CN106783849B - 半导体器件 - Google Patents

半导体器件 Download PDF

Info

Publication number
CN106783849B
CN106783849B CN201611034190.4A CN201611034190A CN106783849B CN 106783849 B CN106783849 B CN 106783849B CN 201611034190 A CN201611034190 A CN 201611034190A CN 106783849 B CN106783849 B CN 106783849B
Authority
CN
China
Prior art keywords
layer
groove
type
electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611034190.4A
Other languages
English (en)
Other versions
CN106783849A (zh
Inventor
平林康弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN106783849A publication Critical patent/CN106783849A/zh
Application granted granted Critical
Publication of CN106783849B publication Critical patent/CN106783849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种半导体器件,包括半导体基板,所述半导体基板在第一表面上包括第一沟槽以及连结到每个第一沟槽的第二沟槽。所述半导体基板包括:p型端部层,其从第一表面延伸到比每个第一沟槽在第二表面侧的端部更靠近半导体基板的第二表面的位置,并且在第一表面的平面视图中包括每个第一沟槽的纵向端部;第一p型层,其设置在相邻的第一沟槽之间的区域中,并且接触设在第一表面上的第一电极;n型阻挡层;第二p型层。第二沟槽使p型端部层与第一p型层及第二p型层分离。

Description

半导体器件
技术领域
本发明涉及一种半导体器件。
背景技术
日本专利申请公开No.2015-141935(JP 2015-141935A)中公开了二极管。沟槽形成在半导体基板的上表面上。每个沟槽的内表面被绝缘层覆盖。电极设置在每个沟槽中。每个沟槽贯通p型阳极层(主体层)而到达n型漂移层。该二极管的p型阳极层被n型阻挡层垂直划分。n型漂移层设置在下阳极层的下面。n型阴极层设置在n型漂移层的下侧。
当正向电压施加于该二极管时,空穴从上阳极层经由n型阻挡层、下阳极层和n型漂移层流到n型阴极层。同时,电子在与空穴的流动相反的方向上流动。当正向电压施加于二极管时,作为n型阻挡层与下阳极层之间的界面的p-n结成为针对空穴的阻挡。因此,抑制空穴从上阳极层经由n型阻挡层和下阳极层流到n型漂移层中。其后当施加于二极管的施加电压从正向电压切换到反向电压时,存在于n型漂移层中的空穴经由下阳极层、n型阻挡层和上阳极层排出到阳极电极。反向电流(所谓的反向恢复电流)从而流过二极管。由于反向恢复电流的流过,二极管发生损耗(所谓的反向恢复损耗)。然而,因为在施加正向电压期间抑制空穴流到n型漂移层中,所以在施加反向电压期间少数空穴从n型漂移层排出到阳极电极。因此,反向恢复损耗在该二极管中被抑制。
发明内容
当反向电压施加于二极管时,耗尽层在n型漂移层内扩张,并且在n型漂移层中产生电场。在如JP 2015-141935A中的具有沟槽的二极管中,电场易于集中在每个沟槽的纵向端部的附近。为了抑制电场的这样的集中,存在以包围每个沟槽的纵向端部的方式设置p型层(以下被称为p型端部层)的情况。然而,如JP 2015-141935A中在上阳极层和下阳极层被n型阻挡层划分的二极管中设置p型端部层的情况下,上阳极层和下阳极层由p型端部层连接。在这种情况下,当正向电压施加于二极管时,下阳极层的电势变得基本上与上阳极层的电势相同,并且空穴从下阳极层流到n型漂移层中。结果,上述抑制反向恢复损耗的效果减小。本发明提供一种有效地抑制具有阻挡层和p型端部层这两者的二极管中的反向恢复损耗的技术。
根据本发明的一方面的半导体器件包括:半导体基板,其在第一表面上包括多个第一沟槽以及连结到每个第一沟槽的第二沟槽;第一绝缘层,其覆盖每个第一沟槽的内表面;第一沟槽电极,其分别设在第一沟槽中,并且通过第一绝缘层而与半导体基板绝缘;第二绝缘层,其覆盖第二沟槽的内表面;第一电极,其设在第一表面上;以及第二电极,其设在半导体基板的第二表面上。半导体基板包括:p型端部层,其从第一表面延伸到比每个第一沟槽在半导体基板的厚度方向上在第二表面侧的端部更靠近第二表面的位置,并且包括第一表面的平面视图中的每个第一沟槽的纵向端部;第一p型层,其隔着第二沟槽设置在p型端部层的相对侧,第一p型层设置在保持于相邻的第一沟槽之间的沟槽间区域中,并且接触第一电极;n型阻挡层,该n型阻挡层设置在沟槽间区域中,并且被设置为比第一p型层更靠近第二表面;第二p型层,其设置在沟槽间区域中,该第二p型层被设置为比n型阻挡层更靠近第二表面,并且通过n型阻挡层而与第一p型层分离;n型漂移层,该n型漂移层被设置为比第二p型层更靠近第二表面;以及n型阴极层,该n型阴极层被设置为比n型漂移层更靠近第二表面,并且接触n型漂移层和第二电极。第二沟槽使p型端部层与第一p型层及第二p型层分离。
在该半导体器件中,第一p型层起到上阳极层的作用,而第二p型层起到下阳极层的作用。另外,上电极起到阳极电极的作用,而下电极起到阴极电极的作用。也就是说,上电极、上阳极层、n型阻挡层、下阳极层、n型漂移层、n型阴极层以及下电极构成二极管(其中p型阳极层被n型阻挡层垂直地分离的二极管)。
在该半导体中,第一沟槽的纵向端部被p型端部层包围。因此,当反向电压施加于二极管时,抑制第一沟槽的纵向端部的周边的电场的集中。另外,在该半导体器件中,p型端部层通过第二沟槽而与p型层和第二p型层分离。也就是说,第二p型层与第一p型层分离。因此,当正向电压施加于二极管时,第二p型层的电势变得比第一p型层的电势低,并且空穴从第二p型层到n型漂移层中的流入被抑制。由于这个原因,在施加正向电压期间存在于漂移层中的空穴的数量很少。因此,当二极管的施加电压从正向电压切换到反向电压时,反向恢复损耗被有效抑制。
附图说明
下面将参照附图来描述本发明的示例性实施例的特征、优点以及技术和工业重要性,在附图中,相似的数字表示相似的元件,并且其中:
图1是半导体器件10的平面视图;
图2是沿着图1中的II-II截取的垂直截面视图;
图3是沿着图1中的III-III截取的垂直截面视图;
图4是沿着图1中的IV-IV截取的垂直截面视图;
图5是对应于图3的第一变形例中的半导体器件的垂直截面视图;
图6是对应于图1的第二变形例中的半导体器件的平面视图;
图7是对应于图1的第三变形例中的半导体器件的平面视图;
图8是对应于图1的第四变形例中的半导体器件的平面视图;
图9是对应于图1的第五变形例中的半导体器件的平面视图;
图10是对应于图1的第六变形例中的半导体器件的平面视图;
图11是对应于图3的第七变形例中的半导体器件的垂直截面视图;
图12是对应于图3的第八变形例中的半导体器件的垂直截面视图;以及
图13是对应于图2的第九变形例中的半导体器件的垂直截面视图。
具体实施方式
图1至4示出了示例的半导体器件10。半导体器件10具有半导体基板12以及布置在半导体基板12的上表面12a和下表面12b上的电极、绝缘膜等。注意,为了促进对附图的理解,半导体基板12上的电极和绝缘层在图1中未被示出。另外,为了促进附图的可看性,在图1中第一沟槽41和第二沟槽42被加阴影线。在以下描述中,平行于半导体基板12的上表面12a的方向被称为x方向,平行于半导体基板12的上表面12a并且与x方向正交的方向被称为y方向,并且半导体基板12的厚度方向被称为z方向。
如图2至4所示,上电极60和栅极线62布置在半导体基板12的上表面12a上。栅极线62与上电极60分离。下电极64布置在半导体基板12的下表面12b上。
半导体基板12由硅构成。如图1所示,多个第一沟槽41和第二沟槽42形成在半导体基板12的上表面12a上。当在平面视图中查看半导体基板12的上表面12a时,每个第一沟槽41在x方向上直线状地延伸,并且第二沟槽42在y方向上直线状地延伸。多个第一沟槽41在上表面12a中彼此平行地延伸。当在平面视图中查看上表面12a时,第二沟槽42与每个第一沟槽41相交。换句话说,第二沟槽42连结到每个第一沟槽41。如图2至4所示,第一沟槽41和第二沟槽42具有基本上相同的深度。如图4所示,每个第一沟槽41从上电极60的下侧延伸到栅极线62的下侧。每个第一沟槽41在x方向上的端部41a布置在栅极线62的下侧。
如图2至4所示,每个第一沟槽41的内表面被绝缘层43覆盖。沟槽电极44布置在每个第一沟槽41中。第二沟槽42的内表面被绝缘层45覆盖。绝缘层45在第一沟槽41和第二沟槽42的连接部分中接合到绝缘层43。沟槽电极46布置在第二沟槽42中。沟槽电极46在第一沟槽41和第二沟槽42的连接部分中连结到沟槽电极44。沟槽电极44、46通过绝缘层43、45而与半导体基板12绝缘。沟槽电极44、46中的每个的上表面被层间绝缘膜48覆盖。沟槽电极44、46均通过层间绝缘膜48而与上电极60绝缘。层间绝缘膜48还布置在半导体基板12与栅极线62之间。栅极线62通过层间绝缘膜48而与半导体基板12绝缘。如图1、4所示,接触孔48a形成在位于第一沟槽41的端部41a上的层间绝缘膜48中。沟槽电极44经由接触孔48a连接到栅极线62。
当在如图1所示的平面视图中查看半导体基板12的上表面12a时,第一沟槽41的端部41a的区域、而不是第二沟槽42的区域是在半导体器件10通电期间电流不会大量流过的周边区域14。另外,当在平面视图中查看半导体基板12的上表面12a时,周边区域14从第二沟槽42起的相对侧的区域是在半导体器件10通电期间主电流流过的元件区域15。元件区域15包括:形成有绝缘栅双极晶体管(IGBT)的IGBT区域16;以及形成有二极管的二极管区域18。换句话说,半导体器件10是反向导通IGBT(RC-IGBT)。
如图1、2所示,多个第一沟槽41布置在IGBT区域16中,并且该多个第一沟槽41还布置在二极管区域18中。在以下描述中,插入在两个第一沟槽41之间的区域(即,半导体层)被称为沟槽间区域70。多个沟槽间区域70布置在IGBT区域16中,并且该多个沟槽间区域70还布置在二极管区域18中。
如图2所示,半导体基板12在元件区域15中具有发射极层20、上主体层22、阻挡层24、下主体层26、漂移层28、第一集电极层31以及阴极层30。注意,如图2所示,二极管区域18可以被认为是在漂移层28与下电极64之间具有阴极层30的区域,而IGBT区域16可以被认为是在漂移层28与下电极64之间具有集电极层31的区域。
发射极层20没有布置在二极管区域18中,而是布置在IGBT区域16中。发射极层20布置在沟槽间区域70中。换句话说,包括发射极层20的沟槽间区域70存在的范围是IGBT区域16,而不包括发射极层20的沟槽间区域70存在的范围是二极管区域18。发射极层20是n型层。发射极层20布置在暴露于半导体基板12的上表面12a的范围中。发射极层20与上电极60欧姆接触。发射极层20接触绝缘层43。如图1所示,发射极层20在x方向上沿着第一沟槽41长长地延伸。
如图2所示,上主体层22跨IGBT区域16和二极管区域18分布。上主体层22是p型层。上主体层22具有高浓度层22a和低浓度层22b。高浓度层22a的p型杂质浓度高于低浓度层22b的p型杂质浓度。高浓度层22a布置在暴露于半导体基板12的上表面12a的范围中。在二极管区域18中,高浓度层22a在沟槽间区域70中在上表面12a的整个范围中接触上电极60。在IGBT区域16中,高浓度层22a在插入在两个发射极层20之间的范围中接触上电极60。高浓度层22a与上电极60欧姆接触。低浓度层22b布置在高浓度层22a的下面。在二极管区域18中,低浓度层22b从下面接触高浓度层22a。在IGBT区域16中,低浓度层22b从下面接触发射极层20和高浓度层22a。低浓度层22b在IGBT区域16和二极管区域18中接触绝缘层43。
阻挡层24跨IGBT区域16和二极管区域18分布。阻挡层24是n型层。阻挡层24在IGBT区域16和二极管区域18中从下面接触低浓度层22b。阻挡层24在IGBT区域16和二极管区域18中接触绝缘层43。阻挡层24通过上主体层22而与发射极层20分离。
下主体层26跨IGBT区域16和二极管区域18分布。下主体层26是p型层。下主体层26在IGBT区域16和二极管区域18中从下面接触阻挡层24。下主体层26在IGBT区域16和二极管区域18中接触绝缘层43。下主体层26通过阻挡层24而与上主体层22分离。
漂移层28跨IGBT区域16和二极管区域18分布。漂移层28是n型层。漂移层28的n型杂质浓度低于发射极层20的n型杂质浓度、低浓度层22b的p型杂质浓度、阻挡层24的n型杂质浓度以及下主体层26的p型杂质浓度中的任何一个。漂移层28从下面接触下主体层26。漂移层28通过下主体层26而与阻挡层24分离。漂移层28分布到每个第一沟槽41的下端以及第二沟槽42的下端的下面的部分。
如到目前为止所描述的,在IGBT区域16和二极管区域18中,上主体层22、阻挡层24和下主体层26布置在沟槽间区域70中。换句话说,每个第一沟槽41贯通上主体层22、阻挡层24和下主体层26而到达漂移层28。IGBT区域16中的沟槽电极44隔着绝缘层43而与发射极层20、上主体层22、阻挡层24、下主体层26以及漂移层28相向。IGBT区域16中的沟槽电极44起到用于切换IGBT的栅极电极的作用。
第一集电极层31在IGBT区域16中从下面接触漂移层28。第一集电极层31布置在IGBT区域16中暴露于下表面12b的范围中。第一集电极层31是p型层。第一集电极层31与下电极64欧姆接触。
阴极层30在二极管区域18中从下面接触漂移层28。阴极层30布置在二极管区域18中暴露于下表面12b的范围中。阴极层30是n型层。阴极层30与下电极64欧姆接触。阴极层30的n型杂质浓度高于漂移层28的n型杂质浓度。
如图3所示,上主体层22、阻挡层24和下主体层26还布置在周边区域14中第二沟槽42的附近。另外,如图3、4所示,漂移层28从元件区域15(即,IGBT区域16和二极管区域18)延伸到周边区域14。半导体基板12在周边区域14中具有p型端部层32和第二集电极层34。
p型端部层32的p型杂质浓度高于漂移层28的n型杂质浓度。另外,p型端部层32的p型杂质浓度高于低浓度层22b的p型杂质浓度以及下主体层26的p型杂质浓度中的任何一个。p型端部层32从半导体基板12的上表面12a延伸到比第一沟槽41和第二沟槽42的下端深的位置。如图4所示,p型端部层32以将第一沟槽41在x方向上的端部41a包括在内的方式布置。p型端部层32在端部41a处接触第一沟槽41的侧表面在z方向上的整个范围。p型端部层32在端部41a处还接触第一沟槽41的底表面。漂移层28布置在p型端部层32的下面。漂移层28从下面接触p型端部层32。
如图3、4所示,第二集电极层34在周边区域14中从下面接触漂移层28。第二集电极层34布置在周边区域14中暴露于下表面12b的范围中。第二集电极层34是p型层。第二集电极层34与下电极64欧姆接触。第二集电极层34与阴极层30相邻。阴极层30与第二集电极层34之间的界面33布置在第二沟槽42的下面。
如图3所示,p型端部层32通过第二沟槽42而与元件区域15(即,IGBT区域16和二极管区域18)中的上主体层22和下主体层26分离。以这种方式,元件区域15中的上主体层22和下主体层26彼此分离。换句话说,当第二沟槽42不存在时,元件区域15中的上主体层22和下主体层26经由p型端部层32彼此连接。相反,当第二沟槽42存在时,元件区域15中的上主体层22和下主体层26与p型端部层32分离,因此元件区域15中的上主体层22和下主体层26彼此分离。另外,尽管未示出,但是每个第一沟槽41的与端部41a相对的端部具有与图1、3和4所示的结构相同的结构。也就是说,当在平面视图中从上面看时,每个沟槽间区域70被第一沟槽41和第二沟槽42包围。因此,上主体层22在每个沟槽间区域70中与下主体层26完全分离。
接着,将描述半导体器件10的操作。首先,将描述IGBT的操作。当半导体器件10被作为IGBT操作时,比施加于上电极60的电势高的电势施加于下电极64。另外,每个沟槽电极44的电势由栅极线62控制。当至少等于阈值的电势施加于每个沟槽电极44时,在IGBT区域16中的上主体层22和下主体层26中形成沟道。这些沟道形成在与绝缘层43相邻的范围中。一旦这些沟道形成,电子就从上电极60经由发射极层20、上主体层22的沟道、阻挡层24、下主体层26的沟道、漂移层28以及第一集电极层31流到下电极64。同时,空穴从下电极64经由第一集电极层31、漂移层28、下主体层26、阻挡层24、低浓度层22b以及高浓度层22a流到上电极60。此时,阻挡层24与低浓度层22b之间的界面上的p-n结使空穴的流动中断。因此,抑制空穴流到上电极60。结果,漂移层28中的空穴的浓度提高,这使漂移层28的电阻降低。因此,半导体器件10在IGBT导通时产生的损耗很小。
当沟槽电极44的电势降至低于阈值时,沟道消失,并且IGBT关断。一旦IGBT关断,耗尽层就从下主体层26与漂移层28之间的界面上的p-n结扩张到漂移层28中。结果,几乎整个漂移层28被耗尽。在耗尽层中产生电场。当p型端部层32不存在时,耗尽层到达第一沟槽41的端部41a,并且电场集中在端部41a周围。相反,在这个例子的半导体器件10中,p型端部层32将第一沟槽41的端部41a包括在内。耗尽层不会从n型漂移层28扩张到p型端部层32。特别地,因为p型端部层32的p型杂质浓度高于漂移层28的n型杂质浓度,所以耗尽层不会扩张到p型端部层32中。在这个例子中,因为p型端部层32的p型杂质浓度高于低浓度层22b的p型杂质浓度以及下主体层26的p型杂质浓度,所以耗尽层难以扩张到p型端部层32中。因此,第一沟槽41的端部41a周围的半导体层不被耗尽,并且在端部41a周围不产生高电场。由于这个原因,IGBT具有高耐受电压。
接着,将描述二极管的操作。当比施加于下电极64的电势高的电势施加于上电极60时,二极管导通。也就是说,电子从下电极64经由阴极层30、漂移层28、下主体层26、阻挡层24、低浓度层22b以及高浓度层22a流到上电极60。另外,空穴从上电极60经由高浓度层22a、低浓度层22b、阻挡层24、下主体层26、漂移层28以及阴极层30流到下电极64。因此,电流从上电极60流到下电极64。此时,阻挡层24与下主体层26之间的界面上的p-n结使空穴的流动中断。因此,空穴到漂移层28中的流入被抑制。结果,漂移层28中的空穴的浓度降低。
特别地,在这个例子中,上主体层22和下主体层26完全分离,并且下主体层26的电势独立于上主体层22的电势。因此,当二极管导通时,下主体层26的电势变得比上主体层22的电势低,并且施加于下主体层26和漂移层28之间的界面上的p-n结的电压变低。因此,空穴到漂移层28中的流入可以被有效地抑制。因此,漂移层28中的空穴的浓度在二极管导通时特别低。
注意,如图3所示,上主体层22、阻挡层24和下主体层26的层积的层结构还形成在周边区域14中第二沟槽42附近的区域中。在周边区域14中,上主体层22经由p型端部层32连结到下主体层26。因此,当二极管导通时,下主体层26的电势变为基本上等于周边区域14中的上主体层22的电势。结果,如图3中的箭头100所指示的,在周边区域14中,空穴易于从下主体层26流到漂移层28中。然而,形成在周边区域14中的下主体层26的面积(在平面视图中从上面看到的面积)远小于形成在元件区域15中的下主体层26的面积。因此,箭头100所指示的空穴的流入即使在被产生时也具有很小的影响。通过提供第二沟槽42,下主体层26的大部分(元件区域15的下主体层26)与上主体层22完全分离,以这种方式,空穴到漂移层28中的流入可以被有效地抑制。
另外,如图3、4所示,不是n型阴极层30、而是p型第二集电极层34布置在p型端部层32的下面。当n型阴极层30布置在p型端部层32的下面时,空穴易于从p型端部层32经由漂移层28流到阴极层30中。也就是说,空穴易于从p型端部层32流到漂移层28中。相反,当p型第二集电极层34如这个例子中那样布置在p型端部层32的下面时,图3中的箭头102所指示的空穴从p型端部层32到漂移层28中的流入可以被抑制。
当上电极60的电势在导通二极管之后变得低于下电极64的电势时,二极管执行反向恢复操作。换句话说,在二极管导通时存在于漂移层28中的空穴经由下主体层26、阻挡层24、低浓度层22b以及高浓度层22a排出到上电极60。这瞬间使大的反向电流(反向恢复电流)流过二极管。然而,如上所述,因为在这个例子的半导体器件10中,空穴到漂移层28中的流入在导通二极管期间被抑制(也就是说,存在于漂移层28中的空穴的数量很少),所以在反向恢复操作中从漂移层28排出到上电极60的空穴的数量很少。因此,在这个例子的半导体器件10中,反向恢复电流被抑制,并且反向恢复损耗被抑制。
如到目前所描述的,在这个例子的半导体器件10中,p型端部层32抑制第一沟槽41的端部41a周围的电场的集中。因此,IGBT的操作期间的耐受电压得到改进。另外,在这个例子的半导体器件10中,元件区域15中的上主体层22和下主体层26通过第二沟槽42而与p型端部层32分离。因此,在元件区域15中,下主体层26与上主体层22分离。因此,当二极管导通时,空穴到漂移层28中的流入被抑制。因此,在二极管的反向恢复操作期间,反向恢复电流被抑制,并且反向恢复损耗被抑制。
在这个例子的半导体器件10中,第一沟槽41(即,沟槽电极44)不仅设在IGBT区域16中,而且还设在二极管区域18中。因此,当IGBT关断时,在IGBT区域16与二极管区域18之间的边界部分中,电场不会受到干扰。这还实现了高耐受电压。
以下将描述上述例子的变形例。在上述例子中,如图3所示,上主体层22、阻挡层24和下主体层26设在第二沟槽42与p型端部层32之间。然而,如图5所示,作为第一变形例,p型端部层32可以接触第二沟槽42的侧表面42a(在p型端部层32侧上的侧表面42a)。例如,p型端部层32可以接触侧表面42a的整个范围。通过这样的构造,可以消除如图3中的箭头100所指示的空穴的流动。以这种方式,可以进一步抑制二极管的反向恢复损耗。
另外,在上述例子中,直线状地延伸的单个第二沟槽42布置在p型端部层32与元件区域15之间。然而,作为第二变形例,如图6所示,第二沟槽42可以在x方向上改变其位置的同时在y方向上延伸。通过这样的构造,第二沟槽42仍连接到每个第一沟槽41。因此,p型端部层32可以与元件区域15中的上主体层22和下主体层26分离。此外,作为第三变形例,如图7所示,第二沟槽42可以以双行布置在p型端部层32与元件区域15之间。
另外,在上述例子中,二极管区域18中的所有沟槽电极44都经由第二沟槽42中的沟槽电极46以及栅极线62连接到IGBT区域16中的沟槽电极44。然而,作为第四变形例,如图8所示,二极管区域18中的一些沟槽电极44a可以与第二沟槽42中的沟槽电极46分离,并且可以经由接触孔49a连接到上电极60。在这种情况下,沟槽电极44a的电势固定为与上电极60相同的电势。二极管区域18中的沟槽电极44对IGBT的切换没有贡献。因此,即使在沟槽电极44a中的一些连接到固定电势时,也不会有问题。另外,如所描述的,将二极管区域18中的沟槽电极44a中的一些从IGBT区域16中的沟槽电极44(IGBT的栅极电极)切开时,IGBT的栅极电容可以降低。以这种方式,IGBT的切换速度可以得到改进。此外,二极管区域18中的沟槽电极44可以与IGBT区域16中的沟槽电极44电分离,并且可以独立于IGBT区域16中的沟槽电极44的电势来控制二极管区域18中的沟槽电极44的电势。
作为第五变形例,当沟槽电极44a连接到上电极60时,可以通过如图9所示那样在x方向上移位来构造第二沟槽42。作为第六变形例,当沟槽电极44a连接到上电极60时,第二沟槽42可以如图10所示那样两倍地设置。
在上述例子中,如图3所示,阴极层30与第二集电极层34之间的界面33布置在第二沟槽42的下面。然而,作为第七变形例,如图11所示,界面33可以布置在二极管区域18中。通过该构造,p型第二集电极层34布置在周边区域14的暴露于下表面12b的整个范围中。因此,箭头102所指示的空穴的流入(空穴从p型端部层32到漂移层28中的流入)可以被抑制。
另外,在上述例子中,沟槽电极46布置在第二沟槽42中。然而,作为第八变形例,如图12所示,沟槽电极46可以不布置在第二沟槽42中,并且第二沟槽42的内部可以全部被绝缘体49填充。通过这样的构造,p型端部层32可以与元件区域15中的上主体层22和下主体层26分离。
另外,在上述例子中,半导体基板包括二极管区域和IGBT区域。然而,代替IGBT区域,半导体基板可以包括由晶体管而不是IGBT形成的区域。例如,作为第九变形例,如图13所示,半导体基板可以具有二极管区域和金属氧化物半导体场效应晶体管(MOS-FET)区域。
下面将列出本说明书中公开的技术要素。注意,以下每个技术要素是独立有用的。
在本说明书中公开的构造的一个例子中,半导体基板包括二极管区域和IGBT区域。存在多个沟槽间区域。二极管区域和IGBT区域均具有至少一个沟槽间区域。IGBT区域中的沟槽间区域接触上电极和第一绝缘层,并且具有通过第一p型层而与阻挡层分离的n型发射极层。二极管区域中的沟槽间区域没有发射极层。阴极层布置在二极管区域中。半导体基板布置在IGBT区域中,布置在漂移层的下面,并且具有接触下电极的p型第一集电极层。
注意,阴极层可以布置在二极管区域的至少一部分中,并且第一集电极层可以布置在IGBT区域的至少一部分中。
通过这样的构造,二极管形成在二极管区域中,而IGBT形成在IGBT区域中。换句话说,半导体器件可以被作为RC-IGBT操作。
在本说明书中公开的构造的例子中,漂移层的一部分布置在p型端部层的下面。半导体基板包括p型第二集电极层,该p型第二集电极层在p型端部层下面的位置处布置在漂移层的下侧,并且与下电极接触。阴极层与第二集电极层之间的边界布置在第二沟槽的下面或者二极管区域中。也就是说,当在平面视图中查看半导体基板时,阴极层与第二集电极层之间的边界在第一沟槽的纵向方向上位于p型端部层隔着第二沟槽的相对侧或者位于第二沟槽上。
通过该结构,阻止空穴从p型端部层的向下流动(即,朝向第二集电极层的流动)。因此,空穴不太可能从p型端部层流到漂移层中。因此,反向恢复损耗可以进一步被抑制。
在本说明书中公开的构造的例子中,p型端部层接触第二沟槽的p型端部层侧的侧表面。
通过该构造,反向恢复损耗可以被进一步抑制。
在本说明书中公开的例子的构造中,p型端部层的p型杂质浓度高于漂移层的n型杂质浓度。
通过该构造,可以进一步有效地抑制第一沟槽的纵向端部周围的电场的集中。
到目前为止已经详细描述了实施例。然而,这仅仅是说明性的,因此不限制本说明书中公开的技术。本说明书中公开的技术包括对到目前为止举例说明的例子做出的各种修改和改变。本说明书和附图中描述的技术要素在被单独使用或者被按各种组合使用时展现出技术实用性,因此不限于原始申请中的权利要求书中描述的组合。另外,本说明书和附图中所示的技术可以同时实现多个目的,并且通过自身实现其中一个目的来展现出技术实用性。

Claims (18)

1.一种半导体器件,其特征在于,包括:
半导体基板,所述半导体基板在第一表面上包括多个第一沟槽以及连结到每个第一沟槽的第二沟槽;
第一绝缘层,所述第一绝缘层覆盖每个第一沟槽的内表面;
第一沟槽电极,所述第一沟槽电极分别设在各第一沟槽中,并且通过第一绝缘层而与半导体基板绝缘;
第二绝缘层,所述第二绝缘层覆盖第二沟槽的内表面;
第一电极,所述第一电极设置在第一表面上;和
第二电极,所述第二电极设置在半导体基板的第二表面上,其中,
所述半导体基板包括:
p型端部层,所述p型端部层从第一表面延伸到比每个第一沟槽在半导体基板的厚度方向上在第二表面侧的端部更靠近第二表面的位置,并且包括第一表面的平面视图中的每个第一沟槽的纵向端部;
第一p型层,所述第一p型层隔着第二沟槽设置在p型端部层的相对侧,所述第一p型层设置在保持于相邻的第一沟槽之间的沟槽间区域中并且接触第一电极;
n型阻挡层,所述n型阻挡层设置在沟槽间区域中,并且被设置为比第一p型层更靠近第二表面;
第二p型层,所述第二p型层设置在沟槽间区域中,所述第二p型层被设置为比n型阻挡层更靠近第二表面,并且所述第二p型层通过n型阻挡层而与第一p型层分离;
n型漂移层,所述n型漂移层被设置为比第二p型层更靠近第二表面;和
n型阴极层,所述n型阴极层被设置为比n型漂移层更靠近第二表面,并且接触n型漂移层和第二电极,并且
所述第二沟槽使p型端部层与第一p型层及第二p型层分离。
2.根据权利要求1所述的半导体器件,其特征在于,
所述半导体基板包括二极管区域和绝缘栅双极晶体管区域,
存在多个所述沟槽间区域,
所述二极管区域和绝缘栅双极晶体管区域中的每一个均具有所述沟槽间区域中的至少一个,
所述绝缘栅双极晶体管区域中的沟槽间区域具有n型发射极层,所述n型发射极层接触第一电极和第一绝缘层,并且通过第一p型层而与n型阻挡层分离,
所述n型阴极层设置在二极管区域中,并且
所述半导体基板具有p型第一集电极层,所述p型第一集电极层设置在绝缘栅双极晶体管区域中,所述p型第一集电极层被设置为比n型漂移层更靠近第二表面,并且接触n型漂移层和第二电极。
3.根据权利要求2所述的半导体器件,其特征在于,
所述二极管区域是在n型漂移层与第二电极之间具有n型阴极层的区域,并且
所述绝缘栅双极晶体管区域是在n型漂移层与第二电极之间具有p型第一集电极层的区域。
4.根据权利要求3所述的半导体器件,其特征在于,
所述二极管区域包括未设置n型发射极层的沟槽间区域。
5.根据权利要求2所述的半导体器件,其特征在于,
所述n型漂移层的一部分被设置为比p型端部层更靠近第二表面,
所述半导体基板具有p型第二集电极层,所述p型第二集电极层被设置为比p型端部层更靠近第二表面并且比n型漂移层更靠近第二表面,并且接触n型漂移层和第二电极,并且
当在平面视图中查看半导体基板时,所述n型阴极层与p型第二集电极层之间的边界设置在与第二沟槽重叠的位置处或者二极管区域中。
6.根据权利要求1至5中的任一项所述的半导体器件,其特征在于,
所述p型端部层接触第二沟槽在p型端部层侧的侧表面。
7.根据权利要求6所述的半导体器件,其特征在于,
所述p型端部层接触第二沟槽在p型端部层侧的侧表面的整个范围。
8.根据权利要求1至5中的任一项所述的半导体器件,其特征在于,
所述p型端部层的p型杂质浓度高于n型漂移层的n型杂质浓度。
9.根据权利要求1所述的半导体器件,其特征在于,
当在平面视图中查看半导体基板时,第一沟槽相互平行地延伸。
10.根据权利要求9所述的半导体器件,其特征在于,
当在平面视图中查看半导体基板时,第二沟槽在与第一沟槽正交的方向上延伸。
11.根据权利要求1至5中的任一项所述的半导体器件,其特征在于,
所述第二沟槽被填充绝缘体。
12.根据权利要求2所述的半导体器件,其特征在于,
所述第二沟槽设置有第二沟槽电极,并且
每个第一沟槽电极经由第二沟槽电极电连接。
13.根据权利要求12所述的半导体器件,其特征在于,
所述二极管区域中的第一沟槽电极中的一个第一沟槽电极与第二沟槽电极电分离,并且接触第一电极。
14.根据权利要求2所述的半导体器件,其特征在于,
所述二极管区域中的第一沟槽电极与绝缘栅双极晶体管区域中的第一沟槽电极电分离。
15.根据权利要求10所述的半导体器件,其特征在于,
存在多个沟槽间区域,
作为沟槽间区域之一的第一沟槽间区域中的第二沟槽以及与第一沟槽间区域相邻的第二沟槽间区域中的第二沟槽位于第一沟槽的纵向方向上的不同位置处。
16.根据权利要求10所述的半导体器件,其特征在于,
所述半导体基板在第一表面上包括在第一沟槽的纵向方向上平行地设置的两个第二沟槽。
17.根据权利要求1所述的半导体器件,其特征在于,
所述半导体基板包括二极管区域和金属氧化物半导体场效应晶体管区域,
存在多个所述沟槽间区域,
所述二极管区域和金属氧化物半导体场效应晶体管区域中的每一个均具有所述沟槽间区域中的至少一个,
所述金属氧化物半导体场效应晶体管区域中的沟槽间区域具有n型源极层,所述n型源极层接触第一电极和第一绝缘层,并且通过第一p型层而与n型阻挡层分离,
所述n型阴极层设置在二极管区域中,并且
所述半导体基板具有n型漏极层,所述n型漏极层设置在金属氧化物半导体场效应晶体管区域中,被设置为比n型漂移层更靠近第二表面,并且接触n型漂移层和第二电极。
18.根据权利要求1至5中的任一项所述的半导体器件,其特征在于,
所述n型阴极层具有比n型漂移层高的n型杂质浓度。
CN201611034190.4A 2015-11-19 2016-11-16 半导体器件 Active CN106783849B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227049 2015-11-19
JP2015227049A JP6260605B2 (ja) 2015-11-19 2015-11-19 半導体装置

Publications (2)

Publication Number Publication Date
CN106783849A CN106783849A (zh) 2017-05-31
CN106783849B true CN106783849B (zh) 2019-07-02

Family

ID=58721133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611034190.4A Active CN106783849B (zh) 2015-11-19 2016-11-16 半导体器件

Country Status (3)

Country Link
US (1) US9899374B2 (zh)
JP (1) JP6260605B2 (zh)
CN (1) CN106783849B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417621A (zh) * 2017-02-10 2018-08-17 中芯国际集成电路制造(上海)有限公司 绝缘栅双极型晶体管及其形成方法
JP6804379B2 (ja) * 2017-04-24 2020-12-23 三菱電機株式会社 半導体装置
CN107623027B (zh) * 2017-10-20 2020-03-31 电子科技大学 一种沟槽栅电荷储存型绝缘栅双极型晶体管及其制造方法
JP6626929B1 (ja) * 2018-06-29 2019-12-25 京セラ株式会社 半導体デバイス及び電気装置
JP7486373B2 (ja) * 2020-07-29 2024-05-17 三菱電機株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000911A (zh) * 2006-01-10 2007-07-18 株式会社电装 具有igbt和二极管的半导体器件
JP2013026534A (ja) * 2011-07-25 2013-02-04 Toyota Central R&D Labs Inc 半導体装置
CN104054179A (zh) * 2012-01-24 2014-09-17 丰田自动车株式会社 半导体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257394B2 (ja) * 1996-04-04 2002-02-18 株式会社日立製作所 電圧駆動型半導体装置
EP1009035B1 (en) * 1997-08-29 2004-07-21 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method for manufacturing the same
JP4852188B2 (ja) * 1999-12-06 2012-01-11 株式会社豊田中央研究所 半導体装置
JP5223291B2 (ja) * 2007-10-24 2013-06-26 富士電機株式会社 半導体装置の製造方法
JP5261137B2 (ja) * 2008-11-04 2013-08-14 株式会社豊田中央研究所 バイポーラ型半導体装置
JP5582102B2 (ja) 2010-07-01 2014-09-03 株式会社デンソー 半導体装置
JP5886548B2 (ja) 2011-07-11 2016-03-16 株式会社豊田中央研究所 半導体装置
JP5981859B2 (ja) 2013-02-15 2016-08-31 株式会社豊田中央研究所 ダイオード及びダイオードを内蔵する半導体装置
JP5989689B2 (ja) 2014-01-27 2016-09-07 トヨタ自動車株式会社 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000911A (zh) * 2006-01-10 2007-07-18 株式会社电装 具有igbt和二极管的半导体器件
JP2013026534A (ja) * 2011-07-25 2013-02-04 Toyota Central R&D Labs Inc 半導体装置
CN104054179A (zh) * 2012-01-24 2014-09-17 丰田自动车株式会社 半导体装置

Also Published As

Publication number Publication date
US9899374B2 (en) 2018-02-20
CN106783849A (zh) 2017-05-31
JP6260605B2 (ja) 2018-01-17
JP2017098344A (ja) 2017-06-01
US20170148785A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
CN106783849B (zh) 半导体器件
CN105702718B (zh) 反向导通绝缘栅双极性晶体管
JP5694505B2 (ja) 電力半導体デバイス
CN107039438B (zh) 半导体装置
JP5034461B2 (ja) 半導体装置
CN1967868B (zh) 半导体装置及其制造方法
US9666704B2 (en) Semiconductor device
JP6053050B2 (ja) 逆導通igbt
JP2016082097A (ja) 半導体装置
CN111081770B (zh) 半导体装置
CN105097905B (zh) 绝缘栅双极晶体管
CN109155334A (zh) 半导体装置
CN105900245A (zh) 半导体装置
CN109509789A (zh) 半导体装置
JP2016134465A (ja) 半導体装置
US8823052B2 (en) Power semiconductor device
CN112673466A (zh) 半导体装置
JP2014103352A (ja) 半導体装置
CN108735808A (zh) 半导体开关元件及其制造方法
CN109075196A (zh) 半导体开关元件
JP2019161112A (ja) 半導体装置
JP2005150348A (ja) 半導体装置
CN110246840A (zh) 半导体装置
JP6852541B2 (ja) 半導体装置
JP6889829B2 (ja) 半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200410

Address after: Aichi Prefecture, Japan

Patentee after: DENSO Corp.

Address before: Aichi Prefecture, Japan

Patentee before: Toyota Motor Corp.

TR01 Transfer of patent right