化物和膨胀石墨的混合物;将所得混合物平铺在石墨坩埚,并放入在管式炉内。在100mL/min N2流速下,管式炉以5℃/min的速率加热至1400℃保温2.5h后随炉冷却至室温。反应完成后,将所得到的产物置于马弗炉中,于750℃保温5h以排除多余的碳,最终没有得到膨胀的白色粉末。
实施例4:
将5g氧化硼溶解在75ml的甲醇溶剂中,然后将1g的膨胀石墨添加到硼酸甲醇溶液中,并通过磁力搅拌混合1h,后将搅拌后的粘稠混合液放入90℃的烘箱中干燥,得到硼化物和膨胀石墨的混合物;将所得混合物平铺在石墨坩埚,并放入在管式炉内。在100mL/min N2流速下,管式炉以10℃/min的速率升温到400℃并保温1h,以5℃/min的速率升温到800℃并保温2h,5℃/min的速率加热至1400℃保温2.5h后随炉冷却至室温。反应完成后,将所得到的产物置于马弗炉中,于750℃保温5h以排除多余的碳,最终得到比表面积为81m2/g、膨胀容积为193mL/g膨胀的白色粉末。
通过对实施例1和例2的XRD结果可以看出,石墨和硼酸的添加比例有一定的摩尔比限。当加入的硼酸过多时,可以生成一定数量的六方氮化硼,但是同时在产物中残留有硼酸,使得后续的处理离心除杂工艺较为复杂,且不容易除尽,难以保证制备纯净的六方氮化硼。而石墨略微过量的情况下,可以通过一步排碳工艺除尽。对比实施例3和实施4可以发现,阶段式加热对生成膨胀六方氮化硼起着重要的作用。从图4实施4的XRD图谱中可以看出生成了纯净的六方氮化硼,从图5可以看出,采用阶段式加热,生成的膨胀六方氮化硼复制了模板膨胀石墨的原貌,且从图6中可以看出微观的片层之间呈现出卡屋式的交叉,这对提高六方氮化硼复合材料的纵向导热率起到了积极的作用。对比实施例1和实施例4可以发现,混合液搅拌的时间对最终产物的形貌也有一定的影响。从图1中可以看出,长时间的磁力搅拌使得膨胀石墨的原貌被破碎成孤立的颗粒,使得碳热还原复制出的六方氮化硼呈片层分布,膨化效果不明显,而磁力搅拌较短时间条件下的膨胀石墨可以很好得维持原貌,从而在碳热还原的过程中复制出模板的原貌,生成膨胀的六方氮化硼。

Claims (8)

1.一种碳热还原模板法制备膨胀六方氮化硼的方法,包括如下步骤:
(1)将硼化物、膨胀石墨或可膨胀石墨和有机溶剂混合,搅拌,然后蒸发干燥,得到硼化物和膨胀石墨或可膨胀石墨的混合物;
(2)将(1)中所得混合物置于石墨坩埚中,并在流动氮气下碳热还原氮化反应1~10h;
(3)将(2)中得到的产物除去多余的碳,最终得到比表面积为20~100m2/g、膨胀容积100~200mL/g的纯净膨胀六方氮化硼。
2.根据权利要求1所述的模板法制备膨胀六方氮化硼的方法,其特征在于:步骤(1)中所述硼化物为五硼酸胺,硼砂,硼酸,焦硼酸,氧化硼中的一种或多种。
3.根据权利要求1所述的模板法制备膨胀六方氮化硼的方法,其特征在于:步骤(1)中所述有机溶剂为乙醇,甲醇,聚乙二醇和聚丙醇中的一种或多种。
4.根据权利要求1所述的模板法制备膨胀六方氮化硼的方法,其特征在于:石墨和硼化物摩尔比为1:(0.2~2),并采用有机溶剂混合,固液比为1g:(25~200)mL。
5.根据权利要求1所述的模板法制备膨胀六方氮化硼的方法,其特征在于:步骤(1)中混合后搅拌时的温度为0~60℃,搅拌的时间为0.5~10h。
6.根据权利要求1所述的模板法制备膨胀六方氮化硼的方法,其特征在于:步骤(2)制备膨胀六方氮化硼过程中,N2流量为40~1000mL/min。
7.根据权利要求1所述的模板法制备膨胀六方氮化硼的方法,其特征在于:在N2保护气体气氛中,将所述混合物以3~10℃/min的升温速率加热至100~500℃,保温0.5~3h,以3~10℃/min升温速率加热至700~1100℃,保温0.5~3h,以3~10℃/min升温速率加热至1200~1700℃,保温0.5~3h。
8.根据权利要求1所述的模板法制备膨胀六方氮化硼的方法,其特征在于:制备出的膨胀六方氮化硼在污水处理、聚合物复合材料、军事及航天领域中的应用。
CN201610822221.6A 2016-09-13 2016-09-13 一种模板法制备膨胀六方氮化硼的方法 Pending CN107814363A (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201610822221.6A CN107814363A (zh) 2016-09-13 2016-09-13 一种模板法制备膨胀六方氮化硼的方法
JP2019513942A JP2019536717A (ja) 2016-09-13 2017-09-13 テンプレート法により膨張六方晶窒化ホウ素を調製する方法
PCT/US2017/051267 WO2018052934A1 (en) 2016-09-13 2017-09-13 Method for preparing expanded hexagonal boron nitride by templating
EP17784056.8A EP3512806A1 (en) 2016-09-13 2017-09-13 Method for preparing expanded hexagonal boron nitride by templating
KR1020197010547A KR20190096935A (ko) 2016-09-13 2017-09-13 템플레이팅에 의한 팽창된 육방정계 질화붕소의 제조방법
US16/330,442 US20210284893A1 (en) 2016-09-13 2017-09-13 Method for preparing expanded hexagonal boron nitride by templating
CN201780056369.6A CN109982965A (zh) 2016-09-13 2017-09-13 通过模板法制备膨胀六方氮化硼的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610822221.6A CN107814363A (zh) 2016-09-13 2016-09-13 一种模板法制备膨胀六方氮化硼的方法

Publications (1)

Publication Number Publication Date
CN107814363A true CN107814363A (zh) 2018-03-20

Family

ID=60083410

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610822221.6A Pending CN107814363A (zh) 2016-09-13 2016-09-13 一种模板法制备膨胀六方氮化硼的方法
CN201780056369.6A Pending CN109982965A (zh) 2016-09-13 2017-09-13 通过模板法制备膨胀六方氮化硼的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780056369.6A Pending CN109982965A (zh) 2016-09-13 2017-09-13 通过模板法制备膨胀六方氮化硼的方法

Country Status (6)

Country Link
US (1) US20210284893A1 (zh)
EP (1) EP3512806A1 (zh)
JP (1) JP2019536717A (zh)
KR (1) KR20190096935A (zh)
CN (2) CN107814363A (zh)
WO (1) WO2018052934A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108587570A (zh) * 2018-03-23 2018-09-28 南方科技大学 一种绝缘相变导热材料及其制备方法
CN109317096A (zh) * 2018-12-04 2019-02-12 常州大学 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用
CN109706550A (zh) * 2019-01-14 2019-05-03 中原工学院 一种碳纳米纤维作为模板制备六方氮化硼的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240130A (zh) * 2018-03-07 2019-09-17 罗杰斯公司 通过模板化制备六方氮化硼的方法
CN109704296B (zh) * 2019-02-22 2020-10-02 中国科学院苏州纳米技术与纳米仿生研究所 柔性氮化硼纳米带气凝胶及其制备方法
CN111073605A (zh) * 2019-12-25 2020-04-28 北京中海前沿材料技术有限公司 一种无机相变恒温材料及其制备方法
KR102340538B1 (ko) 2020-02-06 2021-12-16 경북대학교 산학협력단 무기 오염물질 제거용 복합체와 그 제조방법 및 이를 이용한 수중 무기 오염물질 흡착제거 방법
CN115448263A (zh) * 2022-08-05 2022-12-09 深圳市宝硼新材料科技有限公司 纳米球形氮化硼及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1260671A (en) * 1984-06-07 1989-09-26 Takahisa Koshida High-purity powder of hexagonal boron nitride and a method for the preparation thereof
US6660241B2 (en) * 2000-05-01 2003-12-09 Saint-Gobain Ceramics & Plastics, Inc. Highly delaminated hexagonal boron nitride powders, process for making, and uses thereof
US9611146B2 (en) * 2013-07-01 2017-04-04 Lawrence Livermore National Security, Llc Crystalline boron nitride aerogels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108587570A (zh) * 2018-03-23 2018-09-28 南方科技大学 一种绝缘相变导热材料及其制备方法
CN109317096A (zh) * 2018-12-04 2019-02-12 常州大学 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用
CN109706550A (zh) * 2019-01-14 2019-05-03 中原工学院 一种碳纳米纤维作为模板制备六方氮化硼的方法
CN109706550B (zh) * 2019-01-14 2021-03-23 中原工学院 一种碳纳米纤维作为模板制备六方氮化硼的方法

Also Published As

Publication number Publication date
EP3512806A1 (en) 2019-07-24
JP2019536717A (ja) 2019-12-19
WO2018052934A1 (en) 2018-03-22
KR20190096935A (ko) 2019-08-20
CN109982965A (zh) 2019-07-05
US20210284893A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN107814363A (zh) 一种模板法制备膨胀六方氮化硼的方法
CN104556022B (zh) 一种用微晶石墨制备膨胀微晶石墨材料的方法
CN105336958B (zh) Graphene/CNTs/Super‑P复合导电剂、复合导电剂浆料及其制备方法
CN106975489B (zh) 一种氧化镍原位包覆石墨烯纳米复合材料的制备方法
CN103979608B (zh) 一种空心核壳五氧化二钒微球的制备方法
CN105800603A (zh) 一种快速制备高质量石墨烯的方法
CN106430126A (zh) 一种高结晶度六方氮化硼粉体的制备方法
CN109817382B (zh) 一种高稳定性石墨烯导电浆料的制备方法
CN103910344A (zh) 六方氮化硼的制备方法
CN108840683B (zh) 用于制备氮化锆陶瓷微球的工艺及氮化锆陶瓷微球
CN107658447A (zh) 一种氮掺杂碳层包覆花球状v2o5的制备方法
CN101214959A (zh) 一种纳米碳化硼粉体的制备方法
CN109873173A (zh) 一种直接醇类燃料电池阴极支撑体材料的制备方法
CN103937264A (zh) 一种石墨烯协同碳纳米管-硅橡胶复合材料及其制备方法
CN111117180A (zh) 一种含氮化碳的纳米杂化物的阻燃不饱和聚酯树脂复合材料的制备方法及其应用
CN115448263A (zh) 纳米球形氮化硼及其制备方法
CN105755541A (zh) 一种利用微波诱发燃烧合成反应合成氧化锌晶须的方法
CN103420361A (zh) 一种爆炸制备石墨烯的方法
CN111825093B (zh) 一种SiC纳米粉体颗粒的制备方法
CN102897756A (zh) 一种石墨烯的制备方法
CN108249442A (zh) 一种采用全封闭电阻炉制备碳化硼的方法
CN108017054A (zh) 一种微晶石墨和鳞片石墨制备混合膨胀石墨的方法
JP2016163028A (ja) 熱電材料の製造方法
CN103409656A (zh) 一种热电材料Mg2Sn及其制备方法
CN108483459B (zh) 一种二维CrB纳米陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190213

Address after: American Connecticut

Applicant after: Rogers Corp.

Applicant after: Tsinghua University

Address before: American Connecticut

Applicant before: Rogers Corp.

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180320