CN107293726A - 一种复合物包覆钛酸锂负极材料的制备方法 - Google Patents
一种复合物包覆钛酸锂负极材料的制备方法 Download PDFInfo
- Publication number
- CN107293726A CN107293726A CN201710608605.2A CN201710608605A CN107293726A CN 107293726 A CN107293726 A CN 107293726A CN 201710608605 A CN201710608605 A CN 201710608605A CN 107293726 A CN107293726 A CN 107293726A
- Authority
- CN
- China
- Prior art keywords
- lithium titanate
- lithium
- preparation
- xtite
- anode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 107
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 105
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000002131 composite material Substances 0.000 title abstract description 3
- 239000007773 negative electrode material Substances 0.000 title abstract 5
- 239000002243 precursor Substances 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 59
- 239000010405 anode material Substances 0.000 claims description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 25
- 239000010936 titanium Substances 0.000 claims description 21
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical group [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 238000003786 synthesis reaction Methods 0.000 claims description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 238000000498 ball milling Methods 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 9
- 239000002270 dispersing agent Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 238000010992 reflux Methods 0.000 claims description 9
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 8
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 4
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 4
- 125000003158 alcohol group Chemical group 0.000 claims description 2
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical group [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims 1
- 239000012071 phase Substances 0.000 abstract description 41
- 239000000463 material Substances 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 9
- 238000007599 discharging Methods 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000000227 grinding Methods 0.000 abstract 1
- 238000003980 solgel method Methods 0.000 abstract 1
- 239000007790 solid phase Substances 0.000 abstract 1
- 239000002345 surface coating layer Substances 0.000 abstract 1
- 235000019441 ethanol Nutrition 0.000 description 12
- 229960004106 citric acid Drugs 0.000 description 11
- 230000004087 circulation Effects 0.000 description 8
- 229960004543 anhydrous citric acid Drugs 0.000 description 7
- 238000005253 cladding Methods 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 238000001291 vacuum drying Methods 0.000 description 7
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005213 imbibition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910009866 Ti5O12 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- -1 modified lithium titanate Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开一种复合物包覆钛酸锂负极材料的制备方法,复合物包覆钛酸锂负极材料为Zn2Te3O8·xTiTe3O8(其中x的取值为0‑1),其制备方法包括:采用溶胶‑凝胶法制备纯相钛酸锂前驱体,并与一定比例的Zn2Te3O8·xTiTe3O8混合物进行固相研磨,空气气氛中煅烧得到所述的Zn2Te3O8·xTiTe3O8复合物包覆钛酸锂负极材料,该负极材料中,Zn2Te3O8·xTiTe3O8均匀包覆在钛酸锂表面,抑制钛酸锂颗粒的增长,降低材料的pH值,且Zn2Te3O8·xTiTe3O8材料表面包覆层化学稳定性好,在反复的充放电过程中,有效的保持钛酸锂的结构稳定,提升钛酸锂的倍率和循环性能;同时整个制备过程简单,易于试验,具有广泛的应用前景。
Description
技术领域
本发明属于新材料领域和能源领域,涉及一种锂离子电池负极材料,具体是一种复合物包覆钛酸锂负极材料的制备方法。
背景技术
传统的负极材料主要是碳材料,碳材料具有循环稳定性好,充放电平台较低等优势,但也存在一些缺点,如存在析出锂枝晶的安全隐患,释放能量的速度不够快,不适合需要瞬间强电流的设备等。与碳材料相比钛酸锂(Li4Ti5O12)具有较明显优点,如充放电过程中几乎“零体积变化”,循环性能好,库伦效率高,不与电解液反应等,成为近年来国内外研究的热点。
Li4Ti5O12主要的合成方法有固相反应法、溶胶-凝胶、水热离子交换等。高玲等人研究保温时间对产物的结构及电化学性能的影响进行了讨论,随着保温时间的增加粉料粒度会增大(《Li4Ti5O12作为锂离子电池负极材料电化学性能》,北京科技大学学报.2005,27(1):82-85.)。官云龙等通过试验得到制备钛酸锂的最佳工艺,此法制备的钛酸锂粒度分布均匀且尺寸小,具有很好的高倍率充放电性能,5C下充放电,比容量可达100mAh/g(《液相法合成Li4Ti5O12负极材料电化学性能的研究》,第十三次全国电汇会议,2005:432-433)。张欢等将TiO2和NaOH溶液混合后通过水热反应制得钛酸纳米管,并与LiOH溶液离子交换反应后热处理得到钛酸锂,表现出极好的倍率性能,10C倍率下具有140mAh/g的放电比容量(《离子交换法合成纳米级锂离子电池负极材料Li4Ti5O12》,无机化学学报,2010,26(9):1539)。
钛酸锂负极材料在电池制作过程中容易产气,使电极/电解质界面阻抗增大,循环性能快速衰减,电池寿命变短,极大程度上影响钛酸锂的应用。
发明内容
本发明的目的在于克服现有技术存在的缺陷,提供一种Zn2Te3O8·xTiTe3O8复合物包覆钛酸锂负极材料的制备方法,其制备得到的负极材料中,Zn2Te3O8·xTiTe3O8复合物可以有效包覆在钛酸锂表面,抑制颗粒的增长,不仅表现出更高的电化学活性,而且可以降低负极材料的pH值,抑制负极材料的吸水性。
本发明的目的可以通过以下技术方案实现:
一种复合物包覆钛酸锂负极材料的制备方法,包括如下步骤:
(1)按Li:Ti化学计量比为(4-4.2):5,称取锂源、钛源,加入到柠檬酸的无水乙醇溶液中,并进行超声处理1-2h,然后在60-90℃搅拌回流条件下反应2-12h,形成凝胶,将凝胶在100-120℃下干燥形成干凝胶;将干凝胶在空气气氛下400-600℃预烧3-6h,得到纯相钛酸锂前驱体;
(2)按Zn2Te3O8:TiTe3O8=1:x的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·xTiTe3O8混合物,按一定比例称取Zn2Te3O8·xTiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,球磨分散,在100-120℃下真空处理得到干燥料,将干燥料在空气气氛下煅烧,自然冷却,即得到Zn2Te3O8·xTiTe3O8复合物包覆钛酸锂负极材料。
进一步方案,所述步骤(1)锂源为氢氧化锂、乙酸锂、硝酸锂的一种或几种的组合;钛源为钛酸四丁酯、钛酸四乙酯、钛酸四异丙酯的一种或几种的组合。
进一步方案,所述步骤(1)中溶有柠檬酸的无水乙醇溶液中柠檬酸的含量为1-10wt%;柠檬酸的加入量为理论合成纯相钛酸锂前驱体质量的1-10%。
进一步方案,所述步骤(2)中的x取值为0-1;称取Zn2Te3O8·xTiTe3O8混合物为理论合成纯相钛酸锂前驱体质量的1-10%。
进一步方案,所述步骤(2)中分散剂为酒精或丙酮,球磨分散时间为1-10h;所述煅烧温度为650-750℃,煅烧时间1-10h。
本发明的有益效果:
(1)本发明提供一种复合物包覆钛酸锂的改性方法,Zn2Te3O8·xTiTe3O8复合物能均匀包覆在钛酸锂表面,不仅抑制钛酸锂颗粒的增长,而且可以降低材料的pH值,抑制材料的吸水性,同时表现出更高的电化学活性;
(2)经过Zn2Te3O8·xTiTe3O8复合物包覆改性后的钛酸锂材料,Zn2Te3O8·xTiTe3O8复合物表面包覆层化学稳定性好,在反复的充放电过程中,可有效的保持钛酸锂的结构稳定,提升钛酸锂的倍率和循环性能;
(3)改性后的钛酸锂材料的制备方法,工艺过程简单,易于试验,在锂离子电池领域具有广泛的应用前景。
附图说明
图1为本发明实施例1制备的Zn2Te3O8·0.5TiTe3O8复合物包覆钛酸锂负极材料X-射线衍射(XRD)图;
图2为本实施例1制备的Zn2Te3O8·0.5TiTe3O8复合物包覆钛酸锂负极材料的扫描电镜图;
图3为本发明实施例1与对比例所得产品在0.2C、1C、2C、3C倍率下循环性能图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述。
实施例1
Zn2Te3O8·0.5TiTe3O8复合物包覆钛酸锂负极材料的制备,包括如下步骤:
(1)纯相钛酸锂前驱体的制备:按Li:Ti化学计量比为4.1:5,准确称取氢氧化锂、钛酸四异丙酯,加入到5wt%的柠檬酸无水乙醇溶液中(柠檬酸的加入量为理论合成纯相钛酸锂质量的5%),并进行超声处理1.6h,然后在80℃搅拌回流条件下反应6h,形成凝胶,将凝胶在110℃下干燥形成干凝胶;将干凝胶在空气气氛下500℃预烧3h,得到纯相钛酸锂前驱体;
(2)按Zn2Te3O8:TiTe3O8=1:0.5的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·0.5TiTe3O8混合物,按理论合成纯相钛酸锂质量的7%称取Zn2Te3O8·0.5TiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,以丙酮为分散剂,球磨分散7h,在100℃下进行真空干燥处理得到干燥料,将干燥料在空气气氛下700℃煅烧7h,自然冷却,即得到Zn2Te3O8·0.5TiTe3O8复合物包覆钛酸锂负极材料。
本实施例制备的复合物包覆钛酸锂负极材料0.2C倍率放电比容量为165.62mAh/g,3C倍率50次循环后的容量保持率为98.91%。
实施例2
Zn2Te3O8·0.1TiTe3O8复合物包覆钛酸锂负极材料的制备,包括如下步骤:
(1)纯相钛酸锂前驱体的制备:按Li:Ti化学计量比为4.05:5,准确称取乙酸锂、钛酸四乙脂,加入到2wt%的柠檬酸无水乙醇溶液中(柠檬酸的加入量为理论合成纯相钛酸锂质量的3%),并进行超声处理1.2h,然后在90℃搅拌回流条件下反应4h,形成凝胶,将凝胶在105℃下干燥形成干凝胶;将干凝胶在空气气氛下450℃预烧4h,得到纯相钛酸锂前驱体;
(2)按Zn2Te3O8:TiTe3O8=1:0.1的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·0.1TiTe3O8混合物,按理论合成纯相钛酸锂质量的3%称取Zn2Te3O8·0.1TiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,以酒精为分散剂,进行球磨分散3h,再在105℃下进行真空干燥处理得到干燥料,将干燥料在空气气氛680℃煅烧3h,自然冷却,即得到Zn2Te3O8·0.1TiTe3O8复合物包覆钛酸锂负极材料。
本实施例制备的复合物包覆钛酸锂负极材料0.2C倍率充电比容量为165.94mAh/g,3C倍率50次循环后的容量保持率为99.02%。
实施例3
Zn2Te3O8·0.3TiTe3O8复合物包覆钛酸锂负极材料的制备,包括如下步骤:
(1)纯相钛酸锂前驱体的制备:按Li:Ti化学计量比为4.1:5,准确称取硝酸锂、钛酸四异丙酯,加入到3wt%的柠檬酸无水乙醇溶液中(柠檬酸的加入量为理论合成纯相钛酸锂质量的4%),并进行超声处理1.5h,然后在70℃搅拌回流条件下反应5h,形成凝胶,将凝胶在110℃下干燥形成干凝胶;将干凝胶在空气气氛下500℃预烧4.5h,得到纯相钛酸锂前驱体;
(2)(2)按Zn2Te3O8:TiTe3O8=1:0.3的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·0.3TiTe3O8混合物,按理论合成纯相钛酸锂质量的5%称取Zn2Te3O8·0.3TiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,以丙酮为分散剂,进行球磨分散5h,再在110℃下进行真空干燥处理得到干燥料,将干燥料在空气气氛700℃煅烧5h,自然冷却,即得到Zn2Te3O8·0.3TiTe3O8复合物包覆钛酸锂负极材料。
本实施例制备的复合物包覆钛酸锂负极材料0.2C倍率放电比容量为165.85mAh/g,3C倍率50次循环后的容量保持率为99.12%。
实施例4
Zn2Te3O8·0TiTe3O8复合物包覆钛酸锂负极材料的制备,包括如下步骤:
(1)纯相钛酸锂前驱体的制备:按Li:Ti化学计量比为4:5,准确称取氢氧化锂、钛酸四丁酯,加入到1wt%的柠檬酸无水乙醇溶液中(柠檬酸的加入量为理论合成纯相钛酸锂质量的1%),并进行超声处理1h,然后在60℃搅拌回流条件下反应2h,形成凝胶,将凝胶在100℃下干燥形成干凝胶;将干凝胶在空气气氛下400℃预烧3h,得到纯相钛酸锂前驱体;
(2)按Zn2Te3O8:TiTe3O8=1:0的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·0TiTe3O8混合物,按理论合成纯相钛酸锂质量的1%称取Zn2Te3O8·0TiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,以酒精为分散剂,进行球磨分散1h,再在110℃下进行真空干燥处理得到干燥料,将干燥料在空气气氛650℃煅烧1h,自然冷却,即得到Zn2Te3O8·0TiTe3O8复合物包覆钛酸锂负极材料。
本实施例制备的复合物包覆钛酸锂负极材料0.2C倍率放电比容量165.76mAh/g,3C倍率50次循环后的容量保持率为98.94%。
实施例5
Zn2Te3O8·0.8TiTe3O8复合物包覆钛酸锂负极材料的制备,包括如下步骤:
(1)纯相钛酸锂前驱体的制备:按Li:Ti化学计量比为4.15:5,准确称取乙酸锂、钛酸四异丙酯,加入到7wt%的柠檬酸无水乙醇溶液中(柠檬酸的加入量为理论合成纯相钛酸锂质量的8%),并进行超声处理1.8h,然后在80℃搅拌回流条件下反应10h,形成凝胶,将凝胶在115℃下干燥形成干凝胶;将干凝胶在空气气氛下550℃预烧5h,得到纯相钛酸锂前驱体;
(2)按Zn2Te3O8:TiTe3O8=1:0.8的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·0.8TiTe3O8混合物,按理论合成纯相钛酸锂质量的9%称取Zn2Te3O8·0.8TiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,以丙酮为分散剂,进行球磨分散8h,再在120℃下进行真空干燥处理得到干燥料,将干燥料在空气气氛700℃煅烧8h,自然冷却,即得到Zn2Te3O8·0.8TiTe3O8复合物包覆钛酸锂负极材料。
本实施例制备的复合物包覆钛酸锂负极材料0.2C倍率放电比容量为165.65mAh/g,3C倍率50次循环后的容量保持率为98.62%。
实施例6
Zn2Te3O8·1TiTe3O8复合物包覆钛酸锂负极材料的制备,包括如下步骤:
(1)纯相钛酸锂前驱体的制备:按Li:Ti化学计量比为4.2:5,准确称取硝酸锂、钛酸四异丙酯,加入到10wt%的柠檬酸无水乙醇溶液中(柠檬酸的加入量为理论合成纯相钛酸锂质量的10%),并进行超声处理2h,然后在90℃搅拌回流条件下反应12h,形成凝胶,将凝胶在120℃下干燥形成干凝胶;将干凝胶在空气气氛下600℃预烧6h,得到纯相钛酸锂前驱体;
(2)按Zn2Te3O8:TiTe3O8=1:1的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·1TiTe3O8混合物,按理论合成纯相钛酸锂质量的10%称取Zn2Te3O8·1TiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,以酒精为分散剂,进行球磨分散10h,再在120℃下进行真空干燥处理得到干燥料,将干燥料在空气气氛750℃煅烧10h,自然冷却,即得到Zn2Te3O8·1TiTe3O8复合物包覆钛酸锂负极材料。
对比例
(1)纯相钛酸锂前驱体的制备:按Li:Ti化学计量比为4.1:5,准确称取氢氧化锂、钛酸四异丙酯,加入到5wt%的柠檬酸无水乙醇溶液中(柠檬酸的加入量为理论合成纯相钛酸锂质量的5%),并进行超声处理1.6h,然后在80℃搅拌回流条件下反应6h,形成凝胶,将凝胶在110℃下干燥形成干凝胶;将干凝胶在空气气氛下500℃预烧3h,得到纯相钛酸锂前驱体;
(2)将步骤(1)的纯相钛酸锂前驱体,以丙酮为分散剂,进行球磨分散7h,再在100℃下进行真空干燥处理得到干燥料,将干燥料在空气气氛700℃煅烧7h,自然冷却,即得到未经包覆的纯相钛酸锂负极材料。
图1和图2分别是本实施例1制备的Zn2Te3O8·0.5TiTe3O8复合物包覆钛酸锂的X-射线衍射图和扫描电镜图,从图1中可以看出复合物包覆未改变钛酸锂的结构,且结晶性良好;从图2得出复合物包覆钛酸锂负极材料粒度分布均匀,表面光滑。
图3是实施例1和对比例产品在0.2、1、2、3C倍率下的循环性能图,实施例1经复合物包覆钛酸锂在0.2C倍率充电比容量为165.62mAh/g,3C倍率循环50次后的容量保持率为98.91%,对比例未经包覆的钛酸锂纯相0.2C倍率充电比容量为162.96mAh/g,3C倍率循环50次后的容量保持率为97.87%,说明复合物可有效包覆在钛酸锂负极表面,表现出更高的电化学活性,显示出优秀的电化学性能。
以上内容仅仅是对本发明的结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
Claims (5)
1.一种复合物包覆钛酸锂负极材料的制备方法,其特征在于,包括如下步骤:
(1)按Li:Ti化学计量比为(4-4.2):5,称取锂源、钛源,加入到柠檬酸的无水乙醇溶液中,并进行超声处理1-2h,然后在60-90℃搅拌回流条件下反应2-12h,形成凝胶,将凝胶在100-120℃下干燥形成干凝胶;将干凝胶在空气气氛下400-600℃预烧3-6h,得到纯相钛酸锂前驱体;
(2)按Zn2Te3O8:TiTe3O8=1:x的质量比称取Zn2Te3O8、TiTe3O8,混合形成Zn2Te3O8·xTiTe3O8混合物,按一定比例称取Zn2Te3O8·xTiTe3O8混合物,并与步骤(1)的纯相钛酸锂前驱体混合,球磨分散,在100-120℃下真空处理得到干燥料,将干燥料在空气气氛下煅烧,自然冷却,即得到Zn2Te3O8·xTiTe3O8复合物包覆钛酸锂负极材料。
2.根据权利要求1所述的复合物包覆钛酸锂负极材料的制备方法,其特征在于,所述步骤(1)锂源为氢氧化锂、乙酸锂、硝酸锂的一种或几种的组合;钛源为钛酸四丁酯、钛酸四乙酯、钛酸四异丙酯的一种或几种的组合。
3.根据权利要求1所述的复合物包覆钛酸锂负极材料的制备方法,其特征在于,所述步骤(1)中溶有柠檬酸的无水乙醇溶液中柠檬酸的含量为1-10wt%;柠檬酸的加入量为理论合成纯相钛酸锂前驱体质量的1-10%。
4.根据权利要求1所述的复合物包覆钛酸锂负极材料的制备方法,其特征在于,所述步骤(2)中的x取值为0-1;称取Zn2Te3O8·xTiTe3O8混合物为理论合成纯相钛酸锂前驱体质量的1-10%。
5.根据权利要求1所述的复合物包覆钛酸锂负极材料的制备方法,其特征在于,所述步骤(2)中分散剂为酒精或丙酮,球磨分散时间为1-10h;所述煅烧温度为650-750℃,煅烧时间1-10h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710608605.2A CN107293726B (zh) | 2017-07-24 | 2017-07-24 | 一种复合物包覆钛酸锂负极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710608605.2A CN107293726B (zh) | 2017-07-24 | 2017-07-24 | 一种复合物包覆钛酸锂负极材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107293726A true CN107293726A (zh) | 2017-10-24 |
CN107293726B CN107293726B (zh) | 2020-06-12 |
Family
ID=60103282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710608605.2A Active CN107293726B (zh) | 2017-07-24 | 2017-07-24 | 一种复合物包覆钛酸锂负极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107293726B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108461744A (zh) * | 2018-03-16 | 2018-08-28 | 王彩兰 | 一种钛基锂离子电池负极材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400976A (zh) * | 2013-08-16 | 2013-11-20 | 深圳市德方纳米科技有限公司 | 一种氮化钛包覆钛酸锂材料的制备方法 |
CN104264111A (zh) * | 2014-09-18 | 2015-01-07 | 电子科技大学 | 一种碲基复合薄膜及其在mim电容中的应用 |
CN105185975A (zh) * | 2015-07-20 | 2015-12-23 | 合肥国轩高科动力能源有限公司 | 一种羟基磷灰石包覆钛酸锂的制备方法 |
CN105591079A (zh) * | 2016-01-11 | 2016-05-18 | 山东玉皇新能源科技有限公司 | 一种碳包覆纳-微米级钛酸锂复合负极材料的制备方法 |
-
2017
- 2017-07-24 CN CN201710608605.2A patent/CN107293726B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400976A (zh) * | 2013-08-16 | 2013-11-20 | 深圳市德方纳米科技有限公司 | 一种氮化钛包覆钛酸锂材料的制备方法 |
CN104264111A (zh) * | 2014-09-18 | 2015-01-07 | 电子科技大学 | 一种碲基复合薄膜及其在mim电容中的应用 |
CN105185975A (zh) * | 2015-07-20 | 2015-12-23 | 合肥国轩高科动力能源有限公司 | 一种羟基磷灰石包覆钛酸锂的制备方法 |
CN105591079A (zh) * | 2016-01-11 | 2016-05-18 | 山东玉皇新能源科技有限公司 | 一种碳包覆纳-微米级钛酸锂复合负极材料的制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108461744A (zh) * | 2018-03-16 | 2018-08-28 | 王彩兰 | 一种钛基锂离子电池负极材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107293726B (zh) | 2020-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112850690B (zh) | 石墨烯负载的双过渡金属硫化物复合材料的制备方法及储钠应用 | |
CN110326136B (zh) | 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法 | |
CN108899480A (zh) | 一种长循环寿命高比容量镍钴铝正极材料及其制备方法 | |
CN105185975B (zh) | 一种羟基磷灰石包覆钛酸锂的制备方法 | |
CN106299348A (zh) | 一种复合材料包覆镍锰酸锂的方法 | |
CN102208614A (zh) | 一种锂离子电池负极材料碳包覆三氧化二铁的制备方法 | |
CN102956880A (zh) | 一种用于制备Li4Ti5O12-TiO2纳米复合材料的方法及其产品 | |
CN111994890A (zh) | 磷酸钒钠复合正极材料及其制备方法 | |
CN105514375B (zh) | 一种碳包覆Na0.55Mn2O4·1.5H2O纳米复合材料及其制备方法 | |
CN102259933A (zh) | 一种米粒状α-三氧化二铁的制备方法和应用 | |
CN111463423A (zh) | 一种氧化亚硅锂离子电池负极材料制备方法及电池负极片的制备方法 | |
CN107910528B (zh) | 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池 | |
CN112310351A (zh) | 一种具有双氧化物复合包覆层的富锂锰基正极材料及其制备方法 | |
CN109273700A (zh) | 一种硅基复合材料及其制备方法和应用 | |
CN103035904A (zh) | 一种改性锰酸锂材料及其制备方法和应用 | |
CN108511724A (zh) | 一种溶胶凝胶辅助超临界co2干燥制备磷酸锰铁锂方法 | |
CN108123105A (zh) | 一种离子导体层修饰的锰基氧化物正极材料及制备和应用 | |
CN106450186A (zh) | 一种锂离子电池正极材料硅酸锰锂/碳复合材料的制备方法、正极浆料及应用 | |
CN102010009A (zh) | 锂离子电池正极材料层状锰酸锂的制备方法 | |
CN110289399A (zh) | 负极材料及其制备方法、锂离子电池 | |
CN105098155A (zh) | 一种二氧化硅包覆的氟化磷酸钴锂及其制备方法 | |
CN102009998A (zh) | 一种锂离子电池负极材料钛酸锂的制备方法 | |
CN110190277B (zh) | 一种锂离子电池正极材料LiMnO2@C及其制备方法 | |
CN107293726A (zh) | 一种复合物包覆钛酸锂负极材料的制备方法 | |
CN107591530B (zh) | 一种钛酸锂负极材料的改性方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |