CN107051468B - 负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用 - Google Patents

负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用 Download PDF

Info

Publication number
CN107051468B
CN107051468B CN201710103264.3A CN201710103264A CN107051468B CN 107051468 B CN107051468 B CN 107051468B CN 201710103264 A CN201710103264 A CN 201710103264A CN 107051468 B CN107051468 B CN 107051468B
Authority
CN
China
Prior art keywords
catalyst
catalytic oxidation
nitrate
preparation
metal deoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710103264.3A
Other languages
English (en)
Other versions
CN107051468A (zh
Inventor
杨文玲
郜子兴
吴赳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Priority to CN201710103264.3A priority Critical patent/CN107051468B/zh
Publication of CN107051468A publication Critical patent/CN107051468A/zh
Application granted granted Critical
Publication of CN107051468B publication Critical patent/CN107051468B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载多金属氧化物臭氧催化氧化催化剂的制备方法,所述催化剂的制备方法包括以下步骤:a、将直径为1mm‑3mm的硅藻土在微波发生器内活化,后浸渍于NaOH溶液中,取出烘干,得预处理硅藻土;b、将预处理硅藻土浸渍在硝酸铜,硝酸镍,硝酸锰,硝酸钴,硝酸铁的混合溶液中,得催化剂前驱物;c、将催化剂前驱物干燥,高温焙烧,得到负载多金属氧化物臭氧催化氧化催化剂。本发明选用硅藻土作为载体,原料廉价易得,制备工艺简单,催化剂易于回收,适合大规模工业生产。根据本发明制备方法得到的负载多金属氧化物臭氧催化氧化催化剂应用于处理抗生素工业废水。

Description

负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用
技术领域
本发明属于水处理领域,具体地说,涉及一种负载多金属氧化物臭氧催化氧化催化剂的制备方法,同时本发明还涉及该催化剂的应用。
背景技术
我国是个缺水大国,可供人民生产生活的水量不足世界人均占有量的1/2,节约和利用水资源成为当务之急。随着工业的发展,工业废水排放量日益增加,且成分复杂,对环境和人类造成了巨大的危害,其中制药废水占工业废水总排放量的2.52%。制药废水成分复杂,有机污染物种类多,浓度高,COD和BOD值高且波动较大,色度深,毒性大,严重污染环境。目前,制药废水深度处理的方法有混凝沉淀,活性炭吸附,高级氧化(臭氧氧化,Fenton氧化等),膜技术(超滤,反渗透等)等,但是以上方法存在不同程度的局限性,比如混凝沉淀法对溶解性物质去除率较低,活性炭成本较高,膜技术中膜污染,膜寿命,及其运行费用制约了该技术的发展,传统Fenton氧化成本高,降解过程中会产生铁污泥,造成二次污染等。
臭氧具有强氧化性,能够直接氧化水中的有机物,不产生二次污染,在给水处理领域有着广泛的应用。但还存在很多问题,臭氧在水中不稳定,传质效率低,导致臭氧的实际利用率不高,增加了处理成本,且臭氧氧化选择性高,对某些有机污染物的反应速率低,去除率低,矿化度低,影响其工业的应用。催化臭氧氧化是利用臭氧在催化剂作用下产生更多的有强氧化能力的中间产物如羟基自由基(·OH)氧化分解水中有机污染物,这些中间产物氧化能力极强,反应无选择性,能快速氧化分解臭氧无法氧化的高稳定性、难降解的有机物,该技术是近年来发展起来的新型臭氧氧化方法。
依据催化剂形态不同,催化臭氧氧化主要分为两类:均相催化臭氧氧化和非均相催化臭氧氧化。均相臭氧氧化催化剂虽然具有较好的催化剂效率,但是催化剂具有易于流失,不易回收,药剂费用消耗高,成本增大,在被处理水中引入金属离子,增加出水中金属离子浓度等缺点。非均相臭氧氧化催化剂主要分为固体金属催化剂,金属氧化物催化剂,负载在载体上的金属或金属氧化物催化剂。然而目前使用的催化剂大多制备具有工艺复杂,生产成本高,处理效率低,使用寿命短,催化条件严格等缺点。
发明内容
本发明的目的是提供一种负载多金属氧化物臭氧催化氧化催化剂的制备方法。
一种负载多金属氧化物臭氧催化氧化催化剂的制备方法,包括以下步骤:
a、将直径为1mm-3mm的硅藻土在微波发生器内活化,后浸渍于NaOH溶液中,取出烘干,得预处理硅藻土;
b、将预处理硅藻土浸渍在硝酸铜,硝酸镍,硝酸锰,硝酸钴,硝酸铁的混合溶液中,得催化剂前驱物;
c、将催化剂前驱物干燥,高温焙烧,得到负载多金属氧化物臭氧催化氧化催化剂。
进一步的,步骤a中的活化工艺参数:微波功率为300-600W,微波活化时间5-10min。
进一步的,步骤a中所述NaOH溶液浓度为1-3mol/L,浸渍时间2-4h。
进一步的,步骤b硝酸铜,硝酸镍,硝酸锰,硝酸钴,硝酸铁在混合溶液中的浓度均为0.1-1.0mol/L。
进一步的,步骤b中预处理硅藻土与混合溶液的比例为10-50g:300mL。
进一步的,步骤b中预处理硅藻土浸渍在混合溶液中的时间为12-24h,浸渍温度为20-50℃。
进一步的,步骤c中的干燥工艺参数为:100-150℃烘箱中干燥1-2h,高温焙烧工艺参数为:500-900℃马弗炉中焙烧3-8h。
本发明所述的负载多金属氧化物臭氧催化氧化催化剂的制备方法具有以下有益效果:
1、本发明采用微波活化硅藻土载体,使载体表面的酸性基团降解,碱性基团增强,有助于促使臭氧分解更多的羟基自由基。用NaOH溶液对载体进行预处理,使得硅藻质氧化硅溶蚀,造成表面空缺,从而增加了活性组分的负载效果。
2、本发明配置硝酸铜,硝酸镍,硝酸锰,硝酸钴,硝酸铁多组分过渡金属盐混合溶液,浓度高,渗透压大,载体上活性组分负载量多,混合溶液通过过滤后,滤液后续添加溶质到指定浓度后可重复使用,节约了成本。
3、本发明选用直径1mm-3mm的硅藻土作为载体,原料廉价易得,制备工艺简单,催化剂易于回收,适合大规模工业生产。
4、本发明步骤c中的高温焙烧工艺参数为:500-900℃马弗炉中焙烧3-8h;经高温焙烧除掉易挥发的组分,保留一定的化学组成,使催化剂具有稳定的催化性能。另外,当焙烧温度低时,硝酸盐分解为细小氧化物晶粒不完全,提高温度有利于焙烧时分解反应的进行,但温度过高会造成晶粒的烧结,催化剂比表面积减少,催化剂活性降低,本发明选择500-900℃的焙烧温度。
根据上述的制备方法得到的负载多金属氧化物臭氧催化氧化催化剂应用于处理抗生素工业废水。
进一步的,所述催化剂应用于处理抗生素工业废水的投加量为1-4g/L。
进一步的,所述催化剂应用于处理抗生素工业废水的反应条件为PH=3-11,臭氧投加量29.6-118mg/L,反应时间为20-60min。
本发明制备的负载多金属氧化物臭氧催化氧化催化剂具有较高的氧化还原的催化活性,促进臭氧分解,产生具有极强氧化性的羟基自由基,从而显著提高对水中有机物的分解效果,制备得到的催化剂可重复使用,且催化活性稳定,废水COD去除效果好,反应停留时间短,显著降低了臭氧运行成本,无二次污染。
具体实施方式
本发明公开了一种负载多金属氧化物臭氧催化氧化催化剂的制备方法,包括以下步骤:
a、将直径为d的硅藻土在微波发生器内活化,微波功率为p,微波活化时间为T1,后浸渍于NaOH溶液中,NaOH溶液浓度为C1,浸渍时间T2,取出烘干,得预处理硅藻土;
b、将预处理硅藻土浸渍在浓度分别为0.1mol/L、0.3mol/L、1mol/L、0.5mol/L、0.7mol/L的硝酸铜,硝酸镍,硝酸锰,硝酸钴,硝酸铁的混合溶液中,预处理硅藻土与混合溶液的比例为n1,预处理硅藻土浸渍在混合溶液中的时间为T3,浸渍温度为25℃,得催化剂前驱物;
c、将催化剂前驱物于105℃烘箱内干燥1h后,在t1马弗炉内焙烧5h,得到负载多金属氧化物臭氧催化氧化催化剂。
实施例1-5:
按照上述负载多金属氧化物臭氧催化氧化催化剂的制备方法,实施例1-5各步骤工艺参数如下表1所示:
表1工艺参数表
对比例1-14研究了载体种类、混合溶液种类及浓度、微波活化工艺的影响,各变量工艺参数值如下表2-4所示,其制备方法及其它工艺参数均与实施例3相同。
对比例1-5:
表2载体种类的影响
对比例5-10:
表3混合溶液种类及浓度的影响
对比例11-14:
表4微波活化工艺的影响
对比例 对比例11 对比例12 对比例13 对比例14
微波功率P(W) 400 500 200 700
活化时间T<sub>1</sub>(min) 4 12 7 9
将上述实施例1-5、对比例1-14制备方法得到的负载多金属氧化物臭氧催化氧化催化剂应用于处理以下抗生素工业废水:①正常二级生化抗生素工业废水Ⅰ,废水COD浓度为800mg/L,PH=7,属于较难降解的工业废水;②非正常二级生化抗生素工业废水Ⅱ,该废水COD浓度为1500mg/L,比正常二级生化抗生素废水更难降解。臭氧催化氧化技术参数:催化剂的投加量为4g/L,臭氧投加量80mg/L,PH=7,反应时间为40min,测试抗生素工业废水COD去除率,实验结果如表5-8所示。
表5催化剂催化活性测试数据表
实施例 实施例1 实施例2 实施例3 实施例4 实施例5
COD去除率(废水Ⅰ) 71.8% 73.2% 75.9% 74.5% 73.8%
COD去除率(废水Ⅱ) 51.4% 52.3% 52.9% 50.9% 52.8%
表6载体种类对催化剂催化活性的影响数据表
对比例 对比例1 对比例2 对比例3 对比例4 对比例5
COD去除率(废水Ⅰ) 61.9% 65.1% 64.5% 67.2% 65.2%
COD去除率(废水Ⅱ) 43.0% 40.4% 46% 40.9% 43.2%
表7混合溶液种类及浓度对催化剂催化活性的影响数据表
表8微波活化工艺对催化剂催化活性的影响数据表
对比例 对比例11 对比例12 对比例13 对比例14
COD去除率(废水Ⅰ) 68.5% 67.2% 69.2% 68.9%
COD去除率(废水Ⅱ) 51.1% 49.2% 49.9% 49.1%
设置空白实验,不投入催化剂,臭氧投加量、PH、反应时间技术参数与上述测试数据相同,其处理正常二级生化抗生素工业废水Ⅰ的COD去除率为35.3%,其处理非正常二级生化抗生素工业废水Ⅱ的COD去除率为20.2%,臭氧单独使用的催化氧化活性远远低于本发明制备的负载多金属氧化物臭氧催化氧化催化剂。
将上述实施例1-5制备的臭氧催化氧化催化剂应用于连续处理非正常二级生化抗生素工业废水Ⅱ,催化剂的投加量为4g/L,臭氧投加量80mg/L,PH=7,反应时间为40min,测试COD去除率,检验催化剂的稳定性。
表9催化剂稳定性数据表
从表9可以看出,臭氧催化氧化催化剂处理非正常二级生化抗生素工业废水Ⅱ,连续使用二十次,COD去除率下降较少,表现较好的稳定性。

Claims (7)

1.一种负载多金属氧化物臭氧催化氧化催化剂的制备方法,其特征在于,所述催化剂的制备方法包括以下步骤:
a、将直径为1mm-3mm的硅藻土在微波发生器内活化,后浸渍于NaOH溶液中,取出烘干,得预处理硅藻土,微波功率为300-600W,微波活化时间5-10min;
b、将预处理硅藻土浸渍在硝酸铜,硝酸镍,硝酸锰,硝酸钴,硝酸铁的混合溶液中,得催化剂前驱物;硝酸铜,硝酸镍,硝酸锰,硝酸钴,硝酸铁在混合溶液中的浓度均为0.1-1.0mol/L,预处理硅藻土与混合溶液的比例为10-50g:300mL;
c、将催化剂前驱物干燥,高温焙烧,得到负载多金属氧化物臭氧催化氧化催化剂。
2.根据权利要求1所述的负载多金属氧化物臭氧催化氧化催化剂的制备方法,其特征在于,步骤a中所述NaOH溶液浓度为1-3mol/L,浸渍时间2-4h。
3.根据权利要求1所述的负载多金属氧化物臭氧催化氧化催化剂的制备方法,其特征在于,步骤b中预处理硅藻土浸渍在混合溶液中的时间为12-24h,浸渍温度为20-50℃。
4.根据权利要求1所述的负载多金属氧化物臭氧催化氧化催化剂的制备方法,其特征在于,步骤c中的干燥工艺参数为:100-150℃烘箱中干燥1-2h,高温焙烧工艺参数为:500-900℃马弗炉中焙烧3-8h。
5.根据权利要求1-4中任一项所述的制备方法得到的负载多金属氧化物臭氧催化氧化催化剂的应用,其特征在于,所述催化剂应用于处理抗生素工业废水。
6.根据权利要求5所述的负载多金属氧化物臭氧催化氧化催化剂的应用,其特征在于,所述催化剂应用于处理抗生素工业废水的投加量为1-4g/L。
7.根据权利要求6所述的负载多金属氧化物臭氧催化氧化催化剂的应用,其特征在于,催化剂应用于处理抗生素工业废水的反应条件为pH =3-11,臭氧投加量29.6-118mg/L,反应时间为20-60min。
CN201710103264.3A 2017-02-24 2017-02-24 负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用 Expired - Fee Related CN107051468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710103264.3A CN107051468B (zh) 2017-02-24 2017-02-24 负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710103264.3A CN107051468B (zh) 2017-02-24 2017-02-24 负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN107051468A CN107051468A (zh) 2017-08-18
CN107051468B true CN107051468B (zh) 2019-08-23

Family

ID=59621247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710103264.3A Expired - Fee Related CN107051468B (zh) 2017-02-24 2017-02-24 负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN107051468B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876822B (zh) * 2019-03-07 2022-03-04 南京理工大学 铜锰双金属臭氧催化剂、制备方法及其应用
CN110961118B (zh) * 2019-12-18 2023-02-24 煤炭科学技术研究院有限公司 一种煤矸石基臭氧氧化催化剂及其制备方法与应用
CN112588295B (zh) * 2020-12-23 2023-01-03 甄崇礼 用于有机废水处理的催化剂及其制备方法
CN112517023B (zh) * 2020-12-30 2022-09-06 李通 一种失活的非贵金属氯乙烯催化剂载体的回收应用方法
CN112808278B (zh) * 2021-01-07 2022-09-27 浙江工业大学 一种降解抗生素废水的混合金属纳米磁性臭氧催化剂及应用
CN113441134A (zh) * 2021-05-13 2021-09-28 重庆南科环工环保科技有限公司 一种有机磷农药生产废水用催化剂的制备方法及应用
CN113371941A (zh) * 2021-06-23 2021-09-10 中南大学 一种微生物炭载金属氨氮氧化臭氧催化剂在降解高浓度氨氮废水中的应用
CN113862307B (zh) * 2021-09-29 2024-03-12 南京工业大学 一种过渡金属掺杂铁锰复合氧化物及制备方法及应用
CN114289022A (zh) * 2021-12-14 2022-04-08 煤炭科学技术研究院有限公司 一种臭氧催化氧化催化剂及其制备方法和应用
CN114524503A (zh) * 2022-02-23 2022-05-24 中国计量大学 一种铁-锰/生物炭臭氧催化氧化处理印染废水的方法
CN116212939B (zh) * 2023-03-02 2023-09-19 安徽碳鑫科技有限公司 一种煤化工废水处理催化剂及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331170A (zh) * 2013-06-28 2013-10-02 华南理工大学 一种含金属氧化物微粒陶粒催化剂及其制备方法和应用
CN104289250A (zh) * 2014-09-09 2015-01-21 上海纳米技术及应用国家工程研究中心有限公司 负载型臭氧催化剂及其制备方法和应用
CN104874393B (zh) * 2015-04-30 2018-05-15 苏州清然环保科技有限公司 臭氧催化剂制备方法

Also Published As

Publication number Publication date
CN107051468A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN107051468B (zh) 负载多金属氧化物臭氧催化氧化催化剂的制备方法及应用
CN103752268B (zh) 吸附饮用水中重金属和砷、氟的滤芯制备方法和应用
CN106540686B (zh) 用于深度处理的活性炭负载二氧化锰-二氧化钛臭氧催化剂及制备方法
CN102515447B (zh) 煤直接液化废水的处理方法
CN108404950A (zh) 一种用于臭氧催化氧化的催化剂、其制备方法和使用其处理工业废水的方法
CN105233838B (zh) 一种以活化膨润土为载体的o3/h2o2催化剂的制备方法、催化剂及其应用
CN106964349A (zh) 臭氧催化氧化催化剂、其制备方法及应用
CN105268435B (zh) 多相催化湿式氧化催化剂
CN106345450A (zh) 一种负载型臭氧氧化催化剂及其制备方法与应用
CN106955728B (zh) 一种高效负载型臭氧氧化催化剂的制备方法与应用
CN111672335B (zh) 一种CuO@CuS/PVDF水处理复合膜的制备方法及其应用
CN104289250A (zh) 负载型臭氧催化剂及其制备方法和应用
CN105597740B (zh) 多相催化湿式氧化催化剂及其制备方法
CN112791732B (zh) 一种臭氧催化氧化催化剂及其制备方法与应用
CN109529868A (zh) 一种铁锰钴共掺杂负载型芬顿催化剂、制备方法及其应用
CN106512988B (zh) 一种分子筛负载型MnO2-ZnO臭氧催化剂及其制备方法
CN103357413A (zh) 二元氧化物复合型固体酸催化剂的制备及催化h2o2氧化处理难降解有机污染物
CN110540285A (zh) 一种非均相臭氧催化与微纳米气泡联用的污水处理方法
CN107459170A (zh) 一种去除精细化工生化处理尾水毒性的方法
CN104258873A (zh) 一种复合臭氧催化氧化催化剂的制备方法
CN106552644B (zh) 难生化废水用臭氧催化剂及其制备方法
CN102407128A (zh) Gd、Pr或Yb掺杂类芬顿催化剂的制备方法及其应用
CN108525673A (zh) 一种类芬顿固体催化剂及其制备方法和应用
CN107585852B (zh) 一种臭氧异相催化氧化废水中cod的方法及装置
CN104876363A (zh) 垃圾渗滤液达标排放的催化湿式氧化处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190823

Termination date: 20210224

CF01 Termination of patent right due to non-payment of annual fee