CN107474298B - 一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法 - Google Patents

一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法 Download PDF

Info

Publication number
CN107474298B
CN107474298B CN201710542934.1A CN201710542934A CN107474298B CN 107474298 B CN107474298 B CN 107474298B CN 201710542934 A CN201710542934 A CN 201710542934A CN 107474298 B CN107474298 B CN 107474298B
Authority
CN
China
Prior art keywords
microporous membrane
polypropylene
self
pad
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710542934.1A
Other languages
English (en)
Other versions
CN107474298A (zh
Inventor
蒋姗
王伟
俞强
张洪文
丁永红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710542934.1A priority Critical patent/CN107474298B/zh
Publication of CN107474298A publication Critical patent/CN107474298A/zh
Application granted granted Critical
Publication of CN107474298B publication Critical patent/CN107474298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

本发明属于聚合物功能薄膜及其制备领域,特别涉及一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法。通过合成大分子引发剂P(AMD‑co‑DMAEMA)(简称PAD),并实施熔融接枝聚丙烯得到接枝物PP‑g‑PAD,对接枝物进行流延以及后拉伸处理得到阳离子聚丙烯微孔膜;通过溶胶凝胶法合成纳米SiO2溶胶,并采用自组装吸附SiO2的方法得到二氧化硅自组装吸附聚丙烯微孔膜。根据本发明制备的二氧化硅自组装吸附聚丙烯微孔膜,微孔膜耐热性得到很大提高,130℃存放30min热收缩率仅在7.5%左右,与此同时,亲水性也得到很大提高,水接触角可降至42.5°。

Description

一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法
技术领域
本发明属于聚合物功能薄膜及其制备领域,特别涉及一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法。
背景技术
电池工业中最常用的锂离子电池具有工作电压高、质量轻、比能量高、应用温度范围宽、循环寿命长、储能效率高等优点,而且对环境无污染、安全性好等优越性能,是目前最为理想的21世纪绿色环保二次能源。锂离子电池通常由正极、负极、电解质溶液和隔膜四大部分构成,隔膜是锂离子电池中最重要的一个组成部分,锂离子电池隔膜主要使用聚烯烃微孔膜,如聚丙烯(PP)和聚乙烯(PE)塑料微孔薄膜,其重要功能就是隔离正极与负极,防止短路,并给锂离子传输提供通道,从而保证电化学反应有序可逆进行。
聚烯烃微孔膜的制备方法通常分为干法和湿法两种,其中聚丙烯微孔膜的制备一般以干法为主,其价格低廉,环境友好,并且具有较高的机械性能。尽管聚丙烯微孔膜具有诸多优势,但仍存在着许多不可忽略的弊端。聚丙烯微孔膜具有较低的自闭孔温度,在100℃以上会发生不同程度的不可逆孔收缩,从而影响离子传导,增加电池阻抗,甚至损坏电池,因而对其耐热性能的提升具有实质性意义。此外,聚丙烯是非极性的半结晶聚合物,其表面能较低,具有较强疏水性,因而聚丙烯微孔膜与极性电解液之间的亲和性较差,电解液对微孔膜表面及孔道湿润性不佳会导致电池内阻增大,从而进一步影响电池的循环性能和充放电效率,因而,对微孔膜表面亲水性的改善具有重大意义。
发明内容
针对现有技术中聚丙烯微孔膜耐热性与亲水性较差的技术问题。本发明通过熔融接枝引入阳离子极性基团,并实施SiO2的表面自组装吸附实现改善聚丙烯微孔膜耐热性能和亲水性的目的。
本发明提供了一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法,即通过熔融接枝聚丙烯引入阳离子极性单元,再通过自组装吸附表面带负电的二氧化硅粒子,以达到改善聚丙烯微孔膜耐热性和亲水性的目的。
本发明的实施方案如下:
(1)将α-甲基苯乙烯(AMS)和甲基丙烯酸二甲胺乙酯(DMAEMA)在溶剂条件下进行共聚合反应,对共聚产物进行沉淀干燥处理,得到大分子引发剂PAD;
(2)将一定比例步骤(1)得到的PAD与聚丙烯通过双螺杆挤出机进行熔融接枝反应,得到接枝物PP-g-PAD,造粒后进行干燥后待用;
(3)将步骤(2)干燥后的接枝物PP-g-PAD采用流延机制备具有取向片晶结构的基膜,对基膜进行退火处理得到退火膜,对退火膜进行冷拉和热拉工艺,得到聚丙烯阳离子微孔膜;
(4)采用溶胶凝胶法制备纳米SiO2溶胶,调节其pH为10~13,将聚丙烯阳离子微孔膜浸泡于纳米SiO2溶胶后用蒸馏水洗涤干净,自然晾干得二氧化硅自组装吸附聚丙烯微孔膜。
上述制备方法的具体工艺步骤为:
(1)制备大分子引发剂PAD
将一定比例引发剂、AMS和DMAEMA以及溶剂二甲苯加入反应容器中形成溶液,通入N2除氧30min后,在一定温度下进行共聚合反应,反应结束后,用冰石油醚沉淀,干燥后得到固体状共聚物,即为大分子引发剂PAD;
(2)制备接枝物PP-g-PAD
将一定比例步骤(1)得到的大分子引发剂PAD与聚丙烯通过双螺杆挤出机进行熔融接枝反应,得到接枝物PP-g-PAD,造粒后干燥待用;
(3)制备PP-g-PAD阳离子微孔膜
将步骤(2)干燥后的接枝物PP-g-PAD采用流延机制备接枝物PP-g-PAD基膜,基膜经过退火、冷拉、热拉、热定型制备聚丙烯阳离子微孔膜;
(4)采用溶胶凝胶法制备纳米SiO2溶胶
取一定量氨水、蒸馏水和甲醇于反应容器中,搅拌至混合均匀后加入适量正硅酸乙酯,一定温度下高速搅拌一段时间,调节pH至碱性,使其粒子表面带有负电荷,即得到纳米SiO2溶胶;
(5)二氧化硅自组装吸附聚丙烯微孔膜的制备
将步骤(3)中所得聚丙烯阳离子微孔膜浸泡于步骤(4)所得的表面带负电荷的纳米SiO2溶胶中,通过静电自组装作用,使SiO2均匀吸附于微孔膜表面,经蒸馏水洗净后自然晾干得到二氧化硅自组装吸附聚丙烯微孔膜。
其中,步骤(1)所述的引发剂为偶氮二甲酰胺(AIBN),其中,AIBN、AMS、DMAEMA与二甲苯的质量比为1:4~6:40~55:44~61;
步骤(1)所述的反应温度为:60~80℃,反应时间为:20~30h;优选反应温度为75℃,反应时间为:24h;
步骤(2)所述的大分子引发剂PAD用量占聚丙烯质量的2~10%,双螺杆挤出机进行熔融接枝反应温度为210~230℃;
步骤(3)所述的退火温度为140~150℃、冷拉倍率20~40%,热拉倍率90~110%,热定型温度140~150℃,热定型时间15-30min;
步骤(4)所述的正硅酸乙酯,氨水,蒸馏水和甲醇质量比为5~17:3~14:18~72:100;
步骤(4)所述高速搅拌时的温度为:20~30℃,搅拌时间为30~60min,pH为10~13;优选高速搅拌温度为25℃,搅拌时间1h;
本发明的有益效果:本发明首先通过共聚合反应制得大分子引发剂PAD引发聚丙烯进行熔融接枝,对接枝物进行流延以及后拉伸处理得到阳离子聚丙烯微孔膜,再自组装表面带负电荷的二氧化硅,所得聚丙烯微孔膜耐热性和亲水性得到很大提升。采用熔融接枝制备接枝物PP-g-PAD,由于接枝的作用保证了阳离子在聚丙烯微孔膜表面以及孔隙内能够稳定存在,同时也为后期自组装提供了理论基础。采用带负电的纳米二氧化硅粒子直接自组装于带正电的聚丙烯微孔膜,方法简单易行,并且纳米二氧化硅具有良好的亲水性和耐热性,对微孔膜亲水性和耐热性有改善作用。根据本发明方法制备的二氧化硅自组装吸附聚丙烯微孔膜,耐热性和亲水性都得到了很大提升,130℃维持30min热收缩率仅在7.5%左右,水接触角降至42.5°。
附图说明
图1为二氧化硅自组装吸附聚丙烯微孔膜的微观图;
图2为不同自组装时间的微孔膜在不同温度下的热收缩率曲线;
图3为不同自组装浓度的微孔膜在不同温度下的热收缩率曲线;
图4为不同自组装溶液pH的微孔膜在不同温度下的热收缩率曲线;
具体实施方式
实施例和对比实施例中所述的各项测定值按下述方法测定:
(1)透气率
采用透气率测定仪测定微孔膜的Gurley值。Gurley值是指100mL空气在特定的压力下通过特定面积的微孔膜所需要的时间,Gurley值越小,透气率越高。测定条件为:工作压力8.5KPa,测试面积645.2mm2
(2)静态水接触角
采用HARKE-SPCA接触角测定仪,用蒸馏水测量微孔膜的静态水接触角。蒸馏水在膜表面的接触角越小则说明薄膜的亲水性越好。
(3)耐热性能
把改性后的聚烯烃膜裁剪成直径L0为8mm的圆片,模拟电池升温过程将其放置在烘箱中110,120,130,140,150℃下分别保持30min,测量MD方向的长度L1,则热收缩率的计算公式为:
热收缩率(%)=(L0—L1)/L0×100%
实施例1
(1)取11.8gα-甲基苯乙烯(AMS),109.9g甲基丙烯酸二甲胺乙酯(DMAEMA),2.434g引发剂AIBN,和120g二甲苯加入反应容器中形成溶液,通入N2除氧30min后,75℃下反应24h,反应结束后,产物用冰石油醚进行沉淀,产物65℃烘干得到大分子引发剂PAD;
(2)取700g聚丙烯和28g大分子引发剂PAD通过双螺杆挤出机进行熔融接枝反应,得到接枝物PP-g-PAD,产物干燥后待用;
(3)将接枝物PP-g-PAD采用流延机制备具有取向片晶结构的基膜,145℃下对基膜进行退火处理得到退火膜,室温下对退火膜冷拉25%,145℃热拉100%,并在145℃下热定型30min得到阳离子微孔膜;
(4)取14g氨水、36g蒸馏水和lL甲醇于三口烧瓶中,搅拌至混合均匀后加入11.6g正硅酸乙酯,25℃下高速搅拌1h制得纳米SiO2溶胶,将阳离子隔膜浸泡于纳米SiO2溶胶原液(pH=10,浓度100%)中60min后用蒸馏水洗涤干净,自然晾干。
实施例2
其余操作均与实施例1相同,只有聚丙烯微孔膜在二氧化硅溶胶中浸泡时间与实施例1中不同。
实施例3
其余操作均与实施例1相同,只有二氧化硅溶胶浓度与实施例1中不同。
实施例4
其余操作均与实施例1相同,只有二氧化硅溶胶pH与实施例1中不同。
对比实施例1
采用未吸附二氧化硅的阳离子微孔膜作为对比实施例1。
二氧化硅自组装吸附聚丙烯微孔膜的性能分析
实施例1中,制备的二氧化硅自组装吸附聚丙烯微孔膜,130℃存放30min热收缩率仅在7.5%左右,水接触角为42.5°,Gurley值为298s/100mL。
图1为实施例1中所得微孔膜的微观结构图,由图可知,纳米SiO2均匀分散在微孔膜表面。
而对比实施例1中,自组装吸附的聚丙烯微孔膜亲水性和耐热变形性能均较差,130℃存放30min热收缩率为16%左右,水接触角为92.8°,Gurley值为272s/100mL。
实施例2中,阳离子聚丙烯微孔膜在二氧化硅溶胶中的浸泡时间对微孔膜水接触角和Gurley值影响如表1,热收缩性能见图2。由表1可知,随着自组装时间的增加,隔膜亲水性逐渐增加,Gurley值逐渐增加,透气性降低。由图2可知,随着自组装时间的增加,隔膜热收缩性能逐渐提高。
表1不同自组装时间下微孔膜水接触角和Gurley值
Figure BDA0001342297140000061
Figure BDA0001342297140000071
实施例3中,二氧化硅溶胶浓度对二氧化硅自组装吸附聚丙烯微孔膜的水接触角和Gurley值影响如表2,热收缩性能见图3。由表2可知,随着自组装溶液浓度的增加,隔膜亲水性逐渐增加,Gurley值逐渐增加,透气性降低。由图3可知,随着自组装浓度的增加,隔膜热收缩性能逐渐提高。
表2不同自组装浓度下微孔膜水接触角和Gurley值
Figure BDA0001342297140000072
实施例4中,二氧化硅溶胶pH对二氧化硅自组装吸附聚丙烯微孔膜的水接触角和Gurley值影响如表3,热收缩性能见图4。由表3可知,随着自组装溶液pH的提高,隔膜亲水性与Gurley值轻微增大。由图4可知,随着自组装浓度的增加,隔膜热收缩性能逐渐提高且趋势相当。
表3不同pH下自组装微孔膜水接触角和Gurley值
Figure BDA0001342297140000073

Claims (7)

1.一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法,其特征在于:所述制备方法工艺步骤如下:
(1)制备大分子引发剂PAD
按质量比将引发剂、AMS、DMAEMA以及溶剂二甲苯加入反应容器中形成溶液,通入N2除氧30min后进行共聚合反应,反应结束后,用冰石油醚沉淀,干燥后得到固体状共聚物,即为大分子引发剂PAD;
(2)制备接枝物PP-g-PAD
按质量比将步骤(1)得到的大分子引发剂PAD与聚丙烯通过双螺杆挤出机进行熔融接枝反应,得到接枝物PP-g-PAD,造粒后进行干燥处理;
(3)制备PP-g-PAD阳离子微孔膜
将步骤(2)干燥后的接枝物PP-g-PAD采用流延机制备接枝物PP-g-PAD基膜,基膜经过退火、冷拉、热拉、热定型制备聚丙烯阳离子微孔膜;
(4)制备纳米SiO2溶胶
按质量比将氨水、蒸馏水和甲醇置于反应容器中,搅拌至混合均匀后加入正硅酸乙酯,进行高速搅拌,调节pH至碱性,使其粒子表面带有负电荷,即得到纳米SiO2溶胶;
(5)二氧化硅自组装吸附聚丙烯微孔膜
将步骤(3)得到的聚丙烯阳离子微孔膜浸泡于步骤(4)所得的表面带负电荷的纳米SiO2溶胶中,通过静电自组装作用,使SiO2均匀吸附于微孔膜表面,经蒸馏水洗净后自然晾干得到二氧化硅自组装吸附聚丙烯微孔膜。
2.如权利要求1所述的二氧化硅自组装吸附聚丙烯微孔膜的制备方法,其特征在于:步骤(1)所述的引发剂为AIBN,所述的AIBN、AMS、DMAEMA与二甲苯的质量比为1:4~6:40~55:44~61。
3.如权利要求1所述的二氧化硅自组装吸附聚丙烯微孔膜的制备方法,其特征在于:步骤(1)所述的共聚合反应温度为:60~80℃,反应时间为:20~30h。
4.如权利要求1所述的二氧化硅自组装吸附聚丙烯微孔膜的制备方法,其特征在于:步骤(2)所述的大分子引发剂PAD用量占聚丙烯质量的2~10%;双螺杆挤出机进行熔融接枝反应温度为210~230℃。
5.如权利要求1所述的二氧化硅自组装吸附聚丙烯微孔膜的制备方法,其特征在于:步骤(3)所述的退火温度为140~150℃,冷拉倍率为20~40%,热拉倍率为90~110%,热定型温度为140~150℃,热定型时间为15~30min。
6.如权利要求1所述的二氧化硅自组装吸附聚丙烯微孔膜的制备方法,其特征在于:步骤(4)所述的正硅酸乙酯、氨水、蒸馏水和甲醇的质量比为5~17:3~14:18~72:100。
7.如权利要求1所述的二氧化硅自组装吸附聚丙烯微孔膜的制备方法,其特征在于:步骤(4)所述高速搅拌时的温度为:20~30℃,搅拌时间为30~60min,PH为10~13。
CN201710542934.1A 2017-07-05 2017-07-05 一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法 Active CN107474298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710542934.1A CN107474298B (zh) 2017-07-05 2017-07-05 一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710542934.1A CN107474298B (zh) 2017-07-05 2017-07-05 一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法

Publications (2)

Publication Number Publication Date
CN107474298A CN107474298A (zh) 2017-12-15
CN107474298B true CN107474298B (zh) 2020-04-28

Family

ID=60596462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710542934.1A Active CN107474298B (zh) 2017-07-05 2017-07-05 一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法

Country Status (1)

Country Link
CN (1) CN107474298B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734845A (zh) * 2018-12-03 2019-05-10 华东理工大学 一种基于聚电解质为模板的纳米凝胶的制备方法
CN111293035B (zh) * 2018-12-07 2022-12-06 中国科学院物理研究所 一种碳纳米管薄膜的制备方法
CN110586036A (zh) * 2019-09-27 2019-12-20 常州大学 一种复合改性生物炭的制备方法
CN111224047A (zh) * 2019-10-17 2020-06-02 上海恩捷新材料科技有限公司 一种隔膜及包含该隔膜的电化学装置
CN111864161A (zh) * 2020-06-15 2020-10-30 泰州衡川新能源材料科技有限公司 一种SiO2掺杂的隔膜加工工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531893A (en) * 1993-02-12 1996-07-02 Gelman Sciences Inc. Inter-penetrating network charge modified microporous membrane
CN102181069B (zh) * 2011-04-12 2012-11-21 北京大学 两性离子交换膜的制备方法
CN102779965B (zh) * 2012-08-09 2014-08-13 常州大学 一种具有亲水交联表层的锂离子电池隔膜及其制备方法
CN103066231B (zh) * 2012-12-31 2015-07-15 中科院广州化学有限公司 一种锂离子电池用耐高温复合隔膜的制备方法

Also Published As

Publication number Publication date
CN107474298A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
CN107474298B (zh) 一种二氧化硅自组装吸附聚丙烯微孔膜的制备方法
CN103199209B (zh) 具有优良闭孔性能的锂离子电池用无纺布陶瓷隔膜及工艺
KR101298273B1 (ko) 수성 폴리머에 의해 개질된 미세다공성 폴리머 막, 이의 제조방법 및 용도
WO2017107436A1 (zh) 一种复合涂层锂离子电池隔膜及其制备方法
CN107195838B (zh) 锂离子电池隔膜用的孔径均匀有序的耐热涂层及制备方法
CN109473609B (zh) 一种有机/无机交联复合锂离子电池隔膜及其制备方法与应用
CN106784552B (zh) 一种锂离子电池涂覆隔膜及其制备方法
CN104993088B (zh) 一种低温闭孔高温稳定的无纺布型锂电池隔膜及制备方法
CN108075088B (zh) 含磺化石墨烯锂盐的锂电池隔膜、其制备方法及应用
CN108735953B (zh) 一种SiO2-PS核壳结构陶瓷涂层隔膜及其制备方法和应用
CN112795184B (zh) 一种聚合物颗粒、含有该聚合物颗粒的隔膜及锂离子电池
CN106848152B (zh) 氧化铝陶瓷涂覆隔膜的制备方法
CN110911612B (zh) 一种基于醋酸纤维素的交联复合型锂离子电池隔膜及其制备方法与应用
WO2020034168A1 (zh) 基于交联与线形聚合物的多孔性锂离子电池隔膜及其制备方法与应用
CN110845957B (zh) 水性芳纶涂布液及其制备方法、锂离子电池及其隔膜
CN111129393A (zh) 一种混合涂覆的锂电池隔膜及其制备方法
CN103603178A (zh) 柔性锂离子电池隔膜用涂料、含有该涂料的隔膜及其制备
CN113611983A (zh) 一种复合隔膜浆料及其制备方法、电池隔膜
CN109065805B (zh) 一种高吸液率水性聚合物隔膜的制备方法
CN114649560A (zh) 一种Zn-MOF/PAN@PAN复合隔膜材料及其制备方法和应用
CN114665223A (zh) 一种耐高温纤维素基聚乙烯醇复合电池隔膜及其制备方法
CN112002864A (zh) 一种锂电隔膜及其制备方法
CN117276806A (zh) 锂离子电池隔膜用涂层浆料及其制备方法、锂离子电池隔膜、锂离子电池
CN114204209A (zh) 一种二次功能化双涂层改性聚醚砜锂硫电池隔膜的制备方法
CN103746086B (zh) 一种聚对苯撑苯并双噁唑多孔膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant