CN106866154A - 氮化硅陶瓷的制备方法 - Google Patents
氮化硅陶瓷的制备方法 Download PDFInfo
- Publication number
- CN106866154A CN106866154A CN201710114193.7A CN201710114193A CN106866154A CN 106866154 A CN106866154 A CN 106866154A CN 201710114193 A CN201710114193 A CN 201710114193A CN 106866154 A CN106866154 A CN 106866154A
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- temperature
- oxide
- nitride ceramics
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明提出了一种氮化硅陶瓷的制备方法,包括以下步骤:1)按重量份数计算,称取氮化硅70~80份、稀土氧化物5~10份与烧结助剂1~4份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110~120℃温度下连续干燥,完全干燥后在温度为‑20℃~0℃条件下,氢气气流中过筛,得到复合粉料;2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为12~15K/s,加热温度为1450~1700℃,保温时间为3~8min,获得致密的氮化硅陶瓷;其中,所述烧结助剂为氧化铝与氧化硼的混合物。该制备方法可以净化氮化硅晶粒,提高热导率。
Description
技术领域
本发明属于陶瓷制备技术领域,具体涉及一种氮化硅陶瓷的制备方法。
背景技术
氮化硅陶瓷具有优异的力学性能,作为结构材料得到了普遍关注。一般氮化硅的抗弯强度可超过1000MPa,然而其热导率只有20-30W/mK,与氧化铝陶瓷相近,远远低于高热导率氮化铝陶瓷(180-260W/mK)。文献“J.S.Haggerty,A.Lightfoot,Opportunities forEnhancing the Thermal Conductivities of SiCand Si3N4Ceramics through ImprovedProcessing,Ceram.Eng.Sci.Proc.,1995,16(4):p475-487.”的计算表明氮化硅的本征热导率为320W/mK。而文献“N.Hirosaki,S.Ogata,C.Kocer,H.Kitagawa,and Y.Nakamura,Molecular dynamics calculation of the idealthermal conductivity of single-crystal α-andβ-Si3N4,Phys.Rev.B,2002,65,134110”的计算表明氮化硅的β-Si3N4的a轴和c轴的理论热导率分别为170和450W/mK,这为研制高热导率氮化硅陶瓷提供了理论依据。
目前获取高热导率氮化硅陶瓷要靠高温长时间加热处理,例如文献“N.Hirosaki,Y.Okamoto,M.Ando,F.Munakata,Y.Akimune,ThermalConductivity of Gas-Pressure-Sintered Silicon Nitride,J.Am.Ceram.Soc.1996,79(11):p2878-82”报道,在100MPa的氮气中2000℃烧结4小时获得了热导率为120W/mK的氮化硅陶瓷;文献“Watari K;Hirao K;Brito ME;ToriyamaM;Kanzaki S,Hot isostatic pressing to increase thermalconductivity ofSi3N4 ceramics,J.Mat.Res.1999,14(4):p1538-1541”中报道,在原料中添加β-Si3N4种晶、并使之定向排列,经1800℃热压烧结后在2500℃热等静压处理2小时在与β-Si3N4种晶平行的方向获得了目前最高的热导率155W/mK。这些研究证明了高热导率氮化硅陶瓷的实际可行性,但是所采取的高温长时间加热处理造成陶瓷晶粒异常长大,力学性能急剧降低,无法实际应用。目前可以实际应用的高热导率氮化硅陶瓷的热导率低于60W/mK左右,强度低于700MPa。对于高热导率的产生机理,一般认为高温加热处理或添加晶种烧结后在氮化硅陶瓷中形成的粗大β-Si3N4柱状晶本身具有较高的热导率,是氮化硅陶瓷热导率升高的原因,这意味着热导率和力学性能不可兼得。这是造成高热导率氮化硅陶瓷的应用研究徘徊不前的主要原因。
发明内容
本发明提出一种氮化硅陶瓷的制备方法,该制备方法可以净化氮化硅晶粒,提高热导率。
本发明的技术方案是这样实现的:
一种氮化硅陶瓷的制备方法,包括以下步骤:
1)按重量份数计算,称取氮化硅70~80份、稀土氧化物5~10份与烧结助剂1~4份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110~120℃温度下连续干燥,完全干燥后在温度为-20℃~0℃条件下,氢气气流中过筛,得到复合粉料;
2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为12~15K/s,加热温度为1450~1700℃,保温时间为3~8min,获得致密的氮化硅陶瓷;
其中,所述烧结助剂为氧化铝与氧化硼的混合物。
作为优选,本发明的一些实施例,氧化铝与氧化硼之间的质量比为3~4:6~7。
作为优选,本发明的一些实施例,所述稀土氧化物为氧化钇、氧化镧与氧化铈中的一种或者多种。
添加稀土化合物的目的是为了在烧结或者加热处理过程中能够和氮化硅粉体中所含有的氧元素发生反应,以净化氮化硅晶粒,提高热导率。本发明的实施例中多采用价格低廉的氧化钇稀土化合物。其它化学性能相近的稀土化合物如氧化镧与氧化铈等也能达到同样的目的,同样可以作为本发明的氮化硅陶瓷烧结助剂使用。添加量过少难以充分发挥其作用,添加量过多会形成过多的晶界相,影响热导率。
放电等离子烧结工艺具有升温速度快、烧结时间短、烧结组织均匀的特点。对于氮化硅陶瓷,还可以通过适当控制工艺参数,控制β-Si3N4柱状晶的形态,优化组织,提高氮化硅陶瓷的断裂韧性。申请人的研究发现,通过控制烧结过程中的加热速度、烧结温度和保温时间,能够获得晶粒细小、组织致密的氮化硅陶瓷。加热速度为12~15K/s,加热温度为1450~1700℃,保温时间为3~8min可以得到良好的烧结体。
采用放电等离子烧结工艺虽然可以提供晶粒细小、组织致密的陶瓷,但并不能获得高热导率、高强度氮化硅陶瓷。经过深入的研究,申请人发现,对放电等离子烧结获得的氮化硅陶瓷进行高温加热处理,能够同时提高热导率和力学性能,获得所需的高热导率、高强度氮化硅陶瓷。加热温度过低,加热时间过短,起不到所需的效果,而过高的加热温度和过长的加热时间将导致制造成本急剧增加。
本发明的有益效果:
1、发明人研究发现氮化硅由于原料自身的原因,即使真空等离子烧结,也会出现少量的氧化现象。发明人将氮化硅原料经过-20℃~0℃氢气气流中过筛,再进行真空等离子烧结,可以完全杜绝氧化现象的发生,有利于烧结获得更多的α相的Si3N4。
2、烧结助剂一般有助于抑制晶粒长大,但是并不是所有的抑制晶粒长大的烧结助剂,都会有助于烧结。发明人通过大量实验发现氧化铝与氧化硼作为氮化硅陶瓷的烧结助剂,不仅有助于烧结,而且增强陶瓷在高温条件下的抗疲劳性能(即在1450℃~1500℃长时间使用也不会出现疲劳损坏)。
3、本发明获得的氮化硅陶瓷的热导率高达60~70W/mK,1200℃的抗弯强度为1024~1048MPa。
具体实施方式
实施例1
一种氮化硅陶瓷的制备方法,包括以下步骤:
1)按重量份数计算,称取氮化硅70份、氧化钇3份、氧化镧3份与烧结助剂3份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110℃温度下连续干燥,完全干燥后在温度为-10℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝与氧化硼的混合物,质量比为3:7。
2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为12K/s,加热温度为145℃,保温时间为6min,获得致密的氮化硅陶瓷。
所得氧化硅陶瓷的热导率为66W/mK,抗弯强度为1040MPa,维氏硬度为15.8GPa。
实施例2
一种氮化硅陶瓷的制备方法,包括以下步骤:
1)按重量份数计算,称取氮化硅76份、氧化钇4份、氧化铈3份与烧结助剂4份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中120℃温度下连续干燥,完全干燥后在温度为-20℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝与氧化硼的混合物,质量比为4:6。
2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为14K/s,加热温度为1540℃,保温时间为3min,获得致密的氮化硅陶瓷;
所得氧化硅陶瓷的热导率为70W/mK,抗弯强度为1048MPa,维氏硬度为16.3GPa。
实施例3
一种氮化硅陶瓷的制备方法,包括以下步骤:
1)按重量份数计算,称取氮化硅78份、氧化钇10份与烧结助剂1份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110℃温度下连续干燥,完全干燥后在温度为-5℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝与氧化硼的混合物,质量比为4:6。
2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为14K/s,加热温度为1600℃,保温时间为6min,获得致密的氮化硅陶瓷。
所得氧化硅陶瓷的热导率为62W/mK,抗弯强度为1032MPa,维氏硬度为15.5GPa。
实施例4
一种氮化硅陶瓷的制备方法,包括以下步骤:
1)按重量份数计算,称取氮化硅80份、氧化钇3份、氧化镧1份与氧化铈1份与烧结助剂1份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中120℃温度下连续干燥,完全干燥后在温度为0℃条件下,氢气气流中过筛,得到复合粉料;所述烧结助剂为氧化铝与氧化硼的混合物,质量比为4:6。
2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为15K/s,加热温度为1700℃,保温时间为3~8min,获得致密的氮化硅陶瓷。
所得氧化硅陶瓷的热导率为60W/mK,抗弯强度为1024MPa,维氏硬度为15.1GPa。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (3)
1.一种氮化硅陶瓷的制备方法,其特征在于,包括以下步骤:
1)按重量份数计算,称取氮化硅70~80份、稀土氧化物5~10份与烧结助剂1~4份混合均匀,加入至球磨机中,形成混合粉料,然后在电热真空干燥箱中110~120℃温度下连续干燥,完全干燥后在温度为-20℃~0℃条件下,氢气气流中过筛,得到复合粉料;
2)将步骤1)得到的复合粉料装入放电等离子烧结装置的石墨模具中,抽真空后进行放电等离子烧结,加热速度为12~15K/s,加热温度为1450~1700℃,保温时间为3~8min,获得致密的氮化硅陶瓷;
其中,所述烧结助剂为氧化铝与氧化硼的混合物。
2.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,氧化铝与氧化硼之间的质量比为3~4:6~7。
3.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,所述稀土氧化物为氧化钇、氧化镧与氧化铈中的一种或者多种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710114193.7A CN106866154B (zh) | 2017-02-28 | 2017-02-28 | 氮化硅陶瓷的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710114193.7A CN106866154B (zh) | 2017-02-28 | 2017-02-28 | 氮化硅陶瓷的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106866154A true CN106866154A (zh) | 2017-06-20 |
CN106866154B CN106866154B (zh) | 2020-06-23 |
Family
ID=59169437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710114193.7A Active CN106866154B (zh) | 2017-02-28 | 2017-02-28 | 氮化硅陶瓷的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106866154B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503370A (zh) * | 2018-04-17 | 2018-09-07 | 南京理工大学 | 一种单相氮化硅陶瓷及其sps制备工艺 |
CN108675798A (zh) * | 2018-08-03 | 2018-10-19 | 广东工业大学 | 一种氮化硅陶瓷及其制备方法 |
CN109320259A (zh) * | 2018-11-16 | 2019-02-12 | 广东工业大学 | 一种氮化硅基金刚石复合材料及其制备方法 |
CN109761620A (zh) * | 2019-03-05 | 2019-05-17 | 武汉理工大学 | 一种双加热模式放电等离子烧结制备致密氮化硅的方法 |
CN110183234A (zh) * | 2019-06-01 | 2019-08-30 | 安徽齐鑫新材料科技有限公司 | 一种稀土氧化物硅基陶瓷芯的制备方法 |
CN110204343A (zh) * | 2019-04-19 | 2019-09-06 | 武汉理工大学 | 一种高强度氮化硅陶瓷的低温制备方法 |
CN112960984A (zh) * | 2021-02-23 | 2021-06-15 | 北京中材人工晶体研究院有限公司 | 氮化硅陶瓷热辐射保护管及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1073503A (zh) * | 1992-12-29 | 1993-06-23 | 王魁久 | 稀土陶瓷轴承元件及其制造方法 |
CN1597614A (zh) * | 2004-05-17 | 2005-03-23 | 清华大学 | 高热导率、高强度氮化硅陶瓷制造方法 |
US20070017196A1 (en) * | 2005-07-25 | 2007-01-25 | Choi Jong S | Method for preparing ceramic filter and ceramic filter prepared by the same |
CN101962297A (zh) * | 2010-10-20 | 2011-02-02 | 北京中材人工晶体研究院有限公司 | 一种多晶硅还原炉用氮化硅陶瓷环的制备方法 |
CN102409280A (zh) * | 2011-12-01 | 2012-04-11 | 安徽禹恒材料技术有限公司 | 具有纳米晶粒结构的氧化铝陶瓷涂层及其制备方法 |
-
2017
- 2017-02-28 CN CN201710114193.7A patent/CN106866154B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1073503A (zh) * | 1992-12-29 | 1993-06-23 | 王魁久 | 稀土陶瓷轴承元件及其制造方法 |
CN1597614A (zh) * | 2004-05-17 | 2005-03-23 | 清华大学 | 高热导率、高强度氮化硅陶瓷制造方法 |
US20070017196A1 (en) * | 2005-07-25 | 2007-01-25 | Choi Jong S | Method for preparing ceramic filter and ceramic filter prepared by the same |
CN101962297A (zh) * | 2010-10-20 | 2011-02-02 | 北京中材人工晶体研究院有限公司 | 一种多晶硅还原炉用氮化硅陶瓷环的制备方法 |
CN102409280A (zh) * | 2011-12-01 | 2012-04-11 | 安徽禹恒材料技术有限公司 | 具有纳米晶粒结构的氧化铝陶瓷涂层及其制备方法 |
Non-Patent Citations (1)
Title |
---|
连法增: "《工程材料学》", 31 August 2005 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503370A (zh) * | 2018-04-17 | 2018-09-07 | 南京理工大学 | 一种单相氮化硅陶瓷及其sps制备工艺 |
CN108675798A (zh) * | 2018-08-03 | 2018-10-19 | 广东工业大学 | 一种氮化硅陶瓷及其制备方法 |
CN109320259A (zh) * | 2018-11-16 | 2019-02-12 | 广东工业大学 | 一种氮化硅基金刚石复合材料及其制备方法 |
CN109761620A (zh) * | 2019-03-05 | 2019-05-17 | 武汉理工大学 | 一种双加热模式放电等离子烧结制备致密氮化硅的方法 |
CN110204343A (zh) * | 2019-04-19 | 2019-09-06 | 武汉理工大学 | 一种高强度氮化硅陶瓷的低温制备方法 |
CN110183234A (zh) * | 2019-06-01 | 2019-08-30 | 安徽齐鑫新材料科技有限公司 | 一种稀土氧化物硅基陶瓷芯的制备方法 |
CN112960984A (zh) * | 2021-02-23 | 2021-06-15 | 北京中材人工晶体研究院有限公司 | 氮化硅陶瓷热辐射保护管及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106866154B (zh) | 2020-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106866154A (zh) | 氮化硅陶瓷的制备方法 | |
CN1246253C (zh) | 氮化硅陶瓷制造方法 | |
CN106747474A (zh) | 高热导率氮化硅陶瓷的制备方法 | |
Souto et al. | Effect of Y2O3 additive on conventional and microwave sintering of mullite | |
CN104150940A (zh) | 氮化硅与碳化硅复相多孔陶瓷及其制备方法 | |
CN104045350B (zh) | 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法 | |
CN112851365A (zh) | 一种氮化硅基复相导电陶瓷的制备方法 | |
CN108610055B (zh) | 一种低温液相烧结制备致密氮化硅陶瓷的方法 | |
CN104926309A (zh) | 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法 | |
CN109400176A (zh) | 一种高性能氮化硅陶瓷及其制备方法和应用 | |
CN104446496A (zh) | 一种AlON粉体的制备方法及由其制备的透明陶瓷 | |
CN104591743B (zh) | 氮化硅-碳化铪复相陶瓷的制备方法 | |
Lee et al. | The effect of silicon particle size on the characteristics of porous sintered reaction bonded silicon nitride | |
JPH09221367A (ja) | 導電性炭化珪素質複合材料及びその製造方法 | |
CN108341670A (zh) | 单相Ti3SiC2金属陶瓷的制备方法 | |
CN110937903B (zh) | 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法 | |
Cheng et al. | Boron nitride–aluminum nitride ceramic composites fabricated by transient plastic phase processing | |
JP2000515481A (ja) | セラミック複合構造体からなる成形体の製造法 | |
JPH04214077A (ja) | 窒化珪素焼結体およびその製造方法 | |
JPH1179848A (ja) | 窒化珪素質焼結体 | |
JP3570676B2 (ja) | セラミックス多孔体及びその製造方法 | |
JP3653533B2 (ja) | 窒化ケイ素質複合材料およびその製造方法 | |
JPH10194823A (ja) | MgO複合セラミックス及びその製造方法 | |
US7109139B2 (en) | Process for manufacture of dense neodymium stabilized β-Si3N4 -α-SiAlON composite | |
JPH1129361A (ja) | 窒化ケイ素焼結体及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |