CN107331879A - 一种液流电池双极板的连续化制造方法 - Google Patents

一种液流电池双极板的连续化制造方法 Download PDF

Info

Publication number
CN107331879A
CN107331879A CN201710540206.7A CN201710540206A CN107331879A CN 107331879 A CN107331879 A CN 107331879A CN 201710540206 A CN201710540206 A CN 201710540206A CN 107331879 A CN107331879 A CN 107331879A
Authority
CN
China
Prior art keywords
graphite felt
solution
conductive agent
roll shaft
flow battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710540206.7A
Other languages
English (en)
Inventor
王保国
刘珍豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710540206.7A priority Critical patent/CN107331879A/zh
Publication of CN107331879A publication Critical patent/CN107331879A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种液流电池双极板的制造方法,其特征在于,包括以下步骤;(1)使用溶剂将热塑性树脂溶解后制成溶液,并在溶液中混入导电剂,所述热塑性树脂在溶液中的浓度用重量百分数表示时为3%~25%,所述导电剂在溶液中的浓度用重量百分数表示时为0%~10%;(2)使用步骤(1)得到的溶液浸渍石墨毡,使热塑性树脂填充进入石墨毡的空隙中;(3)把步骤(2)得到的石墨毡加热到60℃~120℃,挥发脱除溶剂,使得石墨毡的纤维表面包覆热塑性树脂;(4)把步骤(3)得到的石墨毡在辊轴之间进行热压,得到双极板,所述辊轴加热到120℃~200℃,所述辊轴之间的缝隙为0.4~1.0毫米;(5)在步骤(4)得到的双极板两侧涂敷导电剂,并使用辊轴进行加热和加压,使导电剂和所述石墨毡紧密接触,制成厚度0.4~1.2毫米的液流电池双极板。

Description

一种液流电池双极板的连续化制造方法
技术领域
本发明属于电能转化与储存技术领域,特别涉及一种液流电池双极板的连续化制造方法。
背景技术
液流电池是是一种新型电化学储能装备,具有容量大、寿命长、效率高、成本低、环境友好的技术特点,正在发展成为电网规模储能的战略性产业技术。液流电池应用于智能电网储能过程,可一定程度满足可靠、互动、自愈、兼容、经济的智能电网发展需求,提高接纳风电、光伏等可再生能源并网能力。液流电池区别于其它电池的最主要特征,是将原先储存在固体电极上的电化学活性物质溶解进入电解液中,通过电解液循环流动给电池供给电化学反应所需的活性物质。由于参与电化学反应的活性物质溶解于电解质溶液中,只要改变所使用的电解液量,就能够改变电池的储能容量。液流电池的特定结构为用户提供极大便利,既能够满足用户对储能容量要求,又能够满足储能功率的需求。
双极板是液流电池的关键部件之一,在电池中连接上一级单电池负极与下一级单电池正极,两侧电解液分别为上一级单电池的负极电解液和下一级单电池的正极电解液。因此,液流电池的双极板需要具备良好的导电性,有效阻止电解液渗透性能,满足电池制造与使用过程的机械强度要求。此外,双极板的工作在强氧化性环境,还需要具有良好化学稳定性和耐电化学腐蚀性能。
为了满足液流电池对双极板技术性能需要,通常情况下,将碳素类材料,包括乙炔黑、石墨粉、导电纤维等导电剂与高分子树脂充分混合,均匀分散形成复合材料,满足导电性和阻隔性要求。在导电剂与高分子树脂充分混合、均匀分散时,可以利用高温将热塑性高分子树脂融化后与碳材料混合,也可以通过加入液体使导电填料与高分子树脂形成悬浮液。此外,还可以使用强极性溶剂将高分子树脂或导电填料溶解,变为均匀溶液。这些方法的共同特点是,将导电剂填充分散进入高分子树脂中,利用导电剂的相互搭接形成导电网络。此时,复合材料中所含的导电剂必须超过一定的含量,导电剂颗粒彼此连接起来,才能在双极板中形成空间导电网络,降低复合材料电阻,满足高导电性要求。随着导电剂含量增加,复合材料导电性增高。但是,导电剂往往使混合物粘度急剧增加,难于通过连续化熔融挤出成型。目前,液流电池双极板的大多数制造过程采用模压法(CN10350841A;CN103633340A;CN101101994A),通过间歇方法制造(CN102931420B),存在生产效率低,产品质量不够稳定的问题。
此外,以柔性石墨板为基础材料,浸渍于热固性树脂中加热,再经过固化、压制、炭化、压制等程序,可以制成液流电池的双极板(CN101794887A),或是直接将高温熔融的树脂通过热压的方式挤入碳毡中(CN103022531A),这些方法在制备过程中都需要高温、高压处理过程,不能采用连续化的工艺流程,很难保证成品的质量与产量。
针对现有双极板制造过程存在的问题,本发明提出一种连续化制造液流电池双极板的工艺方法。在现有的技术方法中,通常是利用导电剂的相互搭接形成导电网络,然后再填充高分子树脂形成双极板的阻隔液体性能。与之不同,本发明使用石墨毡作为原料,石墨毡内部的碳纤维彼此搭接,已经具备导电能力;然后,采用高分子树脂浸渍石墨毡,填充石墨毡内部的气孔,达到阻隔液体目的。由于石墨毡通常成卷制备,长度可以自由设定,具备一定机械强度,为连续化制造提供了成型条件。更具体地来看,本发明使用溶剂溶解热塑性高分子材料,通过搅拌将导电填料分散在热塑性高分子溶液中形成浆料,将石墨毡浸渍在浆料中,然后进行连续化的干燥,脱除溶剂后,用连续热压的方式消除双极板中的气孔,得到液流电池双极板。该工艺过程容易实现连续化大规模生产。
发明内容
本发明目的在于提供一种制造液流电池双极板的技术与工艺方法。
本发明的技术方案是:一种液流电池双极板的制造方法,其特征在于,包括以下步骤;
步骤(1)使用溶剂将热塑性树脂溶解制成溶液,并在溶液中混入导电剂,所述热塑性树脂在溶液中的浓度用重量百分数表示时为3%~25%,所述导电剂在溶液中的浓度用重量百分数表示时为0%~10%;
步骤(2),使用步骤(1)得到的溶液浸渍石墨毡,使热塑性树脂填充进入石墨毡的空隙中;
步骤(3),把步骤(2)得到的石墨毡加热到60℃~120℃温度范围,挥发除净溶剂,所得到的石墨毡的纤维表面包覆热塑性树脂;
步骤(4),把步骤(3)得到的石墨毡置于加热到120℃~200℃温度范围的辊轴之间进行热压,辊轴之间的缝隙控制在0.4~1.0毫米之间;
步骤(5),在步骤(4)得到的双极板两侧涂敷导电剂,并使用辊轴进行加热和加压,使导电剂和所述石墨毡紧密接触,制成厚度在0.4~1.2毫米之间的液流电池双极板。
进一步,所述步骤(1)中的热塑性树脂选自下述树脂中的一种或两种以上的混合物:聚偏氟乙烯、聚氯乙烯、聚砜、聚醚砜、聚醚醚酮、聚乙烯和聚丙烯。
进一步,所述步骤(1)中溶剂选自下述溶剂中的一种或两种以上的混合物:二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、丙酮、氯仿。
进一步,所述步骤(1)和步骤(5)中的导电剂为:膨胀石墨、鳞片石墨、碳黑、乙炔黑、长碳纤维、短碳纤维以及碳纳米管。
进一步,所述步骤(2)中的石墨毡厚度为15~25毫米,体积密度为60~100毫克/立方厘米。
本发明还提供一种连续化制造液流电池双极板的技术,具体技术方案包括以下步骤;
(1)配制溶液:使用二甲基亚砜作为溶剂,把含氟的热塑性树脂聚偏氟乙烯溶解后制成溶液,所述聚偏氟乙烯在溶液中的浓度用重量百分数表示时为3%~25%;
(2)热塑性树脂浸渍:使用所配制的溶液浸渍石墨毡,把热塑性树脂聚偏氟乙烯填充进入石墨毡的空隙中;
(3)脱除溶剂:将热塑性树脂浸渍后的石墨毡加热到60℃~120℃温度范围,挥发除净溶剂二甲基亚砜,得到纤维表面包覆有聚偏氟乙烯的石墨毡;
(4)热压成型:把脱除溶剂后的石墨毡在辊轴之间进行热压,得到双极板,所述辊轴加热到120℃~200℃,所述辊轴之间的缝隙为0.4~1.0毫米;
(5)在所述双极板两侧涂敷导电剂,并使用辊轴进行加热和加压,使导电剂和所述石墨毡紧密接触,制成厚度0.4~1.2毫米的液流电池双极板。
所述的一种液流电池双极板的连续化制造方法,其特征在于,所述热塑性树脂浸渍时,将所述石墨毡浸没在所述溶液中,移动速度为8~80厘米/分钟。
所述的一种液流电池双极板的连续化制造方法,其特征在于,在脱除溶剂过程,所述石墨毡移动速度为8~80厘米/分钟。
所述的一种液流电池双极板的连续化制造方法,其特征在于,在石墨毡热压过程,所述石墨毡移动速度为8~80厘米/分钟。
所述的一种液流电池双极板的连续化制造方法,其特征在于,在涂敷导电剂过程中,所述双极板的移动速度为8~80厘米/分钟。
液流电池双极板制造过程,包含以下四个依次进行的连续化加工过程:热塑性树脂浸渍、脱除溶剂、热压成型、涂敷导电剂制备导电界面;所述四个过程依次进行,共同组成液流电池双极板的连续化制造工艺。
使用本发明方法制成的液流电池双极板具有导电性高、阻隔液体渗透、机械强度和柔韧性优良的特点,耐腐蚀性能满足长期运行要求。采用石墨毡作为原料,原材料已经具备导电能力;使用高分子树脂浸渍石墨毡,填充石墨毡内部的气孔,达到阻隔液体目的。由于石墨毡通常成卷制备,长度可以自由设定,具备一定机械强度,为连续化制造提供了成型条件。填充树脂中的少量导电剂可以进一步加强导电网络,防止热压过程中损坏导电网络。热压的同时在双极板表面涂覆导电剂,可以有效改善双极板的表面性能。该技术充分利用了石墨毡已有导电网络,通过溶剂将热塑性树脂溶解后制成溶液,其粘度可以灵活调控,把导电剂混入溶液中能形成导电性。
本发明利用石墨毡中导电纤维长径比高,已经形成了良好的导电网络,在导电组分含量较低情况下,也能实现优良的导电性能。与现有的技术相比,由于双极板的碳含量较低,避免了双极板易碎问题,具有较好的柔韧性。所提出的液流电池双极板连续化制造工艺技术,容易实现批量化生产,为工业规模实施奠定基础。
附图说明
图1为本发明液流电池双极板制造流程图;
图2为液流电池双极板样品的电子显微照片;
其中:a-原材料石墨毡、b-填充树脂后石墨毡;
图3为本发明液流电池双极板连续化生产工艺流程图;
图中:3-1-石墨毡绕辊、3-2-涂膜槽、3-3-干燥甬道、3-4-张力调节仪、3-5-热压设备、3-6-热压涂敷设备、3-7-热定型、3-8-切片机、3-9-牵引设备。
具体实施方式
为了对本发明进行更详细说明,下面结合附图对各实施步骤解释如下。
首先,配制聚偏氟乙烯高分子溶液,并且在溶液中混入一定比例的导电剂,然后按照图1所示,进行以下制备过程。
步骤(1):以柔性石墨毡为导电网络,通过溶液法浸渍,将含有导电剂的热塑性树脂填充入导电网络的空隙中。
步骤(2):通过连续化干燥,脱除溶剂,同时使树脂固化,将石墨毡连为一体。
步骤(3):通过连续化热压,消除石墨毡中的气孔,同时增大导电网络密度。
步骤(4):在热压的同时,在双极板表面涂覆导电剂。
其中,使用二甲基亚砜作为溶剂,把含氟的热塑性树脂聚偏氟乙烯溶解后制成溶液,并在溶液中混入导电剂,所述聚偏氟乙烯在溶液中的浓度用重量百分数表示时为3%~25%,所述导电剂在溶液中的浓度用重量百分数表示时为0%~10%;使用该溶液浸渍石墨毡,把热塑性树脂聚偏氟乙烯填充进入石墨毡的空隙中;所使用的石墨毡厚度为15~25毫米,体积密度为60~100毫克/立方厘米,优选石墨毡厚度为20毫米,密度70毫克/立方厘米。把得到的石墨毡加热到60℃~120℃温度范围,挥发除净二甲基亚砜,并在石墨毡的纤维表面包覆聚偏氟乙烯,优选80℃~100℃温度范围;进一步把石墨毡置于加热到120℃~200℃温度范围的辊轴之间进行热压,优选175℃~180℃温度范围;辊轴之间的缝隙控制在0.4~1.0毫米之间。最后,在双极板两侧涂敷导电剂,并使用辊轴对石墨毡同时进行加热和热压,使导电剂和所述石墨毡紧密接触,冷却后制成厚度在0.4~1.2毫米之间的液流电池双极板。
更进一步列举具体的实施例如下。
图2对比了所使用的原料石墨毡(a)和填充聚偏氟乙烯树脂后的石墨毡(b),可以明显看到,脱溶剂后固化的聚偏氟乙烯覆盖在石墨毡中的纤维表面,并且填充了纤维之间的空间,将不同的纤维连接在一起。通过后续的热压过程,进一步减小石墨毡纤维之间的空隙,形成隔离液体渗透的屏障。
图3所示为液流电池双极板连续化制造工艺流程,其中包含了配制溶液,以及热塑性树脂浸渍、脱除溶剂、热压成型、制备导电界面的全部过程。由于石墨毡通常成卷制备,长度可以自由设定,具备一定机械强度,具有实施连续化制造的成型工艺条件。本发明将以上制备步骤连接在一起,在工业设备上按照以下过程进行连续化制造。包含:石墨毡绕辊、涂膜槽、干燥甬道、张力调节仪、热压设备、热压涂敷设备、热定型、切片机、牵引设备。
通过上述实施例和所给出的液流电池双极板连续化制造流程,能够制成用于液流电池的双极板,其厚度在1毫米左右,面电阻在0.24~0.78Ω·cm2,具有合适的刚度和柔韧性。填充树脂中所含导电剂可以进一步加强导电网络,防止热压过程中导电网络被破坏。热压的同时在双极板表面涂覆导电剂,可以有效改善双极板的表面性能。本发明利用石墨毡中导电纤维长径比高,已经形成了良好的导电网络,在导电组分含量较低情况下,也能实现优良的导电性能。与现有的技术相比,双极板中的导电剂含量较低,避免了双极板易碎问题,具有较好的柔韧性。所提出的液流电池双极板连续化制造工艺,容易实现批量化连续生产,为工业规模实施奠定基础。

Claims (10)

1.一种液流电池双极板的制造方法,其特征在于,包括以下步骤;
(1)使用溶剂将热塑性树脂溶解制成溶液,并在溶液中混入导电剂,所述热塑性树脂在溶液中的浓度用重量百分数表示时为3%~25%,所述导电剂在溶液中的浓度用重量百分数表示时为0%~10%;
(2)使用步骤(1)得到的溶液浸渍石墨毡,使热塑性树脂填充进入石墨毡的空隙中;
(3)把步骤(2)得到的石墨毡加热到60℃~120℃,脱除溶剂,所得到的石墨毡的纤维表面包覆热塑性树脂;
(4)把步骤(3)得到的石墨毡在辊轴之间进行热压,得到双极板,所述辊轴加热到120℃~200℃,所述辊轴之间的缝隙为0.4~1.0毫米;
(5)在步骤(4)得到的双极板两侧涂敷导电剂,并使用辊轴进行加热和加压,使导电剂和所述石墨毡紧密接触,制成厚度0.4~1.2毫米的液流电池双极板。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)中的热塑性树脂为以下树脂中的一种或者两种以上的混合物:聚偏氟乙烯、聚氯乙烯、聚砜、聚醚砜、聚醚醚酮、聚乙烯和聚丙烯。
3.根据权利要求1所述的方法,其特征在于,所述步骤(1)中溶剂选自下述溶剂中的一种或两种以上的混合物:二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、丙酮、氯仿。
4.根据权利要求1所述的方法,其特征在于,所述步骤(1)和步骤(5)中的导电剂选自膨胀石墨、鳞片石墨、碳黑、乙炔黑、长碳纤维、短碳纤维以及碳纳米管。
5.根据权利要求1所述的方法,其特征在于,所述步骤(2)中的石墨毡厚度为15~25毫米,体积密度为60~100毫克/立方厘米。
6.一种液流电池双极板的连续化制造方法,其特征在于,包括以下步骤;
(1)配制溶液:使用二甲基亚砜作为溶剂,把聚偏氟乙烯溶解后制成溶液,所述聚偏氟乙烯在溶液中的浓度用重量百分数表示时为3%~25%;
(2)树脂浸渍:使用所配制的溶液浸渍石墨毡,把聚偏氟乙烯填充进入石墨毡的空隙中;
(3)脱除溶剂:将步骤(2)所得浸渍后的石墨毡加热到60℃~120℃,脱除溶剂二甲基亚砜,得到纤维表面包覆有聚偏氟乙烯的石墨毡;
(4)热压成型:把脱除溶剂后的石墨毡在辊轴之间进行热压,得到双极板,所述辊轴加热到120℃~200℃,所述辊轴之间的缝隙为0.4~1.0毫米;
(5)在所述双极板两侧涂敷导电剂,并使用辊轴进行加热和加压,使导电剂和所述石墨毡紧密接触,制成厚度0.4~1.2毫米的液流电池双极板。
7.根据权利要求6所述的方法,其特征在于,步骤(2)中将所述石墨毡浸没在所述溶液中,石墨毡的移动速度为8~80厘米/分钟。
8.根据权利要求6所述的方法,其特征在于,在步骤(3)脱除溶剂过程中,所述石墨毡移动速度为8~80厘米/分钟。
9.根据权利要求6所述的方法,其特征在于,在步骤(4)石墨毡热压成型过程中,所述石墨毡移动速度为8~80厘米/分钟。
10.根据权利要求6所述的方法,其特征在于,在步骤(5)涂敷导电剂过程中,所述双极板的移动速度为8~80厘米/分钟。
CN201710540206.7A 2017-07-04 2017-07-04 一种液流电池双极板的连续化制造方法 Pending CN107331879A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710540206.7A CN107331879A (zh) 2017-07-04 2017-07-04 一种液流电池双极板的连续化制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710540206.7A CN107331879A (zh) 2017-07-04 2017-07-04 一种液流电池双极板的连续化制造方法

Publications (1)

Publication Number Publication Date
CN107331879A true CN107331879A (zh) 2017-11-07

Family

ID=60196658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710540206.7A Pending CN107331879A (zh) 2017-07-04 2017-07-04 一种液流电池双极板的连续化制造方法

Country Status (1)

Country Link
CN (1) CN107331879A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232226A (zh) * 2018-01-03 2018-06-29 湖南省银峰新能源有限公司 一种钒电池用陶瓷复合材料双极板的制备方法
CN108598519A (zh) * 2018-05-18 2018-09-28 深圳市晶特智造科技有限公司 一种双极板及其制备方法
CN109786778A (zh) * 2019-01-28 2019-05-21 威海南海碳材料科技研究院有限公司 一种全钒液流电池用复合双极板及其制备方法
CN110265685A (zh) * 2018-03-12 2019-09-20 中国电力科学研究院有限公司 一种全钒液流电池用改性双极板制备方法
CN110993980A (zh) * 2019-11-25 2020-04-10 深圳市雄韬电源科技股份有限公司 一种燃料电池极板的制备方法
CN111092232A (zh) * 2020-03-24 2020-05-01 杭州德海艾科能源科技有限公司 一种氟塑料制备钒电池一体化电极的方法
CN111525150A (zh) * 2020-05-09 2020-08-11 乐山创新储能技术研究院有限公司 一种液流电池复合电极制备方法
CN111525149A (zh) * 2020-05-09 2020-08-11 乐山创新储能技术研究院有限公司 一种液流电池复合电极制备方法
CN112840489A (zh) * 2018-08-10 2021-05-25 Ess技术有限公司 用于通过卷对卷工艺制造氧化还原液流电池系统的方法和系统
CN113437321A (zh) * 2021-06-28 2021-09-24 开封平煤新型炭材料科技有限公司 一种连续成型制备石墨复合双极板的方法
CN113540487A (zh) * 2021-09-15 2021-10-22 杭州德海艾科能源科技有限公司 一种树脂填充型一体化双极板及其制备方法
CN113659165A (zh) * 2021-08-05 2021-11-16 苏州摩尔新材料科技有限公司 一种碳基复合导电浆料、石墨板及其制备方法
CN114725417A (zh) * 2022-04-06 2022-07-08 博远(山东)新能源科技发展有限公司 一种石墨双极板连续化制备方法及设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758473A (en) * 1986-11-20 1988-07-19 Electric Power Research Institute, Inc. Stable carbon-plastic electrodes and method of preparation thereof
CN1685547A (zh) * 2002-07-29 2005-10-19 松下电器产业株式会社 燃料电池用膜电极接合体的制造方法
CN101567452A (zh) * 2009-04-20 2009-10-28 清华大学 一种液流电池的复合材料双极板制备方法
CN101589442A (zh) * 2006-11-27 2009-11-25 住友化学株式会社 高分子电解质膜的制造方法及高分子电解质膜
CN203039021U (zh) * 2012-12-20 2013-07-03 华南理工大学 一种用于质子交换膜的燃料电池双极板
CN103633336A (zh) * 2012-08-29 2014-03-12 中国科学院大连化学物理研究所 一种液流储能电池用双极板及其制备方法
CN104269564A (zh) * 2014-09-30 2015-01-07 成都赢创科技有限公司 全钒液流电池用双极板的制备方法
CN104466197A (zh) * 2014-11-28 2015-03-25 中国科学院金属研究所 一种钒电池用双极板及其制备方法
CN104638282A (zh) * 2015-02-04 2015-05-20 大连融科储能技术发展有限公司 一种用于低接触电阻双极板的加工装置、系统、方法及其双极板
CN105161738A (zh) * 2015-10-08 2015-12-16 四川理工学院 钒电池用复合膜及其连续化生产的方法和用途
CN106876740A (zh) * 2015-12-10 2017-06-20 上海神力科技有限公司 一种燃料电池用软石墨双极板的连续生产方法
CN106876723A (zh) * 2015-12-10 2017-06-20 上海神力科技有限公司 一种燃料电池用柔性石墨板单电池的连续生产方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758473A (en) * 1986-11-20 1988-07-19 Electric Power Research Institute, Inc. Stable carbon-plastic electrodes and method of preparation thereof
CN1685547A (zh) * 2002-07-29 2005-10-19 松下电器产业株式会社 燃料电池用膜电极接合体的制造方法
CN101589442A (zh) * 2006-11-27 2009-11-25 住友化学株式会社 高分子电解质膜的制造方法及高分子电解质膜
CN101567452A (zh) * 2009-04-20 2009-10-28 清华大学 一种液流电池的复合材料双极板制备方法
CN103633336A (zh) * 2012-08-29 2014-03-12 中国科学院大连化学物理研究所 一种液流储能电池用双极板及其制备方法
CN203039021U (zh) * 2012-12-20 2013-07-03 华南理工大学 一种用于质子交换膜的燃料电池双极板
CN104269564A (zh) * 2014-09-30 2015-01-07 成都赢创科技有限公司 全钒液流电池用双极板的制备方法
CN104466197A (zh) * 2014-11-28 2015-03-25 中国科学院金属研究所 一种钒电池用双极板及其制备方法
CN104638282A (zh) * 2015-02-04 2015-05-20 大连融科储能技术发展有限公司 一种用于低接触电阻双极板的加工装置、系统、方法及其双极板
CN105161738A (zh) * 2015-10-08 2015-12-16 四川理工学院 钒电池用复合膜及其连续化生产的方法和用途
CN106876740A (zh) * 2015-12-10 2017-06-20 上海神力科技有限公司 一种燃料电池用软石墨双极板的连续生产方法
CN106876723A (zh) * 2015-12-10 2017-06-20 上海神力科技有限公司 一种燃料电池用柔性石墨板单电池的连续生产方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232226A (zh) * 2018-01-03 2018-06-29 湖南省银峰新能源有限公司 一种钒电池用陶瓷复合材料双极板的制备方法
CN110265685A (zh) * 2018-03-12 2019-09-20 中国电力科学研究院有限公司 一种全钒液流电池用改性双极板制备方法
CN110265685B (zh) * 2018-03-12 2022-03-18 中国电力科学研究院有限公司 一种全钒液流电池用改性双极板制备方法
CN108598519A (zh) * 2018-05-18 2018-09-28 深圳市晶特智造科技有限公司 一种双极板及其制备方法
CN112840489A (zh) * 2018-08-10 2021-05-25 Ess技术有限公司 用于通过卷对卷工艺制造氧化还原液流电池系统的方法和系统
EP3834242A4 (en) * 2018-08-10 2022-05-11 ESS Tech, Inc. METHOD AND SYSTEM FOR MANUFACTURING A REDOX FLOW BATTERY SYSTEM BY ROLL-TO-ROLL PROCESSING
CN109786778A (zh) * 2019-01-28 2019-05-21 威海南海碳材料科技研究院有限公司 一种全钒液流电池用复合双极板及其制备方法
CN110993980A (zh) * 2019-11-25 2020-04-10 深圳市雄韬电源科技股份有限公司 一种燃料电池极板的制备方法
CN110993980B (zh) * 2019-11-25 2021-06-29 深圳市氢雄燃料电池有限公司 一种燃料电池极板的制备方法
CN111092232A (zh) * 2020-03-24 2020-05-01 杭州德海艾科能源科技有限公司 一种氟塑料制备钒电池一体化电极的方法
CN111525149A (zh) * 2020-05-09 2020-08-11 乐山创新储能技术研究院有限公司 一种液流电池复合电极制备方法
CN111525150A (zh) * 2020-05-09 2020-08-11 乐山创新储能技术研究院有限公司 一种液流电池复合电极制备方法
CN113437321A (zh) * 2021-06-28 2021-09-24 开封平煤新型炭材料科技有限公司 一种连续成型制备石墨复合双极板的方法
CN113659165A (zh) * 2021-08-05 2021-11-16 苏州摩尔新材料科技有限公司 一种碳基复合导电浆料、石墨板及其制备方法
CN113540487A (zh) * 2021-09-15 2021-10-22 杭州德海艾科能源科技有限公司 一种树脂填充型一体化双极板及其制备方法
CN113540487B (zh) * 2021-09-15 2022-01-04 杭州德海艾科能源科技有限公司 一种树脂填充型一体化双极板及其制备方法
CN114725417A (zh) * 2022-04-06 2022-07-08 博远(山东)新能源科技发展有限公司 一种石墨双极板连续化制备方法及设备

Similar Documents

Publication Publication Date Title
CN107331879A (zh) 一种液流电池双极板的连续化制造方法
Peng et al. A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries
Wan et al. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries
CN104795249B (zh) 一种基于复合正、负极材料的新型电池电容
Xu et al. Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator
Wang et al. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries
Yang et al. Aramid nanofiber/bacterial cellulose composite separators for lithium-ion batteries
CN107808944A (zh) 用于金属锂负极保护的多孔MOF/CNFs复合材料
CN106450102A (zh) 用于锂硫电池的石墨改性隔膜及其制备方法与构成的锂硫电池
CN106410116A (zh) 一种分等级多孔复合锂硫电池正极及其制备方法
CN104466142A (zh) 一种锂离子电池用硅/硅氧碳/石墨复合负极材料
CN107706338B (zh) 一种含正极材料的锂离子电池隔膜及其制备方法
CN107959010A (zh) 一种石墨复合材料及其制备方法
Gao et al. Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li–S batteries
CN108511764A (zh) 复合导电板及其制备方法和应用
CN106207059A (zh) 一种锂离子电池隔膜、其制备方法和应用
CN109004173A (zh) 一种锂硫电池正极及其制造方法
CN105405677A (zh) 一种由石墨直接制备石墨烯-二氧化锰复合材料的方法及其应用
CN107978717A (zh) 一种复合型锂硫电池隔膜及其制备方法和应用
Xu et al. Porous polyamide skeleton-reinforced solid-state electrolyte: enhanced flexibility, safety, and electrochemical performance
CN104953089A (zh) 一种基于硫填充碳纳米笼的锂硫电池正极材料的制备
CN111106312A (zh) 一种高担量自支撑厚电极的制备及其在钠离子电池中的应用
CN106384828A (zh) 一种交联式多孔复合锂硫电池正极及其制备方法
CN110391398A (zh) 黑磷/还原氧化石墨烯复合电极及其制备方法以及包括该复合电极的柔性锂离子电池
CN115714201A (zh) 一种电极-电解质集成一体化复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171107

RJ01 Rejection of invention patent application after publication