CN107799699A - 一种黏土矿物复合锂电池隔膜及其制备方法 - Google Patents

一种黏土矿物复合锂电池隔膜及其制备方法 Download PDF

Info

Publication number
CN107799699A
CN107799699A CN201710856895.2A CN201710856895A CN107799699A CN 107799699 A CN107799699 A CN 107799699A CN 201710856895 A CN201710856895 A CN 201710856895A CN 107799699 A CN107799699 A CN 107799699A
Authority
CN
China
Prior art keywords
lithium battery
clay mineral
composite lithium
mineral composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710856895.2A
Other languages
English (en)
Other versions
CN107799699B (zh
Inventor
张俊平
杨燕飞
李步成
李凌霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201710856895.2A priority Critical patent/CN107799699B/zh
Publication of CN107799699A publication Critical patent/CN107799699A/zh
Application granted granted Critical
Publication of CN107799699B publication Critical patent/CN107799699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种黏土矿物复合锂电池隔膜的制备,是将粘结剂分散于分散剂中形成均一的分散液;再将黏土矿物纳米粒子和导电碳材料混合后添加到上述分散液中,经搅拌、均质处理后形成均匀浆料;然后将均匀浆料涂覆于锂电池隔膜表面,经真空热固化,得到黏土矿物复合锂电池隔膜。本发明制备的黏土矿物复合锂电池隔膜具有良好的电解液润湿性和热稳定性。由其组装的锂电池具有较高的倍率性能、循环稳定性和安全性,且能抑制电池的自放电现象,提高锂‑硫电池容量、倍率性能和库伦效率,为发展高性能锂电池提供了一条行之有效且易于商业化的途径。另外,发明具有方法简单、工艺绿色环保、成本低廉和易于规模化生产等优点。

Description

一种黏土矿物复合锂电池隔膜及其制备方法
技术领域
本发明涉及一种黏土矿物复合锂电池隔膜及其制备方法,尤其涉及一种采用黏土矿物纳米粒子/导电碳材料复合物通过可规模化生产的涂布技术制备稳定的黏土矿物复合锂电池隔膜的方法。
背景技术
锂电池作为一种常用的储能设备在人们日常生活中有着越来越广泛的应用。然而随着电动汽车、消费电子产品等市场的蓬勃发展,人们对于能源存储系统的要求不断提高。在人们集中对电极材料、电解液和新型锂电池体系的不断努力研发下,锂电池的能量密度得到很大提升。然而隔膜作为锂电池关键内层组件之一,不仅占电池成本的20~30%,而且其性能对锂电池的质量具有决定性作用。锂电池隔膜主要功能是隔离正、负极,防止正、负极直接接触产生短路,引起电池的燃烧甚至爆炸,威胁人们的健康和安全。同时,隔膜为电解质离子提供自由通道,形成导电回路。众所周知,隔膜性能决定了电池的界面结构、内阻等,直接影响电池容量、循环性能及安全性能等。目前,聚烯烃隔膜(包括PP、PE及PP/PE/PP三层复合膜等)具有强度高、耐酸碱性好、耐溶剂好等优点,在锂电池市场中占主导地位。但因其存在较低的熔点(130~160°C)、对电解液亲和性较差及较低的电解液保留率等缺点,限制了在高能量密度锂电池中的发展和应用。因此,高性能锂电池隔膜的研发是下一代高能量密度锂电池发展和应用的瓶颈。
近年来,基于聚烯烃隔膜的诸多优点,人们采用对聚烯烃隔膜表面进行化学或物理涂覆改性等方法提高隔膜的耐热性和润湿性。以耐高温的陶瓷纳米粉体如SiO2(CN106340604A)、氧化铝(CN106299204A,CN104269509A,CN205335329U,CN105347778A)、水合氧化铝(CN106684293A,CN106531941,CN106531941A)及Mg(OH)2(CN106654124A)等中的一种或两种为作为涂层材料,在分散剂和粘结剂协同作用下涂覆于聚烯烃隔膜的一面或两面,形成了稳定的陶瓷涂覆隔膜。专利CN106910860A中,以锂钛化合物包括Li4+x Ti5O12、Li1+ x Ti2(PO4)3(0≤x≤3)中的一种或多种结合粘结剂制备浆料,均匀涂覆于隔膜表面。该工作同时提高了隔膜的穿刺强度和电芯补锂,从而改善了电池性能和安全性。专利CN202888277U中,将亲水的聚氧乙烯和化学惰性且抗氧化的氧化铝分层涂布在聚乙烯隔膜表面,有效提高了隔膜的亲电解质性、耐腐蚀、耐高温性和化学安全性。上述专利技术,通过简单的隔膜表面涂覆技术可一定程度上提高隔膜对电解液的润湿性(电解液在隔膜表面的接触角为15~45°)和热稳定性(150°C下0.5 h发生0~10%收缩),但对锂电池的倍率性能、循环稳定性和安全性改善不足。另外,由于陶瓷纳米粒子的使用,使电池隔膜成本大幅度提升,且存在脆性、制备复杂等问题。因此,如何通过简单廉价、绿色的方法改善隔膜的性能,提升锂电池的综合性能,成为推动锂电池产业快速发展亟待解决的关键问题之一。
发明内容
本发明的目的是为了解决现有锂电池隔膜存在的问题,提供一种黏土矿物复合锂电池隔膜的制备方法,以提升锂电池的倍率性能、循环稳定性和安全性。
一、黏土矿物复合锂电池隔膜的制备
本发明黏土矿物复合锂电池隔膜的制备方法,是将粘结剂分散于分散剂中形成均一的分散液;再将黏土矿物纳米粒子和导电碳材料混合研磨或球磨3~5 min后添加到上述分散液中,再研磨或球磨10~30 min,经搅拌、均质处理后形成均匀浆料(粘度为300~1500 mPa·s);然后将均匀浆料涂覆于锂电池隔膜表面,室温放置5~6 h晾干,最后在40~80°C下真空热固化2~12h,得到黏土矿物复合锂电池隔膜。
所述粘结剂为聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠、聚氨酯中的至少一种,粘结剂在浆料中的质量百分含量为2%~10%。
所述分散剂为N-甲基-2-吡咯烷酮、N,N-二甲基吡咯烷酮、异丙醇、乙醇、乙二醇、去离子水中的至少一种,分散剂在浆料中的质量百分含量为75%~85%。
所述黏土矿物纳米粒子为凹凸棒石、海泡石、埃洛石、蒙脱石、蛇纹石、水滑石、伊利石、蛭石、锂皂石、云母、高岭石、硅藻土中的至少一种,黏土矿物纳米粒子在浆料中的质量百分含量为2%~20%。
所述导电碳材料为Super P、科琴黑、乙炔黑、石墨、石墨烯、氧化石墨烯、单壁碳纳米管、多壁碳纳米管、导电碳纤维中的至少一种,导电碳材料黏土矿物纳米粒子含量为在浆料中的质量百分含量为1%~9%。
所述锂电池隔膜为PE隔膜、PP隔膜、PP和PE复合隔膜、聚偏氟乙烯隔膜、聚(偏氟乙烯-co-六氟丙烯)隔膜、聚(偏氟乙烯-co-三氟乙烯)隔膜、玻璃纤维隔膜、纤维素复合隔膜、聚酯隔膜、聚酰亚胺隔膜、聚酰胺隔膜。
所述涂覆是在室温下采用涂布机将浆料均匀涂布在锂电池隔膜表面,涂覆厚度为10~100 µm,负载量为0.1~3.0 mg cm−2
二、黏土矿物复合锂电池隔膜的性能
选用实施例1制备的黏土矿物复合锂电池隔膜与其对比例1对各项性能做对比考察,对本发明做进一步详细、完整的说明。
1、润湿性
图1为实施例1制备的黏土矿物复合锂电池隔膜与对比例1中Celgard2400隔膜对LiTFSI电解液(V DOL:V DEM=1:1)的润湿性。LiTFSI电解液在黏土矿物复合锂电池隔膜和Gelgard2400隔膜表面的接触角分别为0°和47.5°±3.1°,LiTFSI电解液(V DOL:V DEM=1:1)保留率为267%。表明黏土矿物复合锂电池隔膜对电解液具有更好的润湿性,易被各种电解液润湿,且具有较高的电解液保留率。
2、热稳定性
图2是将实施例1制备的黏土矿物复合锂电池隔膜与对比例1中Celgard2400隔膜置于160°C下1 h后的收缩变形情况。图2显示,Celgard2400隔膜出现较明显的收缩变形,收缩率约为59.77%,而黏土矿物复合锂电池隔膜没有发生收缩变形。说明黏土矿物复合锂电池隔膜具有优异的热稳定性,从而大大改善了电池的安全性。
3、组装磷酸铁锂电池性能
图3是分别以黏土矿物复合锂电池隔膜和对比例1中Celgard2400隔膜组装磷酸铁锂电池。由图3a(3a)可知,当充放电速率从0.1 C增加到1.0 C时,其容量保留率为92.93%,电容衰减仅为7.2%,说明以黏土矿物复合锂电池隔膜组装的电池具有优异的倍率性能。另外,在较低倍率下,黏土矿物复合锂电池隔膜组装的电池的库伦效率略低于Celgard2400隔膜;但随着倍率的增加,库伦效率增至接近100%,说明黏土矿物复合锂电池隔膜更有利于电池的快速充电。由图3b可知,在0.2 C下循环100次之后,平均每次循环容量损失仅为0.014%,具有良好的循环稳定性和安全性,且能抑制电池的自放电现象。这是由于黏土矿物本身带有负电荷,黏土矿物复合锂电池隔膜可选择性通过Li+离子,从而增加隔膜的选择性,提高隔膜的Li+电导率。
4、充放电容量和循环性能
图4为黏土矿物复合锂电池隔膜与基底隔膜分别组装的锂-硫电池性能对比。其中a为实施例1和对比例1的首次充放电曲线,b为实施例1和对比例1在不同倍率下的放电容量和库伦效率。图4a表明,由黏土矿物复合锂电池隔膜组装的锂-硫电池,首次容量达1359 mA hg−1。图4b表明,(1.0 C时,放电容量仍保持在980 mA h g−1)和库伦效率(99.6%)。这是由于黏土矿物对聚硫化物同时具有化学吸附和物理阻隔作用,从而提高了活性物质的利用率。首次充放电容量和循环性能对比分析表明,黏土矿物复合锂电池隔膜使得电池性能得到大幅度提升。
5、粘结性
图5为黏土矿物复合锂电池隔膜经折叠、弯曲,考察涂层与基底隔膜之间的粘结性。结果表明,隔膜反复折叠、弯曲均不会出现掉粉、裂痕等现象,在电解液中不会发生任何剥离或破碎现象,说明黏土矿物涂层与基底隔膜之间具有良好的粘结力,且黏土矿物复合锂电池隔膜具有良好的耐电解液性。
上述性能测试结果分析可知:本发明制备的黏土矿物复合锂电池隔膜不仅显著提升了锂电池的综合性能,改善了锂电池的安全性,还具有方法简单、工艺绿色环保、成本低廉和易于规模化生产等优点,为发展高性能锂电池提供一条行之有效且易于产业化的途径。
附图说明
图1为黏土矿物复合锂电池隔膜与Celgard2400隔膜的电解液润湿性对比。
图2为黏土矿物复合锂电池隔膜与Celgard2400隔膜的热稳定性对比。
图3为黏土矿物复合锂电池隔膜与基底隔膜分别组装磷酸铁锂电池性能对比。
图4为黏土矿物复合锂电池隔膜与基底隔膜分别组装的锂-硫电池性能对比。
图5为黏土矿物复合锂电池隔膜经折叠、弯曲后涂层与基底隔膜之间粘结性。
具体实施方式
下面通过具体实施例对本发明黏土矿物复合锂电池隔膜的制备和性能作进一步说明。
实施例1
(1)分别称取0.8 g凹凸棒石和0.2 g石墨,混合、研磨5 min,得到凹凸棒石/石墨混合粉末。称取0.2 g聚偏氟乙烯分散在2 mL N-甲基-2-吡咯烷酮中,配置成10%的粘结剂分散液;将凹凸棒石/石墨添加到粘结剂分散液中,研磨30 min,以N-甲基-2-吡咯烷酮调节浆料粘度560 mPa·s;随后,400 rpm下磁力搅拌12 h,得到均匀浆料;
(2)在室温下采用涂布机将步骤(1)所得浆料均匀涂覆到Celgard2400隔膜表面(涂覆厚度为25 μm),随后将其置 于通风厨中6 h,随后置于60°C的真空环境中12 h,得到稳定的黏土矿物复合锂电池隔膜,其黏土矿物涂层平均负载量为0.7 mg cm−2
在160 °C下1 h,黏土矿物复合锂电池隔膜没有发生收缩;5 μL电解液在黏土矿物复合锂电池隔膜表面发生快速渗透,接触角接近0°;经过折叠、弯曲之后均没有出现掉粉、裂纹。
实施例2
(1)取1 g蒙脱土,研磨5 min。将0.52 g丁苯橡胶分散在4 mL去离子水中,配置成13%的粘结剂分散液。将预处理好的蒙脱土添加到粘结剂分散液中球磨30 min,以去离子水调节浆料粘度600 mPa·s。随后球磨6 h,得到均匀浆料。
(2)在室温下采用涂布机将步骤(1)所得浆料均匀涂覆玻璃纤维隔膜表面(涂覆厚度为170 μm)。将其置于通风厨中6 h,随后置于60 °C的真空环境中6 h,得到稳定的黏土矿物复合锂电池隔膜,其黏土矿物涂层平均负载量为1.6 mg cm−2
在160 °C下1 h,黏土矿物复合锂电池隔膜没有出现收缩;5 μL电解液在黏土矿物隔膜表面发生快速渗透,接触角3°;经过折叠、弯曲之后均没有出现掉粉、裂纹。
实施例3
(1)分别称取0.48 g蛇纹石和0.16 g多壁碳纳米管,混合、研磨5 min,得到蛇纹石/多壁碳纳米管混合粉末。将0.8 g聚乙烯醇分散在4 mL去离子水中,配置成20%的粘结剂分散液。将蛇纹石/多壁碳纳米管混合粉末添加到粘结剂分散液中,研磨10 min,以去离子水调节浆料粘度900 mPa·s。随后,800 rpm下磁力搅拌6 h,得到均匀浆料。
(2)在室温下采用涂布机将步骤(1)所得浆料均匀涂覆到聚酰胺隔膜表面(涂覆厚度为19 μm)。将其置于通风厨中6 h,随后在80°C的真空环境中6 h,得到稳定的黏土矿物复合锂电池隔膜,其黏土矿物涂层平均负载量为0.5 mg cm−2
在160 °C下1 h,黏土矿物复合锂电池隔膜没有出现收缩;5 μL电解液在黏土矿物隔膜表面发生快速渗透,接触角2~5°;经过折叠、弯曲之后均没有出现掉粉、裂痕。
实施例4
(1)分别称取0.21 g锂皂石和0.09 g乙炔黑,混合、研磨5 min,得到锂皂石/乙炔黑混合粉末。将0.16 g聚偏氟乙烯分散在1 mL N,N-二甲基甲酰胺溶液中,配置成16%的粘结剂。将锂皂石/乙炔黑混合粉末添加到粘结剂分散液中,研磨20 min,以N,N-二甲基甲酰胺溶液调节浆料粘度650 mPa·s。随后,600 rpm下磁力搅拌6 h,得到均匀浆料。
(2)在室温下采用涂布机将步骤(1)所得浆料均匀涂覆到GRE-20P(新乡格瑞恩)隔膜表面(涂覆厚度为20 μm)。将其置于通风厨中6 h,随后在40 °C的真空环境中12 h,得到稳定的黏土矿物复合锂电池隔膜,其黏土矿物涂层平均负载量为2.0 mg cm−2
在160 °C下1 h,黏土矿物复合锂电池隔膜没有出现收缩;5 μL电解液在黏土矿物隔膜表面发生快速渗透,接触角<5°;经过折叠、弯曲之后均没有出现掉粉、裂痕。
实施例5
(1)分别称取0.1 g埃洛石和0.1 g导电碳纤维,混合、研磨5 min,得到埃洛石/导电碳纤维混合粉末。称取0.3 g 聚四氟乙烯分散在2 mL N,N-二甲基吡咯烷酮溶液中,配置成15%的粘结剂分散液。将埃洛石/导电碳纤维混合粉末添加到粘结剂分散液中,研磨30 min,以N,N-二甲基吡咯烷酮溶液调节浆料粘度700 mPa·s。随后,球磨6 h,得到均匀浆料。
(2)在室温下采用涂布机将步骤(1)所得浆料均匀涂覆到纤维素复合隔膜表面(涂覆厚度为30 μm)。将其置于通风厨中6 h,随后在50 °C的真空环境中12 h,得到稳定的黏土矿物复合锂电池隔膜,其黏土矿物涂层平均负载量为2.5 mg cm−2
在160 °C下1 h,黏土矿物复合锂电池隔膜没有出现收缩;5 μL电解液在黏土矿物隔膜表面发生快速渗透;经过折叠、弯曲之后均没有出现掉粉、裂痕。
实施例6
(1)分别称取1.0 g海泡石和0.11 g石墨烯,混合、研磨5 min,得到海泡石/石墨烯混合粉末。将1.32 g羧甲基纤维素钠分散在12 mL去离子水中,配置成11%的粘结剂分散液。将海泡石/石墨烯混合粉末添加到粘结剂分散液中,研磨30 min,以去离子水调节浆料粘度850mPa·s。随后,800 rpm下磁力搅拌12 h,得到均匀浆料。
(2)在室温下采用涂布机将步骤(1)所得浆料均匀涂覆到聚偏氟乙烯隔膜表面(涂覆厚度为20 μm)。将其置于通风厨中6 h,随后在50 °C的真空环境中10 h,得到稳定的黏土矿物复合锂电池隔膜,其黏土矿物涂层平均负载量为0.1 mg cm−2
在160 °C下1 h,黏土矿物复合锂电池隔膜没有出现收缩;5 μL电解液在黏土矿物隔膜表面发生快速渗透;经过折叠、弯曲之后均没有出现掉粉、裂痕。
对比例1
商业化的单层PP隔膜(Celgard2400):厚度为25 μm,孔隙率为41%, MD shrinkage为5%(90 °C下1 h)、TD shrinkage为0%(90 °C下1 h)。

Claims (10)

1.一种黏土矿物复合锂电池隔膜的制备方法,是将粘结剂分散于分散剂中形成均一的分散液;再将黏土矿物纳米粒子和导电碳材料混合后添加到上述分散液中,经搅拌、均质处理后形成均匀浆料;然后将均匀浆料涂覆于锂电池隔膜表面,室温放置晾干后经真空热固化,得到黏土矿物复合锂电池隔膜。
2.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述粘结剂为聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、聚甲基丙烯酸甲酯、丁苯橡胶、羧甲基纤维素钠、聚氨酯中的至少一种,粘结剂在浆料中的质量百分含量为2%~10%。
3.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述分散剂为N-甲基-2-吡咯烷酮、N,N-二甲基吡咯烷酮、异丙醇、乙醇、乙二醇、去离子水中的至少一种,分散剂在浆料中的质量百分含量为75%~85%。
4.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述黏土矿物纳米粒子为凹凸棒石、海泡石、埃洛石、蒙脱石、蛇纹石、水滑石、伊利石、蛭石、锂皂石、云母、高岭石、硅藻土中的至少一种,黏土矿物纳米粒子在浆料中的质量百分含量为2%~20%。
5.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述导电碳材料为Super P、科琴黑、乙炔黑、石墨、石墨烯、氧化石墨烯、单壁碳纳米管、多壁碳纳米管、导电碳纤维中的至少一种,导电碳材料黏土矿物纳米粒子含量为在浆料中的质量百分含量为1%~9%。
6.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述锂电池隔膜为PE隔膜、PP隔膜、PP和PE复合隔膜、聚偏氟乙烯隔膜、聚(偏氟乙烯-co-六氟丙烯)隔膜、聚(偏氟乙烯-co-三氟乙烯)隔膜、玻璃纤维隔膜、纤维素复合隔膜、聚酯隔膜、聚酰亚胺隔膜、聚酰胺隔膜。
7.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述均匀浆料的粘度为300~1500 mPa·s。
8.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述涂覆是在室温下采用涂布机将浆料均匀涂布在锂电池隔膜表面,涂覆厚度为10~100 µm,负载量为0.1~3.0 mg cm−2
9.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述黏土矿物纳米粒子和导电碳材料混合后先研磨或球磨3~5 min,再添加到上述分散液中继续研磨或球磨10~30 min,然后经搅拌、均质处理后形成均匀浆料。
10.如权利要求1所述一种黏土矿物复合锂电池隔膜的制备方法,其特征在于:所述真空热固化是在40~80°C下真空处理2~12h。
CN201710856895.2A 2017-09-21 2017-09-21 一种黏土矿物复合锂电池隔膜及其制备方法 Active CN107799699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710856895.2A CN107799699B (zh) 2017-09-21 2017-09-21 一种黏土矿物复合锂电池隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710856895.2A CN107799699B (zh) 2017-09-21 2017-09-21 一种黏土矿物复合锂电池隔膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107799699A true CN107799699A (zh) 2018-03-13
CN107799699B CN107799699B (zh) 2020-06-30

Family

ID=61532471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710856895.2A Active CN107799699B (zh) 2017-09-21 2017-09-21 一种黏土矿物复合锂电池隔膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107799699B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878741A (zh) * 2018-07-10 2018-11-23 福建师范大学 云母对涂覆膜的改性方法
CN108963157A (zh) * 2018-07-10 2018-12-07 福建师范大学 聚甲基丙烯酸甲酯-云母涂覆剂对隔膜的改性方法
CN109004157A (zh) * 2018-08-07 2018-12-14 吉林大学 一种埃洛石涂覆无纺布锂离子电池隔膜及其制备方法
CN109273649A (zh) * 2018-09-25 2019-01-25 合肥先杰新能源科技有限公司 锂电池微孔隔膜及其制备方法
CN109585910A (zh) * 2018-11-13 2019-04-05 吉林师范大学 一种固态复合电解质及其电解质膜制备方法和应用
CN109755448A (zh) * 2018-12-28 2019-05-14 北京中能东道绿驰科技有限公司 一种带有补锂涂层的锂电池隔膜及其制备方法
CN109768205A (zh) * 2019-01-28 2019-05-17 中国科学院兰州化学物理研究所 一种超疏水/超亲电解液锂电池隔膜的制备方法
CN109786627A (zh) * 2019-01-28 2019-05-21 中国科学院兰州化学物理研究所 一种超亲电解液锂电池隔膜的制备方法
CN109904412A (zh) * 2019-01-23 2019-06-18 深圳新恒业电池科技有限公司 一种组合物、制备方法及其在离子电池正极材料中的应用
CN110137422A (zh) * 2019-05-30 2019-08-16 湖南电将军新能源有限公司 一种锂离子电池复合隔膜及其制备方法
CN110783516A (zh) * 2019-11-15 2020-02-11 吉林大学 锂离子电池隔膜、锂离子电池及其制备方法
CN110867550A (zh) * 2019-11-25 2020-03-06 天津工业大学 一种锂硫电池用复合膜及其制备方法
CN111129397A (zh) * 2019-12-18 2020-05-08 中国科学院广州能源研究所 一种锂离子电池隔膜水性涂层及其制备方法
CN111224049A (zh) * 2020-01-14 2020-06-02 江苏厚生新能源科技有限公司 阻燃型锂电池涂覆隔膜及其制备方法
CN111584805A (zh) * 2020-05-09 2020-08-25 中国科学院兰州化学物理研究所 一种水性黏土矿物/聚乙烯醇交联纳米涂层复合隔膜制备方法
CN111584804A (zh) * 2020-05-08 2020-08-25 贵州大学 一种基于二维纳米粘土的锂硫电池隔膜阻挡层的制备方法
CN111584803A (zh) * 2020-04-30 2020-08-25 汉腾新能源汽车科技有限公司 一种锂电池陶瓷隔膜涂层及其制备方法
CN111916641A (zh) * 2020-09-17 2020-11-10 中航锂电技术研究院有限公司 隔膜、其制备方法及电池
CN112103450A (zh) * 2020-08-26 2020-12-18 河北金力新能源科技股份有限公司 一种锂硫电池隔膜及其形成的锂硫电池
CN113381121A (zh) * 2021-06-11 2021-09-10 中国科学院兰州化学物理研究所 一种用于锂-硫电池的氧化钨/黏土矿物纳米材料改性隔膜的制备方法
CN113422152A (zh) * 2021-04-25 2021-09-21 华东理工大学 改性隔膜及其制备方法、应用和锂离子电池
CN115073960A (zh) * 2022-06-30 2022-09-20 蜂巢能源科技股份有限公司 一种阻燃浆料及其制备方法和应用
CN116435004A (zh) * 2023-06-13 2023-07-14 广州纳诺新材料技术有限公司 一种含埃洛石的导电浆料、涂碳箔及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347475A (zh) * 2010-07-27 2012-02-08 曾永斌 一种高性能锂离子电池及其制作工艺
US20130157126A1 (en) * 2011-12-14 2013-06-20 Industrial Technology Research Institute Electrode assembly of lithium secondary battery
CN104269509A (zh) * 2014-10-14 2015-01-07 上海电气集团股份有限公司 一种锂电池用陶瓷涂覆隔膜及其制备方法
CN104269505A (zh) * 2014-10-27 2015-01-07 沧州明珠隔膜科技有限公司 一种复合锂离子电池隔膜及其制备方法
CN104446515A (zh) * 2014-11-20 2015-03-25 深圳市星源材质科技股份有限公司 锂离子电池隔膜的高固含量水性陶瓷浆料及其加工方法
CN105006539A (zh) * 2015-07-10 2015-10-28 长兴东方红包装有限公司 一种锂离子电池用复合有纤维素的聚乙烯隔膜及其制备方法
CN106531941A (zh) * 2017-01-10 2017-03-22 天津理工大学 一种锂电池隔膜用陶瓷浆料及其制备和应用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347475A (zh) * 2010-07-27 2012-02-08 曾永斌 一种高性能锂离子电池及其制作工艺
US20130157126A1 (en) * 2011-12-14 2013-06-20 Industrial Technology Research Institute Electrode assembly of lithium secondary battery
CN104269509A (zh) * 2014-10-14 2015-01-07 上海电气集团股份有限公司 一种锂电池用陶瓷涂覆隔膜及其制备方法
CN104269505A (zh) * 2014-10-27 2015-01-07 沧州明珠隔膜科技有限公司 一种复合锂离子电池隔膜及其制备方法
CN104446515A (zh) * 2014-11-20 2015-03-25 深圳市星源材质科技股份有限公司 锂离子电池隔膜的高固含量水性陶瓷浆料及其加工方法
CN105006539A (zh) * 2015-07-10 2015-10-28 长兴东方红包装有限公司 一种锂离子电池用复合有纤维素的聚乙烯隔膜及其制备方法
CN106531941A (zh) * 2017-01-10 2017-03-22 天津理工大学 一种锂电池隔膜用陶瓷浆料及其制备和应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴选军等: "《聚乙烯醇/蒙脱石纳米复合材料的制备及性能》", 《非金属矿》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878741A (zh) * 2018-07-10 2018-11-23 福建师范大学 云母对涂覆膜的改性方法
CN108963157A (zh) * 2018-07-10 2018-12-07 福建师范大学 聚甲基丙烯酸甲酯-云母涂覆剂对隔膜的改性方法
CN109004157A (zh) * 2018-08-07 2018-12-14 吉林大学 一种埃洛石涂覆无纺布锂离子电池隔膜及其制备方法
CN109273649A (zh) * 2018-09-25 2019-01-25 合肥先杰新能源科技有限公司 锂电池微孔隔膜及其制备方法
CN109585910A (zh) * 2018-11-13 2019-04-05 吉林师范大学 一种固态复合电解质及其电解质膜制备方法和应用
CN109755448A (zh) * 2018-12-28 2019-05-14 北京中能东道绿驰科技有限公司 一种带有补锂涂层的锂电池隔膜及其制备方法
CN109904412A (zh) * 2019-01-23 2019-06-18 深圳新恒业电池科技有限公司 一种组合物、制备方法及其在离子电池正极材料中的应用
CN109768205A (zh) * 2019-01-28 2019-05-17 中国科学院兰州化学物理研究所 一种超疏水/超亲电解液锂电池隔膜的制备方法
CN109786627A (zh) * 2019-01-28 2019-05-21 中国科学院兰州化学物理研究所 一种超亲电解液锂电池隔膜的制备方法
CN110137422A (zh) * 2019-05-30 2019-08-16 湖南电将军新能源有限公司 一种锂离子电池复合隔膜及其制备方法
CN110783516A (zh) * 2019-11-15 2020-02-11 吉林大学 锂离子电池隔膜、锂离子电池及其制备方法
CN110867550A (zh) * 2019-11-25 2020-03-06 天津工业大学 一种锂硫电池用复合膜及其制备方法
CN111129397A (zh) * 2019-12-18 2020-05-08 中国科学院广州能源研究所 一种锂离子电池隔膜水性涂层及其制备方法
CN111224049A (zh) * 2020-01-14 2020-06-02 江苏厚生新能源科技有限公司 阻燃型锂电池涂覆隔膜及其制备方法
CN111584803A (zh) * 2020-04-30 2020-08-25 汉腾新能源汽车科技有限公司 一种锂电池陶瓷隔膜涂层及其制备方法
CN111584804A (zh) * 2020-05-08 2020-08-25 贵州大学 一种基于二维纳米粘土的锂硫电池隔膜阻挡层的制备方法
CN111584805A (zh) * 2020-05-09 2020-08-25 中国科学院兰州化学物理研究所 一种水性黏土矿物/聚乙烯醇交联纳米涂层复合隔膜制备方法
CN112103450A (zh) * 2020-08-26 2020-12-18 河北金力新能源科技股份有限公司 一种锂硫电池隔膜及其形成的锂硫电池
CN111916641A (zh) * 2020-09-17 2020-11-10 中航锂电技术研究院有限公司 隔膜、其制备方法及电池
CN113422152A (zh) * 2021-04-25 2021-09-21 华东理工大学 改性隔膜及其制备方法、应用和锂离子电池
CN113381121A (zh) * 2021-06-11 2021-09-10 中国科学院兰州化学物理研究所 一种用于锂-硫电池的氧化钨/黏土矿物纳米材料改性隔膜的制备方法
CN113381121B (zh) * 2021-06-11 2023-01-10 中国科学院兰州化学物理研究所 一种用于锂-硫电池的氧化钨/黏土矿物纳米材料改性隔膜的制备方法
CN115073960A (zh) * 2022-06-30 2022-09-20 蜂巢能源科技股份有限公司 一种阻燃浆料及其制备方法和应用
CN116435004A (zh) * 2023-06-13 2023-07-14 广州纳诺新材料技术有限公司 一种含埃洛石的导电浆料、涂碳箔及其制备方法和应用
CN116435004B (zh) * 2023-06-13 2023-08-29 广州纳诺新材料技术有限公司 一种含埃洛石的导电浆料、涂碳箔及其制备方法和应用

Also Published As

Publication number Publication date
CN107799699B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
CN107799699A (zh) 一种黏土矿物复合锂电池隔膜及其制备方法
Kuang et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices
CN102544502B (zh) 用于锂二次电池的正极负极导电添加剂及其制备方法和相关锂二次电池的制备方法
Ding et al. Sodium alginate binders for bivalency aqueous batteries
CN105470515B (zh) 一种安全型锂离子动力电池正极及含有该正极的锂离子电池
JP5365260B2 (ja) イオン液体を含む電極膜及び電極、それらの製造方法、並びに蓄電デバイス
CN103794754B (zh) 复合负电极及其制备方法、电化学电源及其应用
CN102130323B (zh) 一种含多孔聚合物弹性体的锂离子电池薄膜负极及制备方法
CN105355877B (zh) 一种石墨烯‑金属氧化物复合负极材料及其制备方法
CN107871850A (zh) 一种硅/石墨烯复合薄膜电极及其制备方法和锂离子电池
Ji et al. Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries
CN110364687B (zh) 一种柔性薄膜电极的制备方法及所制备的电极和用途
CN107845797A (zh) 一种锂离子电池用纳米硅碳复合负极材料及其制备方法
CN109411713A (zh) 含硅基材料的改性复合材料的机械共包覆方法、改性复合材料及锂离子电池
Ji et al. All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte
Han et al. Scalable binder-free freestanding electrodes based on a cellulose acetate-assisted carbon nanotube fibrous network for practical flexible li-ion batteries
Xu et al. Encapsulating iron oxide@ carbon in carbon nanofibers as stable electric conductive network for lithium-ion batteries
CN112421017B (zh) 一种无粘结剂水系锌离子电池正极复合材料的制备方法
CN109428062A (zh) 一种石墨烯-硅复合负极材料及其制备方法
US20220052342A1 (en) Prelithiated negative electrode, preparation method thereof, and lithium ion battery and supercapacitor comprising the same
CN104577111B (zh) 一种含有含氟磷酸钛化合物的复合材料及其制备方法和用途
CN107611410A (zh) v2o5/石墨烯复合材料制备方法及电池正极
CN104241606B (zh) 一种高倍率兼具优良低温性能的磷酸铁锂正极极片的制作方法
Hu et al. Rational construction of V2O5@ rGO with enhanced pseudocapacitive storage for high‐performance flexible energy storage device
CN203552954U (zh) 锂离子电容器用预嵌锂装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant