CN107099037A - 一种多级孔UiO‑66及其衍生物的合成方法 - Google Patents

一种多级孔UiO‑66及其衍生物的合成方法 Download PDF

Info

Publication number
CN107099037A
CN107099037A CN201710263097.9A CN201710263097A CN107099037A CN 107099037 A CN107099037 A CN 107099037A CN 201710263097 A CN201710263097 A CN 201710263097A CN 107099037 A CN107099037 A CN 107099037A
Authority
CN
China
Prior art keywords
uio
synthetic method
stage porous
derivative
dmf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710263097.9A
Other languages
English (en)
Inventor
范彬彬
周帆
路宁悦
闫晓亮
李瑞丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201710263097.9A priority Critical patent/CN107099037A/zh
Publication of CN107099037A publication Critical patent/CN107099037A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0222Metal clusters, i.e. complexes comprising 3 to about 1000 metal atoms with metal-metal bonds to provide one or more all-metal (M)n rings, e.g. Rh4(CO)12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种多级孔UiO‑66及其衍生物的合成方法,是在常规UiO‑66的合成体系中引入适量的水,利用合成体系中水对Zr簇和配体自组装、UiO‑66成核和晶体生长等过程的影响作用来制备多级孔UiO‑66及其衍生物。本发明合成的多级孔UiO‑66及其衍生物中同时存在有微孔和介孔,其孔体积可达0.89cc/g以上,显著大于文献报道的传统UiO‑66的孔体积。

Description

一种多级孔UiO-66及其衍生物的合成方法
技术领域
本发明属于分子筛合成技术领域,涉及一种UiO-66及其衍生物的合成方法,特别是涉及一种具有多级孔结构的UiO-66及其衍生物的合成方法。
背景技术
近年来,一种被称之为MOFs,即金属有机骨架结构(Metal-Organic Frameworks)的新材料引起了人们极大的关注。这一材料是利用有机配体与金属离子间的金属-配体间络合作用,通过自组装而形成的具有周期性网络结构的晶体。
MOFs材料具有高的空隙率、结构的多样性和可调变性等特点,在许多技术领域都表现出潜在的应用前景(Kitagawa S. Metal-organic frameworks(MOFs)[J]. ChemicalSociety Reviews, 2014, 43(16): 5415-5418.)。然而,绝大多数的MOFs材料都是微孔结构,其孔径小于2nm(Fang Q R, Makal T A, Young M D, et al. Recent advances inthe study of mesoporous metal-organic frameworks[J]. Comments on InorganicChemistry, 2010, 31(5-6): 165-195.)。尽管这种微孔结构有利于气体存储,但是减缓了气体的扩散速率,同时在催化应用中也阻碍了大分子反应物接触孔道内的反应活性位点(Jiang H L, Tatsu Y, Lu Z H, et al. Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing,and large molecule separation[J]. Journal of the American Chemical Society,2010, 132(16): 5586-5587.)。因此,制备多级孔MOFs材料,以提高大分子在孔道内的扩散速度和MOFs微孔内活性位的可接近性,就显得十分必要。
为了制备多级孔MOFs材料,人们在合成方法上进行了多方面的探索。
传统的多级孔MOFs材料合成方法之一是增加有机配体的长度(Eddaoudi M, KimJ, Rosi N, et al. Systematic design of pore size and functionality inisoreticular MOFs and their application in methane storage[J]. Science, 2002,295(5554): 469-472.),然而该方法降低了MOFs材料的稳定性和孔结构的连通性。
另一方法是利用模板剂与络合剂的协同作用,以达到制备多级孔MOFs材料的目的(Sun L B, Li J R, Park J, et al. Cooperative template-directed assembly ofmesoporous metal-organic frameworks[J]. Journal of the American ChemicalSociety, 2011, 134(1): 126-129.),然而该方法中的络合剂会嵌入到MOFs材料的晶体结构中,后续消除络合剂的操作常常会对MOFs材料的物理性质造成影响(McNamara N D,Hicks J C. Chelating Agent-Free, Vapor-Assisted Crystallization Method toSynthesize Hierarchical Microporous/Mesoporous MIL-125(Ti)[J]. ACS appliedmaterials & interfaces, 2015, 7(9): 5338-5346.)。
此外,软/硬模板法(Gu Z Y, Park J, Raiff A, et al. Metal-organicframeworks as biomimetic catalysts[J]. ChemCatChem, 2014, 6(1): 67-75.)、分步配体交换法(stepwise ligand exchange) (Li T, Kozlowski M T, Doud E A, et al.Stepwise ligand exchange for the preparation of a family of mesoporous MOFs[J]. Journal of the American Chemical Society, 2013, 135(32): 11688-11691.)、金属-配体-碎片共组装法(metal-ligand-fragment co-assembly) (Park J, Wang Z U,Sun L B, et al. Introduction of functionalized mesopores to metal-organicframeworks via metal-ligand-fragment coassembly[J]. Journal of the AmericanChemical Society, 2012, 134(49): 20110-20116.)等方法也被用来合成多级孔MOFs材料。然而这些方法的适用范围有限,且目前能合成出的MOFs材料的稳定性能差。
UiO-66是一种新型锆基MOFs的典型代表。同其它MOFs材料相比,其除了具有较高的比表面积之外,还具有良好的热和化学稳定性,特别是对水和有机溶剂的稳定性(CavkaJ H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brickforming metal organic frameworks with exceptional stability, J. Am. Chem.Soc., 2008, 130(42): 13850-13851.)。另外,UiO-66还具有Lewis Acid的特性,这使得其在很多酸催化反应中能够展现出较好的催化性能(Zhou F, Lu N, Fan B, et al.Zirconium-containing UiO-66 as an efficient and reusable catalyst fortransesterification of triglyceride with methanol[J]. Journal of EnergyChemistry, 2016, 25(5): 874-879.)。
但是,UiO-66的孔径分别为0.8nm和1.1nm,孔口尺寸仅为0.6nm,其微孔的特性使其在催化和吸附应用中存在较大的扩散阻力。因此,探索一种简单易行的制备多级孔UiO-66的方法,对于改善UiO-66的催化和吸附性能,扩展其应用前景具有重要意义。
发明内容
本发明的目的是克服现有UiO-66及其衍生物存在的不足,提供一种简单易行的多级孔UiO-66及其衍生物的合成方法。
本发明所述的多级孔UiO-66及其衍生物的合成方法是通过在常规UiO-66的合成体系中引入适量的水,利用合成体系中的水对Zr簇和配体的自组装、UiO-66成核和晶体生长等过程的影响作用,来制备多级孔的UiO-66及其衍生物。
具体地,本发明所述的多级孔UiO-66及其衍生物的合成方法是将可溶性锆盐溶解在N’N-二甲基甲酰胺(DMF)中,加入对苯二甲酸或其衍生物,并添加一定量的水,以上述混合溶液进行水热晶化反应制备多级孔UiO-66及其衍生物。
其中,本发明上述合成方法中,加入的水量与DMF用量的摩尔比为0.4~1.5∶1。
进一步地,本发明上述合成方法中所使用的可溶性锆盐可以是ZrCl4或ZrOCl2·8H2O。
所述的对苯二甲酸衍生物包括2-氨基对苯二甲酸、2-硝基对苯二甲酸或2-溴对苯二甲酸。
具体地,本发明上述合成方法中,所述水热晶化反应是在100~150℃的反应温度下水热晶化反应20~30h。
本发明上述合成方法中,还可以在所述可溶性锆盐的DMF溶液中加入无机酸。所述无机酸优选使用盐酸。
进而,本发明是将上述水热晶化反应得到的产物离心得到白色凝胶状产物,再分别以DMF和甲醇洗涤后,干燥得到所合成的多级孔UiO-66材料。
本发明提供了一种不需要使用任何模板剂、络合剂来制备多级孔UiO-66的简单易行的合成方法。该方法通过在常规UiO-66合成体系中引入适量的水,利用合成体系中的水加速Zr簇(Zr63-O)43-OH)4(CO2)12)的形成,从而影响配体的自组装过程,使得UiO-66晶体中的有机配体缺失,最终制备得到了多级孔的UiO-66材料。
本发明提供的多级孔UiO-66及其衍生物的合成方法绿色温和、简单易行,合成的多级孔UiO-66及其衍生物同时存在有微孔和介孔,从孔径分布图中可以看出在样品中存在有3~15nm范围内的介孔。本发明合成的多级孔UiO-66及其衍生物孔体积可达0.89cc/g以上,大于文献报道的传统UiO-66的孔体积0.44cc/g(Wu H, Yong S C, Krungleviciute V,et al. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption[J].Journal of the American Chemical Society, 2013, 135(28):10525-32.)1倍以上,且微孔与介孔孔体积之比不小于1∶2.0。
附图说明
图1是实施例1合成的多级孔UiO-66的XRD图。
图2是实施例1合成的多级孔UiO-66的N2吸附-脱附等温线和孔径分布图。
具体实施方式
下述实施例仅为本发明的优选技术方案,并不用于对本发明进行任何限制。对于本领域技术人员而言,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1。
将5mmol ZrCl4、5mmol对苯二甲酸、5mmol浓HCl依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入5ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于120℃恒温烘箱中,水热晶化反应24h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66材料。
图1为上述合成多级孔UiO-66的XRD图。从图中可以看出,所合成样品显示出了与文献报道UiO-66(Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconiuminorganic building brick forming metal organic frameworks with exceptionalstability.[J]. Journal of the American Chemical Society, 2008, 130(42):13850-1.)相一致的特征衍射峰,表明本实施例合成的多级孔UiO-66仍然保持了UiO-66原有的晶体结构。
图2是本实施例合成的多级孔UiO-66的N2吸附-脱附等温线和孔径分布图。图中的吸附等温线显示出了Ⅰ型和Ⅳ型吸附等温线的特点,表明在样品中同时存在有微孔和介孔。经BJH模型计算,可以得出样品的微孔和介孔孔体积之比达到1∶3,并从孔径分布图可以看出样品中存在有3~15nm范围内的介孔。同时,多级孔UiO-66的孔体积达到1.1cc/g。
实施例2。
将5mmol ZrCl4、5mmol对苯二甲酸依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入5ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于120℃恒温烘箱中,水热晶化反应24h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66材料。
本实施例所合成样品的孔体积为0.93cc/g,样品中存在3~10nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.6。
实施例3。
将5mmol ZrOCl2·8H2O、5mmol对苯二甲酸、10mmol浓HCl依次加入到25ml DMF溶液中,搅拌2h,再向上述溶液中加入4ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于150℃恒温烘箱中,水热晶化反应24h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66材料。
本实施例所合成样品的孔体积为0.96cc/g,样品中存在3~11nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.7。
实施例4。
将5mmol ZrCl4、5mmol对苯二甲酸、5mmol浓HCl依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入3ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于120℃恒温烘箱中,水热晶化反应24h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66材料。
本实施例所合成样品的孔体积为0.91cc/g,样品中存在3~10nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.5。
实施例5。
将5mmol ZrCl4、5mmol对苯二甲酸、5mmol浓HCl依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入10ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于120℃恒温烘箱中,水热晶化反应24h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66材料。
本实施例所合成样品的孔体积为0.76cc/g,样品中存在3~7nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.0。
实施例6。
将5mmol ZrCl4、5mmol 2-氨基对苯二甲酸依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入5ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于120℃恒温烘箱中,水热晶化反应30h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66-NH2材料。
本实施例所合成样品的孔体积为0.98cc/g,样品中存在3~12nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.7。
实施例7。
将5mmol ZrCl4、5mmol 2-硝基对苯二甲酸,5mmol浓HCl依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入5ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于100℃恒温烘箱中,水热晶化反应30h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66-NO2材料。
本实施例所合成样品的孔体积为0.81cc/g,样品中存在3~8nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.3。
实施例8。
将5mmol ZrCl4、5mmol 2-硝基对苯二甲酸依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入5ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于100℃恒温烘箱中,水热晶化反应30h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66-NO2材料。
本实施例所合成样品的孔体积为0.89cc/g,样品中存在3~10nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.5。
实施例9。
将5mmol ZrCl4、5mmol 2-溴对苯二甲酸依次加入到30ml DMF溶液中,搅拌2h,再向上述溶液中加入5ml去离子水,搅拌均匀,装入带有聚四氟乙烯内衬的不锈钢反应釜中,置于120℃恒温烘箱中,水热晶化反应20h。取出反应釜,冷却至室温,将反应产物离心得到白色凝胶状产物,分别以DMF和甲醇充分洗涤,干燥,得多级孔UiO-66-Br材料。
本实施例所合成样品的孔体积为0.93cc/g,样品中存在3~11nm范围的介孔,且微孔与介孔的孔体积比达到1∶2.6。

Claims (8)

1.一种多级孔UiO-66及其衍生物的合成方法,是将可溶性锆盐溶解在DMF中,加入对苯二甲酸或其衍生物,以上述混合溶液进行水热晶化反应制备多级孔UiO-66及其衍生物,其特征是在所述混合溶液中添加一定量的水。
2.根据权利要求1所述的合成方法,其特征是加入的水量与DMF用量的摩尔比为0.4~1.5∶1。
3.根据权利要求1或2所述的合成方法,其特征是所述的可溶性锆盐为ZrCl4或ZrOCl2·8H2O。
4.根据权利要求1或2所述的合成方法,其特征是所述的对苯二甲酸衍生物为2-氨基对苯二甲酸、2-硝基对苯二甲酸或2-溴对苯二甲酸。
5.根据权利要求1或2所述的合成方法,其特征是所述水热晶化反应是在100~150℃的反应温度下水热晶化反应20~30h。
6.根据权利要求1或2所述的合成方法,其特征是在所述可溶性锆盐的DMF溶液中加入无机酸。
7.根据权利要求6所述的合成方法,其特征是所述无机酸为盐酸。
8.根据权利要求1或2所述的合成方法,其特征是将所述水热晶化反应得到的产物离心得到白色凝胶状产物,以DMF和甲醇洗涤,干燥得到多级孔UiO-66及其衍生物。
CN201710263097.9A 2017-04-21 2017-04-21 一种多级孔UiO‑66及其衍生物的合成方法 Pending CN107099037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710263097.9A CN107099037A (zh) 2017-04-21 2017-04-21 一种多级孔UiO‑66及其衍生物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710263097.9A CN107099037A (zh) 2017-04-21 2017-04-21 一种多级孔UiO‑66及其衍生物的合成方法

Publications (1)

Publication Number Publication Date
CN107099037A true CN107099037A (zh) 2017-08-29

Family

ID=59657614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710263097.9A Pending CN107099037A (zh) 2017-04-21 2017-04-21 一种多级孔UiO‑66及其衍生物的合成方法

Country Status (1)

Country Link
CN (1) CN107099037A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578927A (zh) * 2017-09-07 2018-01-12 陕西科技大学 一种聚苯胺基mof纳米复合材料柔性超级电容器的制备方法
CN108273555A (zh) * 2018-01-12 2018-07-13 辽宁大学 一种基于UiO-66@SNW-1的多孔结晶核壳杂化材料及其制备方法和应用
CN108295878A (zh) * 2018-01-08 2018-07-20 武汉科技大学 Keggin型磷钨酸复合锆基金属-有机框架光催化剂及其制备方法
CN108295825A (zh) * 2018-01-31 2018-07-20 广东工业大学 一种吸附剂的制备方法及其在重金属吸附中的应用
CN109261204A (zh) * 2018-10-18 2019-01-25 哈尔滨工业大学 一种绿色规模化合成功能化UiO-66(Zr)的方法及应用
CN109395698A (zh) * 2018-11-28 2019-03-01 大连理工大学 一种利用混合配体合成金属有机骨架UiO-66吸附剂的制备方法
CN110201160A (zh) * 2019-05-20 2019-09-06 广东医科大学 锆金属有机骨架化合物的制备方法
CN110256683A (zh) * 2019-04-19 2019-09-20 武汉理工大学 一种多级孔结构金属有机骨架材料的制备方法及其应用
CN110305331A (zh) * 2019-07-02 2019-10-08 南开大学 配体选择保留法构筑多级孔mof的方法
WO2019228356A1 (zh) * 2018-06-01 2019-12-05 云南中烟工业有限责任公司 一种烟草保润剂、其制备方法及用途
CN110618224A (zh) * 2019-08-06 2019-12-27 华东师范大学 一种[H2Nmim][NTf2]@UiO-66-Br纳米复合材料及其应用
RU2719597C1 (ru) * 2019-09-25 2020-04-21 Общество с ограниченной ответственностью "Инжиниринговый химико-технологический центр" (ООО "ИХТЦ") Быстрый и масштабируемый способ получения микропористого терефталата циркония(iv)
CN111634985A (zh) * 2020-06-12 2020-09-08 东北大学 基于UiO-66的CDI极板及脱磷酸盐的装置和方法
CN111821960A (zh) * 2020-07-24 2020-10-27 北京工商大学 基于金属有机骨架复合材料的液相色谱固定相及制备方法
CN112642488A (zh) * 2020-12-16 2021-04-13 福州大学 一种蛋黄-蛋壳mof/cof复合材料及其无模板制备方法和催化应用
CN113209967A (zh) * 2021-04-23 2021-08-06 东北石油大学 磁性催化剂及其制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710559A (zh) * 2015-02-15 2015-06-17 北京理工大学 一种制备金属有机骨架材料薄膜的方法
FR3026027A1 (fr) * 2014-09-18 2016-03-25 Mof Applic Services Procede de revetement d'un support metallique avec un adsorbant mof
CN105777791A (zh) * 2016-03-17 2016-07-20 李亚丰 一种锆基微孔配位聚合物的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026027A1 (fr) * 2014-09-18 2016-03-25 Mof Applic Services Procede de revetement d'un support metallique avec un adsorbant mof
CN104710559A (zh) * 2015-02-15 2015-06-17 北京理工大学 一种制备金属有机骨架材料薄膜的方法
CN105777791A (zh) * 2016-03-17 2016-07-20 李亚丰 一种锆基微孔配位聚合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FLORENCE RAGON等: "In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66", 《INORGANIC CHEMISTRY》 *
韩易潼等: "高稳定性金属有机骨架UiO -66 的合成与应用", 《应用化学》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578927A (zh) * 2017-09-07 2018-01-12 陕西科技大学 一种聚苯胺基mof纳米复合材料柔性超级电容器的制备方法
CN107578927B (zh) * 2017-09-07 2019-07-09 陕西科技大学 一种聚苯胺基mof纳米复合材料柔性超级电容器的制备方法
CN108295878A (zh) * 2018-01-08 2018-07-20 武汉科技大学 Keggin型磷钨酸复合锆基金属-有机框架光催化剂及其制备方法
CN108295878B (zh) * 2018-01-08 2020-12-01 武汉科技大学 Keggin型磷钨酸复合锆基金属-有机框架光催化剂及其制备方法
CN108273555A (zh) * 2018-01-12 2018-07-13 辽宁大学 一种基于UiO-66@SNW-1的多孔结晶核壳杂化材料及其制备方法和应用
CN108295825A (zh) * 2018-01-31 2018-07-20 广东工业大学 一种吸附剂的制备方法及其在重金属吸附中的应用
US10966452B2 (en) 2018-06-01 2021-04-06 China Tobacco Yunnan Industrial Co., Ltd Tobacco humectant, preparation method and use thereof
EP3766364A4 (en) * 2018-06-01 2022-02-23 China Tobacco Yunnan Industrial Co., Ltd TOBACCO HUMECTANT, METHOD FOR THE PREPARATION AND USE THEREOF
WO2019228356A1 (zh) * 2018-06-01 2019-12-05 云南中烟工业有限责任公司 一种烟草保润剂、其制备方法及用途
CN109261204A (zh) * 2018-10-18 2019-01-25 哈尔滨工业大学 一种绿色规模化合成功能化UiO-66(Zr)的方法及应用
CN109261204B (zh) * 2018-10-18 2020-08-07 哈尔滨工业大学 功能化UiO-66(Zr)的应用
CN109395698A (zh) * 2018-11-28 2019-03-01 大连理工大学 一种利用混合配体合成金属有机骨架UiO-66吸附剂的制备方法
CN110256683A (zh) * 2019-04-19 2019-09-20 武汉理工大学 一种多级孔结构金属有机骨架材料的制备方法及其应用
CN110256683B (zh) * 2019-04-19 2022-02-18 武汉理工大学 一种多级孔结构金属有机骨架材料的制备方法及其应用
CN110201160A (zh) * 2019-05-20 2019-09-06 广东医科大学 锆金属有机骨架化合物的制备方法
CN110201160B (zh) * 2019-05-20 2021-12-03 广东医科大学 锆金属有机骨架化合物的制备方法
CN110305331A (zh) * 2019-07-02 2019-10-08 南开大学 配体选择保留法构筑多级孔mof的方法
CN110305331B (zh) * 2019-07-02 2021-09-28 南开大学 配体选择保留法构筑多级孔mof的方法
CN110618224A (zh) * 2019-08-06 2019-12-27 华东师范大学 一种[H2Nmim][NTf2]@UiO-66-Br纳米复合材料及其应用
CN110618224B (zh) * 2019-08-06 2021-11-19 华东师范大学 一种[H2Nmim][NTf2]@UiO-66-Br纳米复合材料及其应用
RU2719597C1 (ru) * 2019-09-25 2020-04-21 Общество с ограниченной ответственностью "Инжиниринговый химико-технологический центр" (ООО "ИХТЦ") Быстрый и масштабируемый способ получения микропористого терефталата циркония(iv)
CN111634985A (zh) * 2020-06-12 2020-09-08 东北大学 基于UiO-66的CDI极板及脱磷酸盐的装置和方法
CN111821960A (zh) * 2020-07-24 2020-10-27 北京工商大学 基于金属有机骨架复合材料的液相色谱固定相及制备方法
CN112642488A (zh) * 2020-12-16 2021-04-13 福州大学 一种蛋黄-蛋壳mof/cof复合材料及其无模板制备方法和催化应用
CN113209967A (zh) * 2021-04-23 2021-08-06 东北石油大学 磁性催化剂及其制备方法、应用
CN113209967B (zh) * 2021-04-23 2022-01-25 东北石油大学 磁性催化剂及其制备方法、应用

Similar Documents

Publication Publication Date Title
CN107099037A (zh) 一种多级孔UiO‑66及其衍生物的合成方法
García-Palacín et al. Sized-controlled ZIF-8 nanoparticle synthesis from recycled mother liquors: environmental impact assessment
Ye et al. Boosting catalytic performance of metal–organic framework by increasing the defects via a facile and green approach
Dreischarf et al. Green synthesis of Zr-CAU-28: structure and properties of the first Zr-MOF based on 2, 5-furandicarboxylic acid
Zhang et al. Rational design of metal–organic frameworks with anticipated porosities and functionalities
Sohail et al. Synthesis of highly crystalline NH2-MIL-125 (Ti) with S-shaped water isotherms for adsorption heat transformation
CN105170097B (zh) 一种TiO2/ZIF‑8核壳结构纳米复合材料及其制备方法
Lan et al. Highly dispersed polyoxometalate‐doped porous Co3O4 water oxidation photocatalysts derived from POM@ MOF crystalline materials
Fang et al. Recent advances in the study of mesoporous metal-organic frameworks
Park et al. Introduction of functionalized mesopores to metal–organic frameworks via metal–ligand–fragment coassembly
Tan et al. Mixed-solvothermal synthesis of MIL-101 (Cr) and its water adsorption/desorption performance
CN104193768B (zh) 一种中微双孔hkust-1材料及其制备方法和应用
Kapoor et al. Novel zirconium− titanium phosphates mesoporous materials for hydrogen production by photoinduced water splitting
CN104525266B (zh) 一种金属有机骨架材料光催化剂的制备方法与应用
Hu et al. Ionic covalent organic frameworks for highly effective catalysis
Chang et al. Regulation of the adsorption affinity of metal-organic framework MIL-101 via a TiO2 coating strategy for high capacity adsorption and efficient photocatalysis
Peng et al. Accelerating biodiesel catalytic production by confined activation of methanol over high-concentration ionic liquid-grafted UiO-66 solid superacids
Guo et al. Synthesis of 3D-ordered macro/microporous yolk–shelled nanoreactor with spatially separated functionalities for cascade reaction
Alivand et al. Defect engineering-induced porosity in graphene quantum dots embedded metal-organic frameworks for enhanced benzene and toluene adsorption
CN105854942A (zh) 一种磺酸基修饰介孔材料负载杂多酸催化剂的制备方法及其在酯化反应中的应用
Zhang et al. Construction of defective Zeolitic Imidazolate Frameworks with improved photocatalytic performance via Vanillin as modulator
Li et al. Nanoscale hierarchically porous metal–organic frameworks: facile synthesis, mechanism research, and application
CN109369922B (zh) 使用一种阳离子模板剂在常温下快速合成多级孔zif-67材料的方法
Feng et al. Using MOF-808 as a promising support to immobilize Ru for selective hydrogenation of levulinic acid to γ-valerolactone
Zhai et al. Preparation of Hierarchically Porous Metal–Organic Frameworks via Slow Chemical Vapor Etching for CO2 Cycloaddition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170829

RJ01 Rejection of invention patent application after publication