CN107383594A - 一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法 - Google Patents

一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法 Download PDF

Info

Publication number
CN107383594A
CN107383594A CN201710578243.7A CN201710578243A CN107383594A CN 107383594 A CN107383594 A CN 107383594A CN 201710578243 A CN201710578243 A CN 201710578243A CN 107383594 A CN107383594 A CN 107383594A
Authority
CN
China
Prior art keywords
microporous barrier
pagk
preparation
nano inoganic
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710578243.7A
Other languages
English (en)
Other versions
CN107383594B (zh
Inventor
蒋姗
王伟
俞强
张洪文
丁永红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Gaiya Material Technology Co.,Ltd.
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710578243.7A priority Critical patent/CN107383594B/zh
Publication of CN107383594A publication Critical patent/CN107383594A/zh
Application granted granted Critical
Publication of CN107383594B publication Critical patent/CN107383594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

本发明属于聚合物功能薄膜及其制备领域,特别涉及一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法。通过熔融接枝制备大分子偶联剂,将聚丙烯与大分子偶联剂以及纳米无机粒子共混造粒后流延制得基膜,再经退火、冷拉和热拉等工艺制成微孔膜。根据本发明制备的纳米无机粒子共混改性聚丙烯微孔膜,透气性、极性以及耐热性能得到提高,与此同时拉伸强度也得到一定改善。

Description

一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法
技术领域
本发明属于聚合物功能薄膜及其制备领域,特别涉及一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法。
背景技术
由于高效储能和优良的循环性能,锂电池在笔记本电脑、移动电话、电动汽车以及混合动力电动汽车中得到了广泛应用。锂离子电池由四部分组成:阳极、阴极、电解液和隔膜。虽然隔膜不参与电池内的电化学反应,但它扮演着两个角色:分离的阴极和阳极,以防止内部短路,同时允许离子通过微孔结构进行传导。
目前市售的锂电池隔膜主要是以聚乙稀和聚丙烯为材料的聚烯径微孔膜,其中聚丙烯微孔膜的制备一般以单向拉伸法为主,其价格低廉,环境友好,并且具有较高的机械性能。通常聚丙烯的共混改性可以通过在其中加入无机刚性粒子等实现,同时为了促进无机粒子的分散,还需要加入一定的偶联剂,但是普通小分子偶联剂由于在分子结构上与PP基体存在明显的不同,会影响基膜的取向片晶结构,从而影响基膜的力学性能及成孔性能,进而直接决定着微孔膜后续的使用性能,这也是微孔膜相比于其他聚合物材料制备的明显不同之处。
发明内容
针对以上技术问题,本专利很大程度上避免了偶联剂对基材PP取向片晶结构的影响,提供了一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法:
(1)将α-甲基苯乙烯(AMS),甲基丙烯酸缩水甘油酯(GMA)以及γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)在溶剂条件下进行共聚合反应,对所得的共聚产物进行沉淀干燥处理,得到大分子引发剂PAGK,
(2)将步骤(1)中制得的大分子引发剂PAGK与聚丙烯通过双螺杆挤出机进行熔融接枝反应,得到接枝物PP-g-PAGK,产物干燥后待用,即为大分子偶联剂,
(3)将步骤(2)中制得的大分子偶联剂PP-g-PAGK、纳米无机粒子和基体聚丙烯采用双螺杆挤出机进行熔融共混造粒,产物干燥待用,
(4)将步骤(3)中制得的共混粒子采用流延机制备具有取向片晶结构的基膜,对基膜进行包括退火、冷拉、热拉工艺制得微孔膜;
上述制备方法的具体操作为:
(1)制备大分子引发剂PAGK
将引发剂、α-甲基苯乙烯(AMS),甲基丙烯酸缩水甘油酯(GMA)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)以及溶剂加入到反应容器中形成溶液,通入N2除氧30min后,在65℃条件下反应24h,反应结束后,用大量甲醇沉淀,所得的沉淀物干燥后得到固体状共聚物,即为大分子引发剂PAGK,
其中,溶剂为二甲苯,
该共聚物中AMS链段会在160℃左右发生断链形成大分子自由基,从而引发对步骤(2)中聚丙烯的接枝,所以是一种大分子引发剂,具有引发效果;
(2)制备大分子偶联剂PP-g-PAGK
将步骤(1)中制得的大分子引发剂PAGK与聚丙烯通过双螺杆挤出机进行熔融接枝反应,造粒后干燥待用,得到大分子偶联剂PP-g-PAGK;
(3)制备共混改性粒子
将步骤(2)中制得的大分子偶联剂PP-g-PAGK、纳米无机粒子和基体聚丙烯采用双螺杆挤出机进行熔融共混造粒,干燥,
其中,纳米无机粒子为表面带羟基的纳米二氧化硅、纳米二氧化钛或纳米三氧化二铝;
(4)聚丙烯流延基膜及微孔膜的制备
将步骤(3)中制得的共混粒子采用流延机制备具有取向片晶结构的基膜,对基膜进行包括退火、冷拉、热拉工艺制得微孔膜。
本发明的有益效果在于:本发明采用特定的单体(如甲基丙烯酸缩水甘油酯)将小分子偶联剂制备成大分子结构,不仅促进了偶联剂在基材中的分散性,更重要的是,申请人发现该措施虽然没有改变偶联剂本身的分子结构,但是却很好地避免了由于分子结构与聚丙烯基材的差异而导致的偶联剂对基材PP取向片晶结构的影响;
根据本发明制备的纳米无机粒子共混改性聚丙烯微孔膜,基膜片晶结构完善,结晶度44.48%,晶区取向度0.503,弹性回复率达89.96%,与此同时,微孔膜耐热性和极性都得到了很大提升,130℃维持30min热收缩率仅在10.7%左右,电解液接触角降至63.8°,与此同时拉伸强度提高到133.3Mpa。
具体实施方式
微孔膜的性能检测项目:
(1)透气率
采用透气率测定仪测定微孔膜的Gurley值。Gurley值是指特定量的空气在特定的压力下通过特定面积的微孔膜所需要的时间,Gurley值越小,透气率越高。测定条件为:工作压力8.5KPa,测试面积645.2mm2
(2)电解液接触角
HARKE-SPCA接触角测定仪,用电解液(1mol LiPF6,溶剂DC:DEC:DMC=1:1:1)测量微孔膜的电解液接触角。电解液在膜表面的接触角越小则说明薄膜的极性越大,对电解液亲润性越好。
(3)耐热性能
把改性后的聚烯烃膜裁剪成直径L0为8mm的圆片,在烘箱中130℃下分别保持30min,测量MD方向的长度L1,则热收缩率的计算公式为:
热收缩率(%)=(L0—L1)/L0×100%
(4)微孔膜拉伸强度
采用电子万能实验机对微孔膜进行拉伸性能测试,原始标距50mm,宽度20mm,拉伸速率50mm/min,测试微孔膜力学性能。
(5)结晶度
用美国PE公司生产的8000型差示扫描量热仪测定基膜的结晶度。将5-9mg精确称量的基膜置于DSC样品台,气氛为氮气,升温范围为50℃到230℃,升温速率为10℃/min,记录DSC熔融曲线。
3-1式中:Xc为结晶度,%;ΔH为样品结晶熔融热焓值,J/g;ΔHo为100%结晶PP样品的结晶熔融热焓,其值取207J/g。
(6)晶区取向度
采用红外二向色性测试PP基膜的晶区取向度。
(7)弹性回复率
采用万能拉伸试验机,选用回复率测试专用夹具。将初始标距调至100mm,回弹性测试夹具的拉伸速率为50mm/min,目标为100%,即拉伸100mm。
采用上述检测手段检测实施例1和比较例1~3制备的聚丙烯基膜的结晶度、晶区取向度以及弹性回复率,以及微孔膜的透气性、电解液亲润性、耐热性以及力学性能:
实施例1
(1)制备大分子引发剂PAGK
将2.99g引发剂AIBN、12.2g的α-甲基苯乙烯,115.72g甲基丙烯酸缩水甘油酯、25.26g的γ-甲基丙烯酰氧基丙基三甲氧基硅烷以及153g二甲苯加入到反应容器中形成溶液,通入N2除氧30min后,在65℃条件下反应24h,反应结束后,用大量甲醇沉淀,所得的沉淀物于60℃真空干燥后得到固体状共聚物,即为大分子引发剂PAGK;
(2)制备大分子偶联剂PP-g-PAGK
将35g步骤(1)中制得的大分子引发剂PAGK与700g聚丙烯通过双螺杆挤出机进行熔融接枝反应,造粒后干燥待用,得到大分子偶联剂PP-g-PAGK;
(3)制备共混改性粒子
将28g步骤(2)中制得的大分子偶联剂PP-g-PAGK、28g纳米二氧化硅粒子和700g基体聚丙烯采用双螺杆挤出机进行熔融共混造粒,干燥;
(4)聚丙烯流延基膜及微孔膜的制备
将步骤(3)中制得的共混粒子采用流延机流延制备20μm厚的基膜,145℃下对基膜进行退火处理,室温(25℃)下对退火后的基膜冷拉25%,再升温至145℃热拉100%,并在145℃下热定型30min得到纳米无机粒子共混改性微孔膜。
比较例1
采用纯聚丙烯微孔膜为比较例1,
该纯聚丙烯微孔膜的制备方法参照实施例1的步骤(3)、(4):
将基体聚丙烯采用双螺杆挤出机进行熔融共混造粒,干燥;将制得的共混粒子采用流延机流延制备20μm厚的基膜,145℃下对基膜进行退火处理,室温(25℃)下对退火后的基膜冷拉25%,再升温至145℃热拉100%,并在145℃下热定型30min得到微孔膜。
比较例2
其余操作均与实施例1相同,只有步骤(3)中纳米二氧化硅粒子的添加量与实施例1中不同。
比较例3
采用等摩尔量的甲基丙烯酸甲酯代替步骤(1)中的甲基丙烯酸缩水甘油酯,其余操作均与实施例1相同。
实施例1制备的纳米无机粒子共混改性微孔膜,基膜片晶结构相对完善,结晶度44.48%,晶区取向度0.503,弹性回复率达89.96%,微孔膜Gurley值为208s/100mL,电解液接触角为63.8°,130℃保持30min的热收缩率仅在10.7%,微孔膜拉伸强度为133.3Mpa;
而比较例1中,纯PP基膜结晶度44.67%,晶区取向度0.564,弹性回复率为91.37%,但微孔膜的透气性、极性以及耐热性都较差,Gurley值为320s/100mL,电解液接触角为73.4°,130℃保持30min热收缩率为16%,微孔膜拉伸强度较低,仅为92.6Mpa;
比较例2中,不同二氧化硅含量的改性聚丙烯微孔膜中,基膜结晶度、晶区取向度及弹性恢复率见表1,随着二氧化硅含量的增加,基膜晶区取向度微幅降低,弹性回复率逐渐增大;微孔膜Gurley值、电解液接触角以及热收缩率见表2,由表2可知,随着二氧化硅含量的增加,微孔膜Gurley值逐降,透气性变好;电解液接触角逐渐降低,微孔膜极性得到提高;其中热收缩性能以实施例1中为最佳:
表1
二氧化硅/g 7 14 28 42 56
结晶度/% 44.67 44.19 44.48 44.63 44.63
晶区取向度 0.525 0.483 0.503 0.468 0.463
弹性回复率/% 84.15 86.37 89.96 89.73 90.40
表2
二氧化硅/g 7 14 28 42 56
Gurley值/s 258 202 208 146 104
电解液接触角/° 68.5 65.7 63.8 61.8 60.5
热收缩率/% 14.6 12.5 10.7 12.8 13.4
拉伸强度/Mpa 100.5 116.5 133.3 113.2 105.3
比较例3制备的纳米无机粒子共混改性微孔膜,基膜结晶度41.06%,晶区取向度0.437,弹性回复率86.13%,微孔膜Gurley值为243s/100mL,130℃保持30min的热收缩率为11.4%,微孔膜拉伸强度为131.2Mpa。
对比例3中采用甲基丙烯酸甲酯与偶联剂进行共聚,由于甲基丙烯酸甲酯不含环氧基团,因此在分子结构上与基材聚丙烯更为接近,能更好地提升偶联剂在基体中的分散性,但是对比例3中基膜结晶度、晶区取向度以及弹性回复率相比实施例1均降低,片晶结构相对不完善,这一反差只能归因于:偶联剂分子结构与聚丙烯基材的差异而导致了偶联剂对基材PP取向片晶结构的影响。相比之下,实施例1中采用甲基丙烯酸缩水甘油酯作为与偶联剂的共聚单体,虽然对偶联剂在基体中分散性的提高不如甲基丙烯酸甲酯,但却在相当大的程度上避免了偶联剂对基材PP取向片晶结构的影响。

Claims (5)

1.一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法,其特征在于:所述的制备方法为,
(1)将α-甲基苯乙烯,甲基丙烯酸缩水甘油酯以及γ-甲基丙烯酰氧基丙基三甲氧基硅烷在溶剂条件下进行共聚合反应,对所得的共聚产物进行沉淀干燥处理,得到大分子引发剂PAGK;
(2)将步骤(1)中制得的大分子引发剂PAGK与聚丙烯通过双螺杆挤出机进行熔融接枝反应,得到接枝物PP-g-PAGK,产物干燥后待用,即为大分子偶联剂;
(3)将步骤(2)中制得的大分子偶联剂PP-g-PAGK、纳米无机粒子和基体聚丙烯采用双螺杆挤出机进行熔融共混造粒,产物干燥待用;
(4)将步骤(3)中制得的共混粒子采用流延机制备具有取向片晶结构的基膜,对基膜进行包括退火、冷拉、热拉工艺制得微孔膜。
2.如权利要求1所述的纳米无机粒子共混改性聚丙烯微孔膜的制备方法,其特征在于:所述制备方法的具体步骤为,
(1)制备大分子引发剂PAGK
将引发剂、α-甲基苯乙烯,甲基丙烯酸缩水甘油酯、γ-甲基丙烯酰氧基丙基三甲氧基硅烷以及溶剂加入到反应容器中形成溶液,通入N2除氧后,在65℃条件下反应24h,反应结束后,用大量甲醇沉淀,所得的沉淀物干燥后得到固体状共聚物,即为大分子引发剂PAGK;
(2)制备大分子偶联剂PP-g-PAGK
将步骤(1)中制得的大分子引发剂PAGK与聚丙烯通过双螺杆挤出机进行熔融接枝反应,造粒后干燥待用,得到大分子偶联剂PP-g-PAGK;
(3)制备共混改性粒子
将步骤(2)中制得的大分子偶联剂PP-g-PAGK、纳米无机粒子和基体聚丙烯采用双螺杆挤出机进行熔融共混造粒,干燥;
(4)聚丙烯流延基膜及微孔膜的制备
将步骤(3)中制得的共混粒子采用流延机制备具有取向片晶结构的基膜,对基膜进行包括退火、冷拉、热拉工艺制得微孔膜。
3.如权利要求2所述的纳米无机粒子共混改性聚丙烯微孔膜的制备方法,其特征在于:步骤(1)中所述的溶剂为二甲苯。
4.如权利要求2所述的纳米无机粒子共混改性聚丙烯微孔膜的制备方法,其特征在于:步骤(1)中所述的引发剂为AIBN。
5.如权利要求2所述的纳米无机粒子共混改性聚丙烯微孔膜的制备方法,其特征在于:步骤(3)中所述的纳米无机粒子为表面带羟基的纳米二氧化硅、纳米二氧化钛或纳米三氧化二铝。
CN201710578243.7A 2017-07-16 2017-07-16 一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法 Active CN107383594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710578243.7A CN107383594B (zh) 2017-07-16 2017-07-16 一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710578243.7A CN107383594B (zh) 2017-07-16 2017-07-16 一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法

Publications (2)

Publication Number Publication Date
CN107383594A true CN107383594A (zh) 2017-11-24
CN107383594B CN107383594B (zh) 2019-07-26

Family

ID=60339821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710578243.7A Active CN107383594B (zh) 2017-07-16 2017-07-16 一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法

Country Status (1)

Country Link
CN (1) CN107383594B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110561800A (zh) * 2019-08-15 2019-12-13 广东工业大学 一种聚丙烯微孔隔离膜及其制备方法与应用
CN110644137A (zh) * 2019-09-23 2020-01-03 湖北大学 一种静电纺丝制备微孔复合纳米纤维膜的方法、应用
CN112133868A (zh) * 2020-08-24 2020-12-25 深圳市德立新材料科技有限公司 纳米复合添加剂与改性的干法pp隔膜的制备方法及产品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057859A2 (en) * 1999-06-04 2000-12-06 JSR Corporation Radiation sensitive resin composition and use of the same in an interlaminar insulating film
CN1436198A (zh) * 2000-06-16 2003-08-13 巴斯福股份公司 聚合反应产物的制备方法
CN102453222A (zh) * 2010-10-22 2012-05-16 罗门哈斯公司 制备嵌段共聚物的方法
CN102504611A (zh) * 2011-10-17 2012-06-20 中科院广州化学有限公司 一种改性二氧化硅及高性能锂离子电池隔膜和其应用
CN103012701A (zh) * 2012-12-31 2013-04-03 常州大学 一种聚硅氧烷/聚苯乙烯交联聚合物的制备方法
CN103209952A (zh) * 2010-10-01 2013-07-17 巴斯夫欧洲公司 苯乙烯类(甲基)丙烯酸类低聚物
CN103819600A (zh) * 2013-12-03 2014-05-28 常州大学 一种星形硅烷类大分子偶联剂的制备方法和应用
US20140243477A1 (en) * 2013-02-27 2014-08-28 Basf Se Additives for stabilizing polymers with respect to hydrolysis
CN104788705A (zh) * 2015-03-20 2015-07-22 常州大学 一种锂离子电池用亲水性聚烯烃微孔膜的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057859A2 (en) * 1999-06-04 2000-12-06 JSR Corporation Radiation sensitive resin composition and use of the same in an interlaminar insulating film
CN1436198A (zh) * 2000-06-16 2003-08-13 巴斯福股份公司 聚合反应产物的制备方法
CN103209952A (zh) * 2010-10-01 2013-07-17 巴斯夫欧洲公司 苯乙烯类(甲基)丙烯酸类低聚物
CN102453222A (zh) * 2010-10-22 2012-05-16 罗门哈斯公司 制备嵌段共聚物的方法
CN102504611A (zh) * 2011-10-17 2012-06-20 中科院广州化学有限公司 一种改性二氧化硅及高性能锂离子电池隔膜和其应用
CN103012701A (zh) * 2012-12-31 2013-04-03 常州大学 一种聚硅氧烷/聚苯乙烯交联聚合物的制备方法
US20140243477A1 (en) * 2013-02-27 2014-08-28 Basf Se Additives for stabilizing polymers with respect to hydrolysis
CN103819600A (zh) * 2013-12-03 2014-05-28 常州大学 一种星形硅烷类大分子偶联剂的制备方法和应用
CN104788705A (zh) * 2015-03-20 2015-07-22 常州大学 一种锂离子电池用亲水性聚烯烃微孔膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周仕龙,张洪文等: "接枝大分子偶联剂的合成及其在聚苯乙烯复合材料中的应用研究", 《高效化学工程学报》 *
杜素梅: "聚丙烯/碳酸钙纳米复合材料的制备和表征", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
罗丹: "一种大分子偶联剂的制备与应用研究", 《化工新型材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110561800A (zh) * 2019-08-15 2019-12-13 广东工业大学 一种聚丙烯微孔隔离膜及其制备方法与应用
CN110561800B (zh) * 2019-08-15 2022-05-10 广东工业大学 一种聚丙烯微孔隔离膜及其制备方法与应用
CN110644137A (zh) * 2019-09-23 2020-01-03 湖北大学 一种静电纺丝制备微孔复合纳米纤维膜的方法、应用
CN112133868A (zh) * 2020-08-24 2020-12-25 深圳市德立新材料科技有限公司 纳米复合添加剂与改性的干法pp隔膜的制备方法及产品

Also Published As

Publication number Publication date
CN107383594B (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
US8808925B2 (en) Microporous polymer membrane modified by aqueous polymer, manufacturing method and use thereof
CN107383594B (zh) 一种纳米无机粒子共混改性聚丙烯微孔膜的制备方法
TWI425700B (zh) 二次電池、電池隔離膜及其製造方法
CN111602265B (zh) 锂离子电池用分隔件
WO2018188249A1 (zh) 一种锂离子电池隔离膜的制备方法
CN112538162B (zh) 改性芳纶聚合体、芳纶铸膜液、锂电池隔膜及制备方法和锂电池
Li et al. A porous polymer electrolyte based on P (VDF-HFP) prepared by a simple phase separation process
CN102074735B (zh) 基于双烯/醚共聚物的锂离子凝胶电解质膜及其制备方法
KR20150084116A (ko) 내열성 및 전기화학적 안정성이 우수한 세라믹 코팅 세퍼레이터 및 이의 제조방법
JP2009132904A (ja) 物性と高温熱安定性に優れるポリオレフィン微多孔膜
JP2010024385A (ja) 多孔質樹脂フィルムの製造方法、多孔質樹脂フィルム及び電池用セパレータ
KR20150059621A (ko) 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지
CN108258169A (zh) 一种锂电池用聚偏氟乙烯复合隔膜的制备方法
CN108933219B (zh) 一种锂电池隔膜的制备方法
CN111630687A (zh) 使用交联分隔件的锂离子电池
JP4606532B2 (ja) ポリオレフィン製微多孔膜
CN104395382A (zh) 多孔性聚丙烯膜、蓄电装置用隔膜及蓄电装置
CN106898720B (zh) 一种锂离子电池隔膜及其制备方法
CN102489185A (zh) 一种聚偏氟乙烯/交替共聚物共混pH敏感膜及其制备方法
CN113629352A (zh) 一种高润湿性锂离子电池隔膜及制备方法
CN111162230B (zh) 一种高储能电池隔膜材料的制备方法
CN104733676A (zh) 一种锂离子电池聚烯烃微孔隔膜的制备方法
JPH1160790A (ja) ポリエチレン微多孔膜およびその製造方法
JP2004204141A (ja) 多孔質フィルム
JP6431688B2 (ja) セパレータ用コーティング材料、スラリー、セパレータ、および二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220707

Address after: 213002 No.1, environmental protection 10th Road, environmental protection industrial park, Xinbei District, Changzhou City, Jiangsu Province

Patentee after: Changzhou Gaiya Material Technology Co.,Ltd.

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Patentee before: CHANGZHOU University

TR01 Transfer of patent right