CN112960984A - 氮化硅陶瓷热辐射保护管及其制造方法 - Google Patents

氮化硅陶瓷热辐射保护管及其制造方法 Download PDF

Info

Publication number
CN112960984A
CN112960984A CN202110202662.7A CN202110202662A CN112960984A CN 112960984 A CN112960984 A CN 112960984A CN 202110202662 A CN202110202662 A CN 202110202662A CN 112960984 A CN112960984 A CN 112960984A
Authority
CN
China
Prior art keywords
silicon nitride
protection tube
radiation protection
heat radiation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110202662.7A
Other languages
English (en)
Other versions
CN112960984B (zh
Inventor
陈波
韦中华
李镔
王子诚
王培�
王腾飞
张伟儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sinoma Synthetic Crystals Co Ltd
Sinoma Advanced Nitride Ceramics Co Ltd
Original Assignee
Beijing Sinoma Synthetic Crystals Co Ltd
Sinoma Advanced Nitride Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sinoma Synthetic Crystals Co Ltd, Sinoma Advanced Nitride Ceramics Co Ltd filed Critical Beijing Sinoma Synthetic Crystals Co Ltd
Priority to CN202110202662.7A priority Critical patent/CN112960984B/zh
Publication of CN112960984A publication Critical patent/CN112960984A/zh
Application granted granted Critical
Publication of CN112960984B publication Critical patent/CN112960984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了氮化硅陶瓷热辐射保护管及其制造方法,属于陶瓷制备技术领域,所述方法采用的原料配比如下:重量份的原料制备而成;氮化硅的含量为85‑90%,烧结助剂的含量为15%‑10%。所述制备工艺包括步骤如下:氮化硅颗粒与烧结助剂的均匀混合;混合后的粉料过12目筛和50目筛;12目筛和50目筛的粉料颗粒级配比例为7:3;颗粒级配混合后粉料装入模具中放入冷等静压机中制型,形成热辐射保护管坯;将热辐射保护管坯烧结,得到热辐射保护管即为成品。本发明氮化硅陶瓷热辐射保护管具有很强的耐腐蚀性,在铝溶液中不会渗透,同时其具备陶瓷类产品的最高强度及优异的耐热冲击性能,大大延长了使用寿命。

Description

氮化硅陶瓷热辐射保护管及其制造方法
技术领域
本发明涉及陶瓷制备技术领域,具体提供一种氮化硅陶瓷热辐射保护管及其制造方法,是铝铸行业用加热炉的核心部件之一,尤其适用于大尺寸铸铝行业使用。
背景技术
近年来,随着我国国民经济的高速发展,特别是汽车工业的突飞猛进,推动了铝铸件生产的持续增长,近20年来,世界汽车工业中铝铸件的应用不断增加,据统计,全世界铝铸件的总产量每年大约按3%以上的速度增长,而在铝铸件的总产量中,大约有60%-70%的铝铸件应用于汽车制造,使得世界铝铸件的生产和应用与汽车制造业的发展产生了密切的联系。近年来,发达国家90%以上的铝铸件用于汽车零件制造业。而我国铝合金压铸件产量约仅占铝铸件总产量的43.3%,可见铝铸件在我国的市场前景还是颇具潜力的。
目前国内市场的铸铝行业用加热器保护管主要采用的是金属材料和氮化硅反应烧结碳化硅材料。金属材质的加热器保护管耐腐蚀性差,在铝液的熔炼和熔化过程中容易在短时间内被完全溶解腐蚀,因而限制了其使用。氮化硅反应烧结碳化硅材料制备的加热器保护管,虽然其具有传热性能好、耐腐蚀性好、生产工艺相对简单、成本低等优势,但是在实际使用中发现,氮化硅反应烧结碳化硅陶瓷加热器保护管气孔率高、强度差、积渣严重,并且在铝液急冷急热作用下易于碎裂,这些都导致了其使用寿命较短,对生产效率及生产质量影响较大。
发明内容
本发明的技术任务是针对上述存在的问题,提供一种氮化硅陶瓷热辐射保护管及其制造方法。
为实现上述目的,本发明提供了如下技术方案:
氮化硅陶瓷热辐射保护管制造方法,所述方法采用如下重量份的原料制备而成;氮化硅的含量为85-90%,烧结助剂的含量为15%-10%。
所述氮化硅陶瓷热辐射保护管的制备工艺包括步骤如下:
(1)氮化硅颗粒与烧结助剂的均匀混合;
(2)混合后的粉料过12目筛和50目筛;
(3)12目筛和50目筛的粉料颗粒级配比例为6:4~8:2;
(4)颗粒级配混合后粉料装入模具中放入冷等静压机中制型,压力设定为200Mpa-300Mpa之间,形成热辐射保护管坯;
(5)将热辐射保护管坯烧结,得到热辐射保护管即为成品。
通过将12目筛和50目筛的粉料进行配比,并通过高压定型,使素坯成型更加致密,在烧结过程中不易变形,由于本发明研制的热辐射保护管高度可达一米以上,对于素坯的致密度要求特别高。
所述氮化硅为相含量大于90%的氮化硅粉体。
所述烧结助剂为氧化钇,氧化镁,氧化铝,碳化钨中的一种或多种。
所述烧结助剂为氧化钇,氧化镁,氧化铝,碳化钨中的多种时,各组分的重量比为:3%-7%氧化钇,2%-4%氧化镁,3%-5%氧化铝,0-1%碳化钨,且在进行步骤(1)与氮化硅颗粒均匀混合前,先将烧结助剂均匀混合。
通过将氧化钇,氧化镁,氧化铝,碳化钨进行合理配比,由于二元、三元或四元烧结助剂更有利于氮化硅陶瓷综合性能的提高,不仅氮化硅陶瓷的力学性能得到大幅度的提高,材料的热导率也得到很大的提高,其中热导率是热辐射保护管重要的指标之一。
优选的,所述步骤(3)中12目筛和50目筛的粉料颗粒级配比例为7:3。通过研究,7:3目数的配比得到的堆积密度最高,可达0.96g/cm3,经冷等静压成型后,素坯密度可达1.76g/cm3
所述步骤(4)中的模具为具有定位装置的钢模和模套,粉料装入冷等静压后不会偏芯。
所述步骤(5)中的烧结在气氛压力烧结炉内进行,最高烧结温度为1700℃-1800℃,优选1720℃-1760℃,总烧结时间15-20小时,包括保温时间4-8小时,氮气气氛最大压力为4-8Mpa。
所述步骤(4)中冷等静压机中制型压力设定为200Mpa-300Mpa。
氮化硅陶瓷热辐射保护管,所述氮化硅陶瓷热辐射保护管采用上述任一方法制备。
所述氮化硅陶瓷热辐射保护管热导率大于40W/mK;抗弯强度大于700Mpa;断裂韧性大于6MPa.m。
铸铝压铸过程中温度控制是获得优良铸件的重要因素,为了将熔液控制在最佳浇注温度,采用发热体来恒定温度。
与现有技术相比,本发明氮化硅陶瓷热辐射保护管及其制造方法具有以下突出的有益效果:
本发明提供的热辐射保护管具有良好的致密性、强度高;优异的导热性、抗热冲击性;与铝熔液等有色金属熔液不浸润、耐腐蚀;耐高温、热膨胀系数低的特点。
所述氮化硅辐射管在保护发热体不受侵蚀的同时还确保了熔液单位面积受热均匀和受热速度快。
在铝铅锌等有色金属行业通常采用浸入式加热方式,采用浸渍式加热方式,热源位于铝液的中部,因此传热性能优异,相对于以往上部辐射式加热方式,可以极大减少电能的消耗。由于热源位于铝液中部,热量自下而上传递,因此铝液自上而下形成对流,充分保证铝液受热均匀,炉上部的铝液不会因过热而氧化,降低了铝的损耗,使得铝液品质得于提高,同时减少了炉壁结瘤的损害。
本发明氮化硅陶瓷热辐射保护管具有很强的耐腐蚀性,在铝溶液中不会渗透,同时其具备陶瓷类产品的最高强度及优异的耐热冲击性能,大大延长了使用寿命。
附图说明
图1为本发明定位装置沿内外圆环轴线的纵向剖面示意图;
图2为本发明定位装置的俯视图。
具体实施方式
下面将结合实施例,对本发明作进一步详细说明。
实施例1
氮化硅陶瓷热辐射保护管制造方法,所述方法的实现步骤如下:
(1)将7%含量的氧化钇,4%氧化镁,1%含量的碳化钨放入球磨机球磨4h;
(2)将88%的氮化硅粉与步骤(1)所得混合均匀的烧结助剂放入循环搅拌磨中进行充分融合,融合时间5小时;
(3)将步骤(2)所得料浆烘干后进行造粒处理,通过振动分筛机过12目筛和50目筛,控制12目筛:50目筛用料颗粒级配比例为7:3,颗粒级配混合后粉料待用;
(4)将步骤(3)中的粉料装入特制的磨具中放入冷等静压机中制型,压力设定为200Mpa,获得热辐射保护管坯;
(5)将步骤(4)所得热辐射保护管坯放入气氛压力烧结炉内进行烧结,最高烧结温度为1720℃,总烧结时间15小时,包括保温时间4小时,氮气气氛最大压力为8Mpa;
(6)步骤(5)所得的热辐射保护管即为成品,无需再加工,热辐射保护管长1.5米;
所得产品力学性能:热导率68W/mK;抗弯强度大于760Mpa;断裂韧性大于6.4MPa.m1/2。
实施例2
(1)将7%含量的氧化钇,3%含量氧化铝,4%含量氧化镁,1%含量的碳化钨放入球磨机球磨4h;
(2)将85%的氮化硅粉与步骤(1)中所得烧结助剂放入循环搅拌磨中进行充分融合,融合时间6小时;
(3)将步骤(2)所得料浆烘干后进行造粒处理,通过振动分筛机过12目筛和50目筛,严格控制12目筛:50目筛用料颗粒级配比例为7:3,颗粒级配混合后粉料待用;
(4)将步骤(3)中的粉料装入特制的磨具中放入冷等静压机中制型,压力设定为250Mpa,获得热辐射保护管坯;
(5)将步骤(4)所得热辐射保护管坯放入气氛压力烧结炉内进行烧结,最高烧结温度为1800℃,保温6小时,总烧结时间18小时,氮气气氛最大压力为4Mpa;
(6)步骤(5)所得的热辐射保护管即为成品,无需加工,热辐射保护管长1.5米;
所得产品力学性能:热导率55W/mK;抗弯强度大于780Mpa;断裂韧性大于6.6MPa.m1/2。
实施例3
(1)将3%含量的氧化钇,4%含量氧化铝,3%含量氧化镁,放入球磨机球磨4h;
(2)将90%的氮化硅粉与步骤(1)所得烧结助剂放入循环搅拌磨中进行充分融合,融合时间6小时;
(3)将步骤(2)所得料浆烘干后进行造粒处理,通过振动分筛机过12目筛和50目筛,控制12目筛:50目筛用料颗粒级配比例为7:3,颗粒级配混合后粉料待用;
(4)将步骤(3)中的粉料装入特制的磨具中放入冷等静压机中制型,压力设定为300Mpa,获得热辐射保护管坯;
(5)将步骤(4)所得热辐射保护管坯放入气氛压力烧结炉内进行烧结,最高烧结温度为1760℃,保温8小时,总烧结时间20小时,氮气气氛最大压力为5Mpa;
(6)步骤(5)所得的热辐射保护管即为成品,无需加工,热辐射保护管长1.5米;
所得产品力学性能:热导率50W/mK;抗弯强度大于800Mpa;断裂韧性大于6.9MPa.m1/2
上述实施例中,所述步骤(4)中的模具为具有定位装置的钢模和模套,粉料装入冷等静压后不会偏芯。将钢模和模套安装在一起,使用定位装置将钢模和模套的位置固定,将步骤(3)所得的粉料装入钢模和模套之间,然后将模具放入冷等静压机中制型,由于钢模和模套的位置通过定位装置固定,确保了冷等静压后热辐射保护管坯不会偏芯。
所述步骤(4)中的特制磨具的机构包括:定位装置,钢模和模套,所述钢模和模套的形状均为圆筒形结构,如图1、2所示,所述定位装置的结构包括底板1、内圆环2和外圆环3,所述内圆环2和外圆环3为同心圆筒形状,一端固定于底板1,另一端开放,其中内圆环2的内径与钢模的外径相同,外圆环3的外径与模套的内径相同,使用时,将定位装置安放,将钢模设置于内圆环3中,将模套放置于钢模外,并套接于外圆环3,将钢模和模套固定,将步骤(3)所得的粉料装入钢模和模套之间,然后将另一定位装置扣接到钢模和模套的另一端,固定后,将模具放入冷等静压机中制型。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述方法采用如下质量比的原料制备而成;氮化硅85-90%,烧结助剂15%-10%。
2.根据权利要求1所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述氮化硅陶瓷热辐射保护管的制备工艺包括步骤如下:
(1)氮化硅颗粒与烧结助剂的均匀混合;
(2)混合后的粉料过12目筛和50目筛;
(3)12目筛和50目筛的粉料颗粒级配比例为6:4~8:2;
(4)颗粒级配混合后粉料装入模具中放入冷等静压机中制型,形成热辐射保护管坯;
(5)将热辐射保护管坯烧结,得到热辐射保护管即为成品。
3.根据权利要求2所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述氮化硅为相含量大于90%的氮化硅粉体。
4.根据权利要求3所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述烧结助剂为氧化钇,氧化镁,氧化铝,碳化钨中的一种或多种。
5.根据权利要求4所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述烧结助剂为氧化钇,氧化镁,氧化铝,碳化钨中的多种时,各组分的重量比为:3%-7%氧化钇,2%-4%氧化镁,3%-5%氧化铝,0-1%碳化钨,且在进行步骤(1)与氮化硅颗粒均匀混合前,先将烧结助剂均匀混合。
6.根据权利要求2所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述步骤(3)中12目筛和50目筛的粉料颗粒级配比例为7:3。
7.根据权利要求2所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述步骤(4)中的模具为具有定位装置的钢模和模套。
8.根据权利要求2所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述步骤(5)中的烧结在气氛压力烧结炉内进行,最高烧结温度为1700℃-1800℃,总烧结时间15-20小时,包括保温时间4-8小时,氮气气氛最大压力为4-8Mpa。
9.根据权利要求2所述的氮化硅陶瓷热辐射保护管制造方法,其特征在于,所述步骤(4)中冷等静压机中制型压力设定为200Mpa-300Mpa。
10.基于上述任一权利要求的氮化硅陶瓷热辐射保护管,其特征在于,所述氮化硅陶瓷热辐射保护管采用上述任一权利要求的方法制备,所述氮化硅陶瓷热辐射保护管热导率大于40W/mK;抗弯强度大于700Mpa;断裂韧性大于6MPa.m1/2
CN202110202662.7A 2021-02-23 2021-02-23 氮化硅陶瓷热辐射保护管及其制造方法 Active CN112960984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110202662.7A CN112960984B (zh) 2021-02-23 2021-02-23 氮化硅陶瓷热辐射保护管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110202662.7A CN112960984B (zh) 2021-02-23 2021-02-23 氮化硅陶瓷热辐射保护管及其制造方法

Publications (2)

Publication Number Publication Date
CN112960984A true CN112960984A (zh) 2021-06-15
CN112960984B CN112960984B (zh) 2022-11-18

Family

ID=76285743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110202662.7A Active CN112960984B (zh) 2021-02-23 2021-02-23 氮化硅陶瓷热辐射保护管及其制造方法

Country Status (1)

Country Link
CN (1) CN112960984B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804892A (zh) * 2022-05-06 2022-07-29 宜兴市华井科技有限公司 一种用于铝溶液加热器的氮化硅保护管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906348A (zh) * 2016-04-14 2016-08-31 北京中材人工晶体研究院有限公司 一种致密氮化硅陶瓷升液管及其制备方法与应用
CN105924179A (zh) * 2016-04-14 2016-09-07 北京中材人工晶体研究院有限公司 一种氮化硅陶瓷加热器保护管及其制备方法与应用
CN106518089A (zh) * 2016-11-25 2017-03-22 中国工程物理研究院材料研究所 一种高性能大尺寸氮化硅陶瓷材料的制备方法
CN106866154A (zh) * 2017-02-28 2017-06-20 安徽拓吉泰新型陶瓷科技有限公司 氮化硅陶瓷的制备方法
CN109305816A (zh) * 2017-07-27 2019-02-05 中国科学院上海硅酸盐研究所 一种常压烧结制备高热导率氮化硅陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906348A (zh) * 2016-04-14 2016-08-31 北京中材人工晶体研究院有限公司 一种致密氮化硅陶瓷升液管及其制备方法与应用
CN105924179A (zh) * 2016-04-14 2016-09-07 北京中材人工晶体研究院有限公司 一种氮化硅陶瓷加热器保护管及其制备方法与应用
CN106518089A (zh) * 2016-11-25 2017-03-22 中国工程物理研究院材料研究所 一种高性能大尺寸氮化硅陶瓷材料的制备方法
CN106866154A (zh) * 2017-02-28 2017-06-20 安徽拓吉泰新型陶瓷科技有限公司 氮化硅陶瓷的制备方法
CN109305816A (zh) * 2017-07-27 2019-02-05 中国科学院上海硅酸盐研究所 一种常压烧结制备高热导率氮化硅陶瓷的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804892A (zh) * 2022-05-06 2022-07-29 宜兴市华井科技有限公司 一种用于铝溶液加热器的氮化硅保护管及其制备方法

Also Published As

Publication number Publication date
CN112960984B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN109371271B (zh) 铜铁合金的非真空熔炼及连铸工艺
CN106498205A (zh) 一种大尺寸高致密度高均匀性的CuCr合金的制造方法
CN109014230B (zh) 一种钼金属格栅的制备方法
CN100465309C (zh) 一种利用放电等离子烧结制备高铌钛铝合金材料的方法
CN112658221B (zh) 一种高熵合金的连续铸造方法
CN112570710A (zh) 一种钨合金粉末铸件加工方法
CN108754272B (zh) 一种大长径比细晶钨铜棒材的制备方法
CN112960984B (zh) 氮化硅陶瓷热辐射保护管及其制造方法
CN101397613B (zh) 一种钼-硅-硼合金的制备方法
CN102554249B (zh) 一种碳化钨基热喷涂合金粉末制备方法
CN112626366A (zh) 一种降低搅拌制备颗粒增强铝基复合材料孔隙率的方法
CN104046825A (zh) 一种原位颗粒增强铝基复合材料制备方法
CN107641725A (zh) 一种铁辉石基金属陶瓷及其制备方法
CN103934453B (zh) 利用改性金属粉末锻造汽油机连杆毛坯的方法
CN108274008A (zh) 一种防飞溅抗裂铝合金焊丝的制备方法
CN108298991A (zh) 常压烧结六方氮化硼陶瓷曲面玻璃热弯模具的制造方法
CN104109790B (zh) 高强镁合金材料及其制备方法
CN108044122B (zh) 一种Nb-Si基合金空心涡轮叶片的制备方法
CN113604720B (zh) 一种大尺寸抗变形钼合金棒材及其制备方法
CN108977690B (zh) 蓝宝石晶须增韧TiAlNbMo合金复合材料及其制备方法
CN105886815A (zh) 利用真空烧结制备硅镁合金的方法
CN109166720B (zh) 一种连续式生产热挤压辐射环的方法
CN112795794A (zh) 一种采用湿法混合金属粉末制备高纯度金属铬块的方法
CN114804892B (zh) 一种用于铝溶液加热器的氮化硅保护管及其制备方法
CN106186708A (zh) 微晶熔融石英低压铸造升液管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant