CN106823805A - 一种后处理制备抗污染正渗透聚酰胺复合膜的方法 - Google Patents

一种后处理制备抗污染正渗透聚酰胺复合膜的方法 Download PDF

Info

Publication number
CN106823805A
CN106823805A CN201710134513.5A CN201710134513A CN106823805A CN 106823805 A CN106823805 A CN 106823805A CN 201710134513 A CN201710134513 A CN 201710134513A CN 106823805 A CN106823805 A CN 106823805A
Authority
CN
China
Prior art keywords
positive
composite membrane
polyamide composite
antipollution
impregnating polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710134513.5A
Other languages
English (en)
Inventor
马军
刘彩虹
宋丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710134513.5A priority Critical patent/CN106823805A/zh
Publication of CN106823805A publication Critical patent/CN106823805A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers

Abstract

一种后处理制备抗污染正渗透聚酰胺复合膜的方法,它涉及一种后处理改性提高正渗透聚酰胺复合膜抗污染的方法。本发明的目的是要解决现有正渗透聚酰胺膜在水处理过程中易被有机污染,导致降低正渗透工艺处理效能的问题。一种后处理制备抗污染正渗透聚酰胺复合膜的方法:一、在二甲基甲酰胺中完成盐酸多巴胺与2‑溴异丁酰溴和三乙胺的耦合,得到耦合溶液;二、在正渗透聚酰胺复合膜表面的活性层表面接枝引发剂;三、接枝两性离子聚合物,得到抗污染正渗透聚酰胺复合膜。优点:在大幅度提高抗污染性能的同时,可保持其过水性能和对盐的选择性。本发明主要用于正渗透聚酰胺复合膜的改性处理。

Description

一种后处理制备抗污染正渗透聚酰胺复合膜的方法
技术领域
本发明涉及一种后处理改性提高正渗透聚酰胺复合膜抗污染的方法。
背景技术
水资源短缺问题已经成为全球性的挑战。膜技术具有高效率、低能耗、操作管理方便等诸多优势,在应对该挑战的过程中发挥着重要作用。作为一种新兴的渗透压驱动膜处理技术,正渗透(Forward Osmosis,FO)技术以其在处理一些特殊原水时独特优势,被认为是常规膜工艺的有效补充。正渗透技术利用汲取液和原料液之间的渗透压差作为驱动力,水通过选择性膜而将污染物等截留。相对于传统压力驱动膜工艺,正渗透技术具有污染率低,回收率高等优势,在处理具有高盐度,高污染的原料液如海水淡化,污废水回用等方面具有广泛的应用前景。
膜材料是FO技术的核心,而高性能聚酰胺复合薄膜(TFC)的出现,对正渗透的发展具有里程碑式的意义。正渗透聚酰胺复合膜由支撑层和活性层组成,所述的活性层为聚酰胺层,但是聚酰胺由于其表面本身的物化性质,如较为疏水,粗糙度较高,表面富含羧基官能团等,很容易被污染。而膜污染会导致出水量降低,水质变差,能耗增高等一系列缺点,因此,提高正渗透聚酰胺复合膜的抗污染效能,对FO技术的发展进步至关重要。
在中国已公开专利“一种后处理改性制备高选择性正渗透聚酰胺复合膜的方法”(申请号:201410815728.X)中给出一种高选择性正渗透聚酰胺复合膜的改性方法,首先制备正渗透聚酰胺复合膜,同时通过浸泡胺类溶液的后处理方式改变聚酰胺表面的电荷密度(降低羟基密度,增加胺类有机官能团),从而提高了正渗透膜对水中离子的选择性,降低正渗透的溶质返混现象。改性后的高选择性正渗透聚酰胺复合膜虽然提高了正渗透膜对水中离子的选择性,降低正渗透的溶质返混现象,但是改性后的高选择性正渗透聚酰胺复合膜在水处理过程中仍然存在易被有机污染,从而导致膜出水通量降低,出水水质变差,缩短膜生命周期,进而导致降低正渗透工艺处理效能,增加操作成本的问题。
发明内容
本发明的目的是要解决现有正渗透聚酰胺膜在水处理过程中易被有机污染,导致降低正渗透工艺处理效能的问题,而提供一种后处理制备抗污染正渗透聚酰胺复合膜的方法。
一种后处理制备抗污染正渗透聚酰胺复合膜的方法,具体是按以下步骤完成的:
一、耦合:将盐酸多巴胺溶解于二甲基甲酰胺中,然后在氮气保护下加入2-溴异丁酰溴和三乙胺,并在氮气保护下搅拌反应2h~6h,得到耦合溶液;
二、接枝引发剂:向耦合溶液中加入三羟甲基氨基甲烷缓冲液,得到混合溶液,然后将正渗透聚酰胺复合膜表面的活性层浸没在混合溶液中,且保证正渗透聚酰胺复合膜表面的支撑层不与混合溶液接触,浸没时间为10min~90min,得到接枝引发剂正渗透聚酰胺复合膜;
三、接枝两性离子聚合物:将两性离子单体溶于异丙醇水溶液中,然后在氮气保护下加入氯化铜催化复合物,得到含两性离子单体溶液,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入抗坏血酸溶液,并在氮气保护下聚合反应0.5h~3h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜。
本发明的反应过程:在步骤一中,在氮气保护下,首先将原子转移自由基聚合反应将要使用的引发剂耦合接枝到多巴胺上;在步骤二中,在空气和缓冲溶液的环境下使多巴胺接触正渗透聚酰胺复合膜表面,通过多巴胺自生形成聚合多巴胺的聚合反应,使引发剂接枝在正渗透聚酰胺复合膜表面;在步骤三中,主要依靠原子转移自由基聚合反应,使两性离子单体从引发剂的位置在正渗透聚酰胺复合膜上生长,通过改变反应时间,可调控接枝的两性离子聚合物改性层。
本发明的机理:由于正渗透聚酰胺复合膜的聚酰胺活性层由界面聚合生成,其中没有反应的酰氯基发生水解反应形成的羧基为正渗透聚酰胺复合膜表面主导性官能团,导致正渗透聚酰胺复合膜表面较为疏水,粗糙度高,在水处理过程中易于被污染,同时,羧基在有钙离子存在的情况下通过架桥作用会加剧膜污染,而本发明通过在正渗透聚酰胺复合膜表面接枝可调控的超亲水的两性离子聚合物改性层,可有效提高正渗透聚酰胺复合膜表面亲水性,降低粗糙度,从而降低膜污染,同时,两性离子聚合物改性层可大大降低正渗透聚酰胺复合膜表面可用的羧基官能团浓度,降低正渗透聚酰胺复合膜表面钙离子架桥导致的膜污染。
本发明的优点:一、本发明采用原子转移自由基聚合反应ATRP,其发展较为成熟,所用化学试剂常见,同时,选用的商品化的两性离子,价格相对便宜,同时,采用的是ARGET-ATRP(电子转移活化再生催化剂原子转移自由基聚合),其特点是对氧气有一定的容忍度,需要的催化剂量少,便于以后大规模工业化开发。二、本发明得到的抗污染正渗透聚酰胺复合膜在大幅度提高抗污染性能的同时,可保持其过水性能和对盐的选择性。三、由于ATRP高度的可控性,可通过调节聚合物的生长时间等反应参数,对膜的传质和抗污染表面性能进行进一步调控和优化。四、由于本发明首先借助多巴胺将引发剂接枝在TFC膜上,而多巴胺能在溶解氧的作用下发生氧化-交联反应,形成强力附着于固体材料表面的聚合多巴胺,即多巴胺除了TFC膜的聚酰胺,也可附着在各种不同的表面,因此本发明中的方法不仅适用于TFC膜,也同时适用于其他表面的抗污染改性。
本发明属于一种后处理改性方法,主要用于正渗透聚酰胺复合膜的改性处理。
附图说明
图1是实施例1操作流程示意图;
图2是实施例1得到的抗污染正渗透聚酰胺复合膜与正渗透聚酰胺复合膜污染过程中纯水通量衰减示意图。
图3是水渗透系数-结盐渗透系数-构特性参数柱形图,图中A表示正渗透聚酰胺复合膜的水渗透系数柱形图,图中B表示正渗透聚酰胺复合膜的盐渗透系数柱形图,图中S表示正渗透聚酰胺复合膜的结构特性参数柱形图,图中a表示实施例1得到的抗污染正渗透聚酰胺复合膜的水渗透系数柱形图,图中b表示实施例1得到的抗污染正渗透聚酰胺复合膜的盐渗透系数柱形图,图中s表示实施例1得到的抗污染正渗透聚酰胺复合膜的结构特性参数柱形图。
具体实施方式
具体实施方式一:本实施方式是一种后处理制备抗污染正渗透聚酰胺复合膜的方法,具体是按以下步骤完成的:
一、耦合:将盐酸多巴胺溶解于二甲基甲酰胺中,然后在氮气保护下加入2-溴异丁酰溴和三乙胺,并在氮气保护下搅拌反应2h~6h,得到耦合溶液;
二、接枝引发剂:向耦合溶液中加入三羟甲基氨基甲烷缓冲液,得到混合溶液,然后将正渗透聚酰胺复合膜表面的活性层浸没在混合溶液中,且保证正渗透聚酰胺复合膜表面的支撑层不与混合溶液接触,浸没时间为10min~90min,得到接枝引发剂正渗透聚酰胺复合膜;
三、接枝两性离子聚合物:将两性离子单体溶于异丙醇水溶液中,然后在氮气保护下加入氯化铜催化复合物,得到含两性离子单体溶液,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入抗坏血酸溶液,并在氮气保护下聚合反应0.5h~3h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜。
本实施方式步骤二中所述的正渗透聚酰胺复合膜为高选择性正渗透聚酰胺复合膜,具体是按中国已公开专利“一种高选择性正渗透聚酰胺复合膜的原位制备方法”(申请号:201410815730.7)提供方法制备的。
本实施方式主要目的是提高正渗透聚酰胺复合膜的抗污染性能。采用后处理工艺,对现有正渗透聚酰胺复合膜的活性层(即聚酰胺层)进行改性,通过多巴胺交联技术和原子转移自由基聚合反应,在正渗透聚酰胺复合膜表面接枝具有高亲水性的两性离子聚合物,从而提高正渗透聚酰胺复合膜的亲水性,降低电荷性和粗糙度,降低表面羧基浓度,有效提高膜的抗污染性能。
本实施方式采用原子转移自由基聚合反应ATRP,其发展较为成熟,所用化学试剂常见,同时,选用的商品化的两性离子,价格相对便宜,同时,采用的是ARGET-ATRP(电子转移活化再生催化剂原子转移自由基聚合),其特点是对氧气有一定的容忍度,需要的催化剂量少,便于以后大规模工业化开发。
本实施方式得到的抗污染正渗透聚酰胺复合膜在大幅度提高抗污染性能的同时,可保持其过水性能和对盐的选择性,另外,由于ATRP高度的可控性,可通过调节聚合物的生长时间等反应参数,对膜的传质和抗污染表面性能进行进一步调控和优化。
由于本实施方式首先借助多巴胺将引发剂接枝在TFC膜上,而多巴胺能在溶解氧的作用下发生氧化-交联反应,形成强力附着于固体材料表面的聚合多巴胺,即多巴胺除了TFC膜的聚酰胺,也可附着在各种不同的表面,因此本实施方式中的方法不仅适用于TFC膜,也同时适用于其他表面的抗污染改性。
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤一中将盐酸多巴胺溶解于二甲基甲酰胺中,然后通入氮气,在氮气保护下加入2-溴异丁酰溴和三乙胺,并在氮气保护下搅拌反应3h,得到耦合溶液。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的盐酸多巴胺的质量与二甲基甲酰胺的体积比为800mg:40mL。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的盐酸多巴胺的质量与2-溴异丁酰溴的体积比为800mg:0.26mL。其他与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤一中所述的盐酸多巴胺的质量与三乙胺的体积比为800mg:0.3mL。其他与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中的所述的耦合溶液与三羟甲基氨基甲烷缓冲液的体积为40mL:200mL。其他与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中向耦合溶液中加入三羟甲基氨基甲烷缓冲液,得到混合溶液,然后将正渗透聚酰胺复合膜表面的活性层浸没在混合溶液中,且保证正渗透聚酰胺复合膜表面的支撑层不与混合溶液接触,浸没时间为15min,得到接枝引发剂正渗透聚酰胺复合膜。其他与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤二中向耦合溶液中加入三羟甲基氨基甲烷缓冲液,得到混合溶液,然后将正渗透聚酰胺复合膜表面的活性层浸没在混合溶液中,且保证正渗透聚酰胺复合膜表面的支撑层不与混合溶液接触,浸没时间为30min,得到接枝引发剂正渗透聚酰胺复合膜。其他与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤三中将两性离子单体溶于异丙醇水溶液中,然后通入氮气,在氮气保护下加入氯化铜催化复合物,得到含两性离子单体溶液,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入抗坏血酸溶液,并在氮气保护下聚合反应1.5h~2h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜。其他与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤三中将两性离子单体溶于异丙醇水溶液中,然后通入氮气,在氮气保护下加入氯化铜催化复合物,得到含两性离子单体溶液,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入抗坏血酸溶液,并在氮气保护下聚合反应1.5h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜。其他与具体实施方式一至九相同。
具体实施方式十一:本实施方式与具体实施方式一至十之一不同点是:步骤三中将两性离子单体溶于异丙醇水溶液中,然后通入氮气,在氮气保护下加入氯化铜催化复合物,得到含两性离子单体溶液,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入抗坏血酸溶液,并在氮气保护下聚合反应2h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜。其他与具体实施方式一至十相同。
具体实施方式十二:本实施方式与具体实施方式一至十一之一不同点是:步骤三中所述的两性离子单体的质量与异丙醇水溶液的体积比为15.64g:200mL。其他与具体实施方式一至十一相同。
具体实施方式十三:本实施方式与具体实施方式一至十二之一不同点是:步骤三中所述的两性离子单体的质量与氯化铜催化复合物的体积比为15.64g:20mL。其他与具体实施方式一至十二相同。
具体实施方式十四:本实施方式与具体实施方式一至十三之一不同点是:步骤三中所述的两性离子单体的质量与抗坏血酸溶液的体积比为15.64g:12mL。其他与具体实施方式一至十三相同。
具体实施方式十五:本实施方式与具体实施方式一至十四之一不同点是:步骤三中所述的两性离子单体为磺基甜菜碱丙烯酸甲酯单体。其他与具体实施方式一至十四相同。
具体实施方式十六:本实施方式与具体实施方式一至十五之一不同点是:步骤三中所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成。其他与具体实施方式一至十五相同。
具体实施方式十七:本实施方式与具体实施方式一至十六之一不同点是:步骤三中所述的氯化铜催化复合物按以下步骤制备的:
将氯化铜和三丙二醇甲醚醋酸酯溶于异丙醇水溶液中,即得到氯化铜催化复合物;所述的氯化铜与三丙二醇甲醚醋酸酯的质量比为0.01:0.14;所述的所述的氯化铜的质量与异丙醇水溶液的体积比为0.01g:20mL;所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成。
其他与具体实施方式一至十六相同。
具体实施方式十八:本实施方式与具体实施方式一至十七之一不同点是:步骤三中所述的抗坏血酸溶液按以下步骤制备的:将抗坏血酸溶于异丙醇水溶液中,即得到抗坏血酸溶液;所述的抗坏血酸的质量与异丙醇水溶液的体积比为1g:10mL;所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成。其他与具体实施方式一至十七相同。
本发明内容不仅限于上述各实施方式的内容,其中一个或几个具体实施方式的组合同样也可以实现发明的目的。
采用下述试验验证本发明效果:
实施例1:结合图1,一种后处理制备抗污染正渗透聚酰胺复合膜的方法,具体是按以下步骤完成的:
一、耦合:将800mg盐酸多巴胺溶解于40mL二甲基甲酰胺中,然后通入氮气,在氮气保护下加入0.26mL 2-溴异丁酰溴和0.3mL三乙胺,并在氮气保护下搅拌反应3h,得到耦合溶液;
二、接枝引发剂:向40mL耦合溶液中加入200mL三羟甲基氨基甲烷缓冲液,得到混合溶液,然后将正渗透聚酰胺复合膜表面的活性层浸没在混合溶液中,且保证正渗透聚酰胺复合膜表面的支撑层不与混合溶液接触,浸没时间为30min,得到接枝引发剂正渗透聚酰胺复合膜;
三、接枝两性离子聚合物:将15.64g两性离子单体溶于200mL异丙醇水溶液中,然后在氮气保护下加入20mL氯化铜催化复合物,得到含两性离子单体溶液,然后通入氮气,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入12mL抗坏血酸溶液,并在氮气保护下聚合反应1h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜;
步骤三中所述的两性离子单体为磺基甜菜碱丙烯酸甲酯单体;
步骤三中所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成;
步骤三中所述的氯化铜催化复合物按以下步骤制备的:
将0.01g氯化铜和0.14g三丙二醇甲醚醋酸酯溶于20mL异丙醇水溶液中,即得到氯化铜催化复合物;所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成;
步骤三中所述的抗坏血酸溶液按以下步骤制备的:将1g抗坏血酸溶于10mL异丙醇水溶液中,即得到抗坏血酸溶液;所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成。
本实施例步骤二中所述三羟甲基氨基甲烷缓冲液的pH为8.5。
本实施例步骤二中所述的正渗透聚酰胺复合膜为高选择性正渗透聚酰胺复合膜,具体是按中国已公开专利“一种高选择性正渗透聚酰胺复合膜的原位制备方法”(申请号:201410815730.7)提供方法制备的。
图1是实施例1操作流程示意图;在步骤一中,在氮气保护下,首先将原子转移自由基聚合反应将要使用的引发剂耦合接枝到多巴胺上;在步骤二中,在空气和缓冲溶液的环境下使多巴胺接触正渗透聚酰胺复合膜表面,通过多巴胺自生形成聚合多巴胺的聚合反应,使引发剂接枝在正渗透聚酰胺复合膜表面;在步骤三中,主要依靠原子转移自由基聚合反应,使两性离子单体从引发剂的位置在正渗透聚酰胺复合膜上生长,通过改变反应时间,可调控接枝的两性离子聚合物改性层。
对实施例1得到的抗污染正渗透聚酰胺复合膜与正渗透聚酰胺复合膜进行有机污染,所述的正渗透聚酰胺复合膜为步骤二中所述的正渗透聚酰胺复合膜;采用正渗透FO错流过滤模式,以天然有机物(NOM)、海藻酸钠和牛血清白蛋白(BSA)的混合物作为典型有机污染物对膜进行污染,直到搜集500mL的渗透液为止,监测两种膜在有机污染过程中的通量衰减趋势,如图2所示,图2是实施例1得到的抗污染正渗透聚酰胺复合膜与正渗透聚酰胺复合膜污染过程中纯水通量衰减示意图,图中○实施例1得到的抗污染正渗透聚酰胺复合膜污染过程中纯水通量衰减曲线,图中□正渗透聚酰胺复合膜污染过程中纯水通量衰减曲线;由图2可知,经过实施例1改性后得到的抗污染正渗透聚酰胺复合膜在正渗透膜过滤过程中水通量下降趋势变慢,极大提高了膜的抗污染性能。
为了研究膜的传质性能参数的变化,采用了正渗透四部法对实施例1得到的抗污染正渗透聚酰胺复合膜与正渗透聚酰胺复合膜进行了表征,所述的正渗透聚酰胺复合膜为步骤二中所述的正渗透聚酰胺复合膜;如图3所示,图3是水渗透系数-结盐渗透系数-构特性参数柱形图,图中A表示正渗透聚酰胺复合膜的水渗透系数柱形图,图中B表示正渗透聚酰胺复合膜的盐渗透系数柱形图,图中S表示正渗透聚酰胺复合膜的结构特性参数柱形图,图中a表示实施例1得到的抗污染正渗透聚酰胺复合膜的水渗透系数柱形图,图中b表示实施例1得到的抗污染正渗透聚酰胺复合膜的盐渗透系数柱形图,图中s表示实施例1得到的抗污染正渗透聚酰胺复合膜的结构特性参数柱形图,从图3可以看出,实施例1得到的抗污染正渗透聚酰胺复合膜与正渗透聚酰胺复合膜的结构特性参数(S)很相近,表明改性并不改变膜材料支撑层的传质性能。这主要是由于改性是在正渗透聚酰胺复合膜的活性层表面,不会对支撑层的厚度、孔隙率、孔道曲折度等结构特性产生直接影响。表面接枝两性离子聚合物改性主要影响活性层的传质性能,实施例1得到的抗污染正渗透聚酰胺复合膜与正渗透聚酰胺复合膜对比可知,水渗透系数(A)发生了轻微的降低,盐渗透系数(B)有轻微的升高,但是都不显著,表明本发明原位接枝两性离子聚合物改性并不会破坏正渗透聚酰胺复合膜的完整性和选择性。

Claims (10)

1.一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于它是按以下步骤完成的:
一、耦合:将盐酸多巴胺溶解于二甲基甲酰胺中,然后在氮气保护下加入2-溴异丁酰溴和三乙胺,并在氮气保护下搅拌反应2h~6h,得到耦合溶液;
二、接枝引发剂:向耦合溶液中加入三羟甲基氨基甲烷缓冲液,得到混合溶液,然后将正渗透聚酰胺复合膜表面的活性层浸没在混合溶液中,且保证正渗透聚酰胺复合膜表面的支撑层不与混合溶液接触,浸没时间为10min~90min,得到接枝引发剂正渗透聚酰胺复合膜;
三、接枝两性离子聚合物:将两性离子单体溶于异丙醇水溶液中,然后在氮气保护下加入氯化铜催化复合物,得到含两性离子单体溶液,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入抗坏血酸溶液,并在氮气保护下聚合反应0.5h~3h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜。
2.根据权利要求1所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤一中将盐酸多巴胺溶解于二甲基甲酰胺中,然后通入氮气,在氮气保护下加入2-溴异丁酰溴和三乙胺,并在氮气保护下搅拌反应3h,得到耦合溶液。
3.根据权利要求2所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤一中所述的盐酸多巴胺的质量与二甲基甲酰胺的体积比为800mg:40mL;步骤一中所述的盐酸多巴胺的质量与2-溴异丁酰溴的体积比为800mg:0.26mL;步骤一中所述的盐酸多巴胺的质量与三乙胺的体积比为800mg:0.3mL。
4.根据权利要求1所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤二中的所述的耦合溶液与三羟甲基氨基甲烷缓冲液的体积为40mL:200mL。
5.根据权利要求1所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤三中将两性离子单体溶于异丙醇水溶液中,然后通入氮气,在氮气保护下加入氯化铜催化复合物,得到含两性离子单体溶液,在氮气保护下将接枝引发剂正渗透聚酰胺复合膜浸入含两性离子单体溶液中,然后在氮气保护下加入抗坏血酸溶液,并在氮气保护下聚合反应1.5h~2h,然后暴露于空气中终止聚合反应,取出后得到抗污染正渗透聚酰胺复合膜。
6.根据权利要求5所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤三中所述的两性离子单体的质量与异丙醇水溶液的体积比为15.64g:200mL;步骤三中所述的两性离子单体的质量与氯化铜催化复合物的体积比为15.64g:20mL;步骤三中所述的两性离子单体的质量与抗坏血酸溶液的体积比为15.64g:12mL。
7.根据权利要求6所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤三中所述的两性离子单体为磺基甜菜碱丙烯酸甲酯单体。
8.根据权利要求7所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤三中所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成。
9.根据权利要求8所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤三中所述的氯化铜催化复合物按以下步骤制备的:
将氯化铜和三丙二醇甲醚醋酸酯溶于异丙醇水溶液中,即得到氯化铜催化复合物;所述的氯化铜与三丙二醇甲醚醋酸酯的质量比为0.01:0.14;所述的所述的氯化铜的质量与异丙醇水溶液的体积比为0.01g:20mL;所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成。
10.根据权利要求9所述的一种后处理制备抗污染正渗透聚酰胺复合膜的方法,其特征在于步骤三中所述的抗坏血酸溶液按以下步骤制备的:将抗坏血酸溶于异丙醇水溶液中,即得到抗坏血酸溶液;所述的抗坏血酸的质量与异丙醇水溶液的体积比为1g:10mL;所述的异丙醇水溶液由异丙醇和去离子水按异丙醇与去离子水体积比为1:1混合而成。
CN201710134513.5A 2017-03-08 2017-03-08 一种后处理制备抗污染正渗透聚酰胺复合膜的方法 Pending CN106823805A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710134513.5A CN106823805A (zh) 2017-03-08 2017-03-08 一种后处理制备抗污染正渗透聚酰胺复合膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710134513.5A CN106823805A (zh) 2017-03-08 2017-03-08 一种后处理制备抗污染正渗透聚酰胺复合膜的方法

Publications (1)

Publication Number Publication Date
CN106823805A true CN106823805A (zh) 2017-06-13

Family

ID=59138110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710134513.5A Pending CN106823805A (zh) 2017-03-08 2017-03-08 一种后处理制备抗污染正渗透聚酰胺复合膜的方法

Country Status (1)

Country Link
CN (1) CN106823805A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109260961A (zh) * 2018-11-28 2019-01-25 扬州市驰城石油机械有限公司 一种抗污染改性聚偏氟乙烯膜及其制备方法
CN109718667A (zh) * 2019-01-31 2019-05-07 深圳大学 一种多功能正渗透膜及其制备方法
CN112316740A (zh) * 2020-09-27 2021-02-05 重庆大学 改性聚酰胺薄膜方法
CN112316739A (zh) * 2020-09-27 2021-02-05 重庆大学 一种改性制备双功能抗生物污染反渗透复合膜的方法
CN112316738A (zh) * 2020-09-27 2021-02-05 重庆大学 一种后处理制备抗污染正渗透聚酰胺复合膜的方法
CN113083019A (zh) * 2021-03-29 2021-07-09 哈尔滨工业大学 一种基于两性物质的聚酰胺纳滤膜表面改性方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140278A (zh) * 2010-09-30 2013-06-05 海绵股份有限公司 用于正向渗透的薄膜复合膜及其制备方法
CN103357281A (zh) * 2013-07-02 2013-10-23 中国科学院生态环境研究中心 一种有效抗蛋白污染的聚偏氟乙烯微滤膜的改性方法
CN104069743A (zh) * 2014-05-20 2014-10-01 江苏朗生生命科技有限公司 一种表面两性离子化的聚乳酸血液透析膜的制备方法
CN104069753A (zh) * 2014-07-15 2014-10-01 哈尔滨工业大学(威海) 一种抗污染聚合物膜的制备方法
CN104548961A (zh) * 2014-12-24 2015-04-29 福州大学 一种亲水性抗污染聚偏氟乙烯膜的制备方法
CN104548967A (zh) * 2014-12-24 2015-04-29 哈尔滨工业大学 一种高选择性正渗透聚酰胺复合膜的原位制备方法
CN105153381A (zh) * 2015-09-06 2015-12-16 江南大学 一种聚合物改性石墨烯的新方法
CN105854638A (zh) * 2016-04-14 2016-08-17 中国科学院宁波材料技术与工程研究所 一种永久亲水性ptfe中空纤维膜及其制备方法
WO2016166084A1 (en) * 2015-04-13 2016-10-20 Basf Se Processes for reducing the fouling of surfaces
CN106345323A (zh) * 2016-10-17 2017-01-25 东华大学 一种抗污染亲水性正渗透膜的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140278A (zh) * 2010-09-30 2013-06-05 海绵股份有限公司 用于正向渗透的薄膜复合膜及其制备方法
CN103357281A (zh) * 2013-07-02 2013-10-23 中国科学院生态环境研究中心 一种有效抗蛋白污染的聚偏氟乙烯微滤膜的改性方法
CN104069743A (zh) * 2014-05-20 2014-10-01 江苏朗生生命科技有限公司 一种表面两性离子化的聚乳酸血液透析膜的制备方法
CN104069753A (zh) * 2014-07-15 2014-10-01 哈尔滨工业大学(威海) 一种抗污染聚合物膜的制备方法
CN104548961A (zh) * 2014-12-24 2015-04-29 福州大学 一种亲水性抗污染聚偏氟乙烯膜的制备方法
CN104548967A (zh) * 2014-12-24 2015-04-29 哈尔滨工业大学 一种高选择性正渗透聚酰胺复合膜的原位制备方法
WO2016166084A1 (en) * 2015-04-13 2016-10-20 Basf Se Processes for reducing the fouling of surfaces
CN105153381A (zh) * 2015-09-06 2015-12-16 江南大学 一种聚合物改性石墨烯的新方法
CN105854638A (zh) * 2016-04-14 2016-08-17 中国科学院宁波材料技术与工程研究所 一种永久亲水性ptfe中空纤维膜及其制备方法
CN106345323A (zh) * 2016-10-17 2017-01-25 东华大学 一种抗污染亲水性正渗透膜的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109260961A (zh) * 2018-11-28 2019-01-25 扬州市驰城石油机械有限公司 一种抗污染改性聚偏氟乙烯膜及其制备方法
CN109718667A (zh) * 2019-01-31 2019-05-07 深圳大学 一种多功能正渗透膜及其制备方法
CN112316740A (zh) * 2020-09-27 2021-02-05 重庆大学 改性聚酰胺薄膜方法
CN112316739A (zh) * 2020-09-27 2021-02-05 重庆大学 一种改性制备双功能抗生物污染反渗透复合膜的方法
CN112316738A (zh) * 2020-09-27 2021-02-05 重庆大学 一种后处理制备抗污染正渗透聚酰胺复合膜的方法
CN113083019A (zh) * 2021-03-29 2021-07-09 哈尔滨工业大学 一种基于两性物质的聚酰胺纳滤膜表面改性方法

Similar Documents

Publication Publication Date Title
CN106823805A (zh) 一种后处理制备抗污染正渗透聚酰胺复合膜的方法
CN110052179B (zh) 一种抗污染复合纳滤膜的制备方法
CN110732160B (zh) 一种动态吸附溶液中重金属的方法及其用途
CN106916330A (zh) 改性聚酰胺复合薄膜的方法
JP5863127B2 (ja) 耐汚染性に優れた逆浸透膜及びその製造方法
CN108201795B (zh) 一种选择性分离依诺沙星分子印迹复合膜材料的制备方法
CN108905653B (zh) 一种超支化两性离子改性聚偏氟乙烯油水乳液分离膜的制备方法及应用
CN107638805B (zh) 一种氧化石墨烯/聚乙烯醇涂层改性的反渗透膜制备方法
CN101711952A (zh) 具有永久亲水性的聚偏氟乙烯中空纤维超滤膜及制备方法
CN107254066A (zh) 一种制备氧化石墨烯接枝玄武岩纤维多尺度增强体的方法
CN105148750B (zh) 一种聚酰胺复合膜表面改性的方法
CN108187511A (zh) 高通量高截留率聚酰胺复合反渗透膜及其制备方法
CN105833749A (zh) 一种新型抗生物污染的聚酰胺反渗透复合膜及其制备方法
CN108579423B (zh) 一种制备层层自主装法制备新型聚电解质/金属有机框架化合物混合基质纳滤膜方法
CN106512729A (zh) 一种高脱盐率反渗透复合膜及其制备方法
CN111921388B (zh) 硼酸盐插层修饰的氧化石墨烯复合纳滤膜及其制备方法
CN107930417A (zh) 一种层层自组装制备聚偏氟乙烯中空纤维正渗透膜的方法
CN103272498B (zh) 表面接枝改性的芳香聚酰胺复合反渗透膜及制备方法
CN104672408B (zh) 一种具刚性核‑壳结构的水溶性驱油聚合物及其制备方法
CN113522047B (zh) 一种d-氨基酸化学接枝改性水处理超滤膜及其制备方法
CN103406034B (zh) 一种用于膜蒸馏过程的聚醚嵌段酰胺微孔膜的制备方法
CN109647218A (zh) 具有高效抗污染与抑菌的改性聚偏氟乙烯膜及制备方法
CN110743383B (zh) 一种提高聚酰胺复合膜渗透通量的改性方法
CN101332415A (zh) 一种含联苯结构的聚酰胺反渗透复合膜及制法
CN113083019A (zh) 一种基于两性物质的聚酰胺纳滤膜表面改性方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170613

WD01 Invention patent application deemed withdrawn after publication