CN110204343A - 一种高强度氮化硅陶瓷的低温制备方法 - Google Patents

一种高强度氮化硅陶瓷的低温制备方法 Download PDF

Info

Publication number
CN110204343A
CN110204343A CN201910318851.3A CN201910318851A CN110204343A CN 110204343 A CN110204343 A CN 110204343A CN 201910318851 A CN201910318851 A CN 201910318851A CN 110204343 A CN110204343 A CN 110204343A
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramics
low temperature
high strength
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910318851.3A
Other languages
English (en)
Inventor
李俊国
罗杰
张睿成
陈杨
沈强
李美娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910318851.3A priority Critical patent/CN110204343A/zh
Publication of CN110204343A publication Critical patent/CN110204343A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高强度氮化硅陶瓷的低温制备方法。其是以低熔点的Mg2Si作为烧结助剂,采用等离子活化烧结工艺,在氮气气氛中,1400~1500℃温度下烧结成氮化硅陶瓷。本方法所制备的氮化硅陶瓷致密度高于97%,抗弯强度644~1056MPa。本发明工艺简单,原料价格低廉,制备出的氮化硅陶瓷材料致密、抗弯强度高,在导热陶瓷基板以及冶金、化工领域中具有广阔的应用前景。

Description

一种高强度氮化硅陶瓷的低温制备方法
技术领域
本发明属于无机非金属材料制备领域,具体涉及一种高强度氮化硅陶瓷的低温制备方法。
背景技术
氮化硅陶瓷具有低密度、高比强、高比模量、高耐温、抗氧化、耐磨以及抗热震等优良的综合性能,被广泛应用于机械、化工、航空航天、电子器件等重要领域。
氮化硅作为一种强共价键化合物,烧结驱动力小,只有当烧结温度接近其分解温度(1850℃)时候,原子才有足够的迁移速率,但是当温度升高到1700℃,氮化硅开始出现明显的分解。因而常规的烧结方式,很难制备出致密,性能良好的氮化硅陶瓷,限制了氮化硅陶瓷的工业化生产。
目前,对于氮化硅陶瓷的制备,主要采用液相烧结,其方法是添加合适的烧结助剂,常见的烧结助剂为稀土氧化物以及氧化镁、氧化铝等氧化物。在烧结的过程中通过低共熔机制引入液相,氮化硅在液相中溶解和析出,加速原子的扩散,实现晶型转变以及致密化。其主要缺点在于低共熔温度一般较高,因此实际氮化硅烧结温度通常要高于1700℃,且引入的氧化物容易形成玻璃相,严重损害材料的力学性能。非氧化物烧结助剂一般采用氮化物,如MgSiN2、Mg3N2,采用热压的方式烧结,温度一般在1500~1700℃。但是MgSiN2不易合成、成本高;Mg3N2有毒、易燃易爆、不易存储。
发明内容
基于当前氮化硅陶瓷制备技术上的不足,本发明解决的技术问题在于提供了一种高强度氮化硅陶瓷的低温制备方法。其采用Mg2Si作为烧结助剂,1400~1500℃等离子活化烧结烧结制备高强度氮化硅陶瓷。
为解决上述技术问题,本发明采用的技术方案如下:提供一种高强度氮化硅陶瓷的低温制备方法,其包括以下步骤:
(1)将氮化硅粉体和Mg2Si粉体球磨分散混合均匀,得到混合粉体,其中:以质量分数计,称取氮化硅粉体92~98%,Mg2Si粉体2~8%;
(2)在氮气气氛保护下,将混合粉体在等离子活化烧结炉中进行烧结,降温得到高强度的氮化硅陶瓷。
按上述方案,上述步骤(1)的球磨分散为:采用无水乙醇作为分散介质。
按上述方案,所述的氮化硅粉体中α-Si3N4成分大于90wt.%,优选质量分数为90~98wt.%。
按上述方案,步骤(1)球磨混合后料浆干燥、过筛得到混合粉体。
按上述方案,所述步骤(2)的烧结温度为1400~1500℃。上述等离子活化烧结炉的烧结压力一般可选30-50MPa,保温时间可选5~15min。
按上述方案,上述步骤(2)的等离子活化烧结方法为:
(2-1)将混合粉体装入石墨模具;
(2-2)将温度升高到1400~1500℃,整个烧结过程中通入氮气进行保护。
(2-3)随炉冷却降温至室温后取出样品,即可获得高强度的氮化硅陶瓷。
上述制备的高强度氮化硅陶瓷相对密度大于97%,抗弯强度为644~1056MPa。
硅化镁(Mg2Si)是一种金属间化合物,环境条件下性质稳定,其熔点为1102℃,可以在较低的温度下熔化。其熔融液相富含Mg元素,具有较高的反应活性,通过与氮化硅粉体表面的SiO2反应,提高氮化硅粉体的烧结活性,同时富含Si的高温液相对于氮化硅具有良好的润湿溶解性能,可以促进氮化硅通过溶解沉淀机理实现相转变,使得氮化硅能够在相对较低的温度下进行液相烧结。
本发明具有如下的主要优点:
(1)本发明采用Mg2Si作为氮化硅陶瓷的烧结助剂,克服了常规氧化物烧结助剂氧杂质高且烧结温度过高的缺点,在不降低性能的前提下,有效地降低了烧结温度,制备过程清洁节能,无污染;
(2)成本低廉,原料获取简便,制备工艺也十分简单,不需要特殊处理工艺;
(3)所制备的氮化硅陶瓷致密度高,具有高硬度、高强度等良好的综合力学性能。在导热陶瓷基板以及冶金、化工领域中具有广阔的应用前景。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面对实施例附图做简单介绍。
图1是本发明的工艺流程图。
图2是实施例1,实施例2,实施例3以及实施例4的产物XRD图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明,但本发明不限于这些实施例,本发明也并非仅局限于下述实施例的内容,下述所使用的实验方法若无特殊的说明,均为本技术领域现有的常规方法,均为本技术领域现有的常规方法,所使用的配料或材料,如无特殊说明,均为商业途径可得到的配料或材料。下面给出实施案例:
表1:本发明实施例1-4氮化硅陶瓷的原料配比以及相关烧结参数。
实施例1:
将质量分数为2.0%Mg2Si粉、98.0%氮化硅粉体混合,以无水乙醇为分散介质,和氮化硅球一起装入尼龙球磨罐,球磨分散24h,取出料浆干燥后过筛后将粉体装入石墨模具,放入等离子活化烧结炉中加压至30MPa,通入氮气气氛进行保护,升温至1500℃,保温5min,随炉冷却至室温后取出样品,即可得到氮化硅陶瓷。产物的XRD见图2。经过测试,本实施例所得到的氮化硅陶瓷样品致密度为97.2%,抗弯强度为757MPa。
实施例2:
将质量分数为4.0%Mg2Si粉、96.0%氮化硅粉体混合,以无水乙醇为分散介质,和氮化硅球一起装入尼龙球磨罐,球磨分散24h,取出料浆干燥后过筛后将粉体装入石墨模具,放入等离子活化烧结炉中加压至30MPa,通入氮气气氛进行保护升温至1400℃,保温5min,随炉冷却至室温后取出样品,即可得到氮化硅陶瓷。产物的XRD见图2。经过测试,本实施例所得到的氮化硅陶瓷样品致密度为98.7%,抗弯强度为644MPa。
实施例3:
将质量分数为6.0%Mg2Si粉、94.0%氮化硅粉体混合,以无水乙醇为分散介质,和氮化硅球一起装入尼龙球磨罐,球磨分散24h,取出料浆干燥后过筛后将粉体装入石墨模具,放入等离子活化烧结炉中加压至40MPa,通入氮气气氛进行保护升温至1450℃,保温10min,随炉冷却至室温后取出样品,即可得到氮化硅陶瓷。产物的XRD见图2。经过测试,本实施例所得到的氮化硅陶瓷样品致密度为99.8%,抗弯强度为1056MPa。
实施例4:
将质量分数为8.0%Mg2Si粉、92.0%氮化硅粉体混合,以无水乙醇为分散介质,和氮化硅球一起装入尼农球磨罐,球磨分散24h,取出料浆干燥后过筛后将粉体装入石墨模具,放入等离子活化烧结炉中加压至50MPa,通入氮气气氛进行保护升温至1500℃,保温15min,随炉冷却至室温后取出样品,即可得到氮化硅陶瓷。产物的XRD见图2。经过测试,本实施例所得到的氮化硅陶瓷样品致密度为99.8%,抗弯强度为923MPa。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管对本发明已作出了详细的说明并引证了一些具体实施例,但是对本领域熟练技术人员来说,只要不离开本发明的精神和范围可作各种变化或修正是显然的。

Claims (7)

1.一种高强度氮化硅陶瓷的低温制备方法,其特征在于:包括以下步骤:
(1)将氮化硅粉体和Mg2Si粉体球磨分散混合均匀,得到混合粉体,其中:以质量分数计,称取氮化硅粉体92~98%,Mg2Si粉体2~8%;
(2)在氮气气氛保护下,将混合粉体在等离子活化烧结炉中进行烧结,降温得到高强度的氮化硅陶瓷。
2.根据权利要求1所述的高强度氮化硅陶瓷的低温制备方法,其特征在于:所述步骤(1)的球磨分散为:采用无水乙醇作为分散介质。
3.根据权利要求1所述的高强度氮化硅陶瓷的低温制备方法,其特征在于:所述的氮化硅粉体中α-Si3N4成分大于90wt.%。
4.根据权利要求1所述的高强度氮化硅陶瓷的低温制备方法,其特征在于:步骤(1)球磨混合后料浆干燥、过筛得到混合粉体。
5.根据权利要求1所述的高强度氮化硅陶瓷的低温制备方法,其特征在于:所述步骤(2)的烧结温度为1400~1500℃。
6.根据权利要求1所述的高强度氮化硅陶瓷的低温制备方法,其特征在于:所述步骤(2)的等离子活化烧结方法为:
(2-1)将混合粉体装入石墨模具;
(2-2)将温度升高到1400~1500℃,整个烧结过程中通入氮气进行保护。
(2-3)随炉冷却降温至室温后取出样品,即可获得高强度的氮化硅陶瓷。
7.根据权利要求1所述的高强度氮化硅陶瓷的低温制备方法,其特征在于:所制备的高强度氮化硅陶瓷相对密度大于97%,抗弯强度为644~1056MPa。
CN201910318851.3A 2019-04-19 2019-04-19 一种高强度氮化硅陶瓷的低温制备方法 Pending CN110204343A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910318851.3A CN110204343A (zh) 2019-04-19 2019-04-19 一种高强度氮化硅陶瓷的低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910318851.3A CN110204343A (zh) 2019-04-19 2019-04-19 一种高强度氮化硅陶瓷的低温制备方法

Publications (1)

Publication Number Publication Date
CN110204343A true CN110204343A (zh) 2019-09-06

Family

ID=67786058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910318851.3A Pending CN110204343A (zh) 2019-04-19 2019-04-19 一种高强度氮化硅陶瓷的低温制备方法

Country Status (1)

Country Link
CN (1) CN110204343A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285692A (zh) * 2020-02-21 2020-06-16 武汉理工大学 一种高导热Si3N4陶瓷及其制备方法
CN113213946A (zh) * 2021-05-27 2021-08-06 深圳市精而美精密陶瓷科技有限公司 低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及应用
CN114773067A (zh) * 2022-05-23 2022-07-22 江苏方大正塬生态环境科技有限公司 Gspl-sncs氮化硅流延浆料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093687A (en) * 1977-01-03 1978-06-06 General Electric Company Hot pressing of silicon nitride using magnesium silicide
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
CN1810720A (zh) * 2006-02-24 2006-08-02 中国科学院上海硅酸盐研究所 一种高热导氮化硅陶瓷的制备方法
CN106747474A (zh) * 2017-02-28 2017-05-31 安徽拓吉泰新型陶瓷科技有限公司 高热导率氮化硅陶瓷的制备方法
CN106866154A (zh) * 2017-02-28 2017-06-20 安徽拓吉泰新型陶瓷科技有限公司 氮化硅陶瓷的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093687A (en) * 1977-01-03 1978-06-06 General Electric Company Hot pressing of silicon nitride using magnesium silicide
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
CN1810720A (zh) * 2006-02-24 2006-08-02 中国科学院上海硅酸盐研究所 一种高热导氮化硅陶瓷的制备方法
CN106747474A (zh) * 2017-02-28 2017-05-31 安徽拓吉泰新型陶瓷科技有限公司 高热导率氮化硅陶瓷的制备方法
CN106866154A (zh) * 2017-02-28 2017-06-20 安徽拓吉泰新型陶瓷科技有限公司 氮化硅陶瓷的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
曲选辉: "《粉末冶金原理与工艺》", 31 May 2013, 冶金工业出版社 *
朱敏等: "《工程材料》", 28 February 2018, 冶金工业出版社 *
李云凯等: "《陶瓷及其复合材料》", 31 August 2017, 北京理工大学出版社 *
陈照峰等: "《无机非金属材料学 第2版》", 29 February 2016, 西北工业大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285692A (zh) * 2020-02-21 2020-06-16 武汉理工大学 一种高导热Si3N4陶瓷及其制备方法
CN113213946A (zh) * 2021-05-27 2021-08-06 深圳市精而美精密陶瓷科技有限公司 低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及应用
CN114773067A (zh) * 2022-05-23 2022-07-22 江苏方大正塬生态环境科技有限公司 Gspl-sncs氮化硅流延浆料

Similar Documents

Publication Publication Date Title
CN110204343A (zh) 一种高强度氮化硅陶瓷的低温制备方法
CN110483060B (zh) 一种高热导率氮化硅陶瓷及其制备方法
CN100432016C (zh) 一种制备氮化铝/氮化硼复相陶瓷的方法
CN106966732B (zh) 一种细粉碳化硅陶瓷及其制备方法
CN109851369A (zh) 一种制备高热导率氮化硅陶瓷的方法
Kanka et al. Sintering mechanisms and microstructural development of coprecipitated mullite
Maity et al. High‐temperature strength of liquid‐phase‐sintered silicon carbide ceramics: a review
CN106278283A (zh) 一种分步烧结制备氮化硼陶瓷材料的方法
Wang et al. Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive
Luo et al. Pressureless sintering of high performance silicon nitride ceramics at 1620 C
US5773733A (en) Alumina-aluminum nitride-nickel composites
CN116239387A (zh) 利用中/高熵多元稀土烧结助剂的高强度氮化硅制备方法
CN111302809A (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN111592354B (zh) 一种高性能环保复合建筑陶瓷材料及其制备方法
CN106830690A (zh) 一种自增强增韧的氮化硅/氮化铝/镧钡铝硅酸盐微晶玻璃三元复合材料及其制备方法
Moya et al. Formation of nanocrystalline yttrium disilicate powder by an oxalate gel method
CN109970454A (zh) 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷
JPS62256768A (ja) 窒化けい素焼結体
CN112239363B (zh) 氮化硅镁粉体及其制备方法、陶瓷材料及导热基板
CN110183229A (zh) 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法
CN112279628B (zh) 一种氧化铝复合陶瓷及其制备方法和应用
He et al. Investigation on low‐temperature sintered AlN nanoceramics with high thermal conductivity
Popper Sintering of silicon nitride, a review
CN108996902B (zh) 一种低温共烧陶瓷材料及其制备方法
Wang et al. Effect of Y2O3 additive on nitridation of diamond wire silicon cutting waste

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906