CN106744787A - 蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池 - Google Patents

蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池 Download PDF

Info

Publication number
CN106744787A
CN106744787A CN201611003608.5A CN201611003608A CN106744787A CN 106744787 A CN106744787 A CN 106744787A CN 201611003608 A CN201611003608 A CN 201611003608A CN 106744787 A CN106744787 A CN 106744787A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
preparation
hard carbon
porous hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611003608.5A
Other languages
English (en)
Other versions
CN106744787B (zh
Inventor
侯春平
贺超
孙永林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bolt new materials (Yinchuan) Co.,Ltd.
Original Assignee
Anhui Anda New Energy Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Anda New Energy Materials Co Ltd filed Critical Anhui Anda New Energy Materials Co Ltd
Priority to CN201611003608.5A priority Critical patent/CN106744787B/zh
Publication of CN106744787A publication Critical patent/CN106744787A/zh
Application granted granted Critical
Publication of CN106744787B publication Critical patent/CN106744787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池,该方法通过先制得咖啡粉,接着于惰性气体中进行低温炭化处理制得前驱体,再与溶剂和有机碳源进行有机碳源包覆处理制得材料颗粒,最后将材料颗粒进行高温碳化处理制得蜂窝状多孔硬碳锂离子电池负极材料。该方法工艺简单,合成途径简单可控易于对材料的形貌和尺寸进行微观调控,制得的蜂窝状多孔硬碳锂离子电池负极材料可逆容量高、倍率循环性能好、低温性能好。

Description

蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子 电池
技术领域
本发明涉及新型能源材料,具体涉及蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池。
背景技术
锂离子电池作为一种新型的高能电池,在移动通讯设备、便携式计算机、摄像机、照相机、MP3等小型设备中得到大量应用,也成为太阳能、风能等发电系统的储备电源、无绳电动工具电源以及混合电动汽车(HEV)、纯电动汽车(EV)电源。尤其是随着电动汽车和太阳能/风能储能对锂离子电池需求的快速发展,对锂离子电池的安全性、循环性能、倍率性能和高低温性能提出了很高要求。负极材料作为锂离子电池的重要组成部分,其性能的好坏直接影响锂电池的性能。目前石墨作为使用最为广泛的碳基锂离子电池负极材料,其实际比容量发挥较低,且循环稳定性、安全性、倍率性能难以有效提高,因而寻找合适的新的碳基材料来代替当前商品化的负极材料并提高电池综合性能,是当前研究的热点。其中,硬碳类负极材料由于具有高比能量、高安全性、大电流快速充放电、长的使用寿命,因此得到全球的重点关注。
根据文献报导的方法虽然能够合成硬碳类负极材料,但是其方法都具有合成步骤多、操作繁琐的缺陷,且制得的硬碳类负极材料的可逆容量较低、倍率循环性能较差,此外低温性能很差。
发明内容
本发明的目的之一是提供工艺简单、操作方便可控的蜂窝状多孔硬碳锂离子电池负极材料的制备方法。
本发明的目的之二是提供由上述方法制备而成的可逆容量高、倍率循环性能好、低温性能好的蜂窝状多孔硬碳锂离子电池负极材料。
本发明的目的之三是提供电池负极包括上述蜂窝状多孔硬碳锂离子电池负极材料的锂离子电池。
本发明提供的蜂窝状多孔硬碳锂离子电池负极材料的制备方法包括:
(1)将咖啡豆粉碎制得咖啡粉;
(2)将所述咖啡粉于惰性气体中进行煅烧、冷却、粉碎以制得前驱体;
(3)将所述前驱体、溶剂和有机碳源进行搅拌、干燥处理以制得材料颗粒;
(4)将所述材料颗粒于惰性气体中进行煅烧、冷却、粉碎、振实以制得蜂窝状多孔硬碳锂离子电池负极材料;
其中,相对于100重量份的所述前驱体,所述有机碳源的用量为1-20重量份;在步骤(2)中,所述煅烧的步骤为:自15-35℃以1-3℃/min的升温速率升温至250-600℃,煅烧2-10h;在步骤(4)中,所述煅烧的步骤为:自18-25℃以2-10℃/min的升温速率升温至650-1400℃,煅烧3-20h;所述材料颗粒的质量含水量为0-1%。
在上述制备方法的步骤(1)中,咖啡粉的具体大小可以在宽的范围内选择,但是为了使得制得的咖啡粉表面多孔,具有更大的比表面积,优选地,咖啡粉的粒径小于100目。
在上述制备方法中,惰性气体的具体种类可以在宽的范围内选择,为了更好地保护材料颗粒不被氧化变质,优选地,惰性气体为氦气、氩气和氮气的一种或多种。
在上述制备方法中,冷却的方式可以在宽的范围内选择,从冷却效果和节能角度考虑,优选地,冷却采用自然冷却的方式进行,且冷却至煅烧产物的温度为15-35℃。
在上述制备方法的步骤(3)中,搅拌的转速为50-1000rpm,时间为0.5-10h。
在上述制备方法的步骤(3)中,溶剂的具体种类可以在宽的范围内选择,但是为了使制得的蜂窝状多孔硬碳锂离子电池负极材料具有更优异的比容量,优选地,溶剂为水、乙醇、甲醇、丙酮、四氢呋喃、N-甲基吡咯烷酮、正丁醇、乙醚、石油醚、二氯甲烷和氯仿中的一种或多种;
更优选地,所述溶剂为水、二氯甲烷、乙醇和水的混合溶剂和乙醇和丙酮的混合溶剂中的一种或多种。
在上述制备方法的步骤(3)中,有机碳源的具体种类可以在宽的范围内选择,为提高所制得材料颗粒的比表面积,提高其电化学性能,优选地,有机碳源为沥青、环氧树脂、酚醛树脂、呋喃树脂、丙烯酸树脂、乙基甲基碳酸酯、聚乙烯醇、聚苯乙烯、聚甲基丙烯酸甲酯、聚四氟乙烯、聚偏氟乙烯、聚丙烯腈、聚氯乙烯、聚乙烯、聚对苯、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇、聚乙二醇亚胺、聚乙炔、聚苯胺、聚吡咯、聚并苯、聚噻吩、聚间苯二胺、聚对苯撑乙烯、聚酰亚胺、聚苯硫醚、聚乙烯基吡咯烷酮、丁苯橡胶和羧甲基纤维素中的一种或多种;
更优选地,所述有机碳源为聚乙烯醇、沥青、甲基纤维素和酚醛树脂中的一种或多种。
在上述制备方法的步骤(3)中,添料顺序可以在宽的范围内选择,为了保证前驱体均匀分散在溶剂中,优选地,添料顺序为:先将所述前驱体分散在溶剂中,再加入有机碳源进行搅拌、干燥以制得材料颗粒。
本发明提供的蜂窝状多孔硬碳锂离子电池负极材料是通过上述的方法制备而成。
本发明提供的锂离子电池其电池的负极包括上述蜂窝状多孔硬碳锂离子电池负极材料。
通过上述技术方案,本发明通过先制得咖啡粉,接着于惰性气体中进行低温炭化处理制得前驱体,再与溶剂和有机碳源进行有机碳源包覆处理制得材料颗粒,最后将材料颗粒进行高温碳化处理制得蜂窝状多孔硬碳锂离子电池负极材料。该方法反应条件温和,工艺简单,操作方便,生产成本低廉,合成途径简单可控易于对材料的形貌和尺寸进行围观调控,适合大规模生产,制得的蜂窝状多孔硬碳锂离子电池负极材料可逆容量高、倍率循环性能好、低温性能好。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是检测例1中的蜂窝状多孔硬碳锂离子电池负极材料A1的X-射线粉末衍射(XRD)图;
图2是检测例2中的蜂窝状多孔硬碳锂离子电池负极材料A1的扫描电子显微镜(SEM)图;
图3是应用例1中的蜂窝状多孔硬碳负极材料A1与市售人造石墨在0.001-2.0V电压区间、0.1C倍率下的充放电曲线图;
图4是应用例1中的蜂窝状多孔硬碳负极材料A1与市售人造石墨的倍率放电曲线图;
图5是应用例1中的蜂窝状多孔硬碳负极材料A1与市售人造石墨样品在-20℃温度下的充放电曲线图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
(1)将咖啡豆粉碎制得粒径小于100目的咖啡粉;
(2)将所述咖啡粉于氦气中自20℃以2℃/min的升温速率升温至400℃,低温碳化处理6h,接着自然冷却至煅烧产物的温度为20℃,然后粉碎以制得前驱体;
(3)将100重量份的所述前驱体分散在水中,再加入5重量份的聚乙烯醇,以500rpm的转速搅拌分散6h制得料浆、接着干燥处理以制得材料颗粒;
(4)将所述材料颗粒于氦气中自20℃以5℃/min的升温速率升温至900℃,高温碳化处理10h,接着自然冷却至煅烧产物的温度为20℃,然后粉碎、振实以制得蜂窝状多孔硬碳锂离子电池负极材料A1。
实施例2
(1)将咖啡豆粉碎制得粒径小于100目的咖啡粉;
(2)将所述咖啡粉于氩气中自25℃以2℃/min的升温速率升温至250℃,低温碳化处理10h,接着自然冷却至煅烧产物的温度为25℃,然后粉碎以制得前驱体;
(3)将100重量份的所述前驱体分散在二氯甲烷中,再加入20重量份的沥青,以1000rpm的转速搅拌0.5h制得料浆、接着干燥处理以制得材料颗粒;
(4)将所述材料颗粒于氮气中自25℃以2℃/min的升温速率升温至650℃,高温碳化处理20h,接着自然冷却至煅烧产物的温度为25℃,然后粉碎、振实以制得蜂窝状多孔硬碳锂离子电池负极材料A2。
实施例3
(1)将咖啡豆粉碎制得粒径小于100目的咖啡粉;
(2)将所述咖啡粉于氩气中自30℃以2℃/min的升温速率升温至600℃,低温碳化处理2h,接着自然冷却至煅烧产物的温度为30℃,然后粉碎以制得前驱体;
(3)将100重量份的所述前驱体分散在体积比为1:1的乙醇和水的混合溶剂中,再加入1重量份的甲基纤维素,以50rpm的转速搅拌10h制得料浆、接着干燥处理以制得材料颗粒;
(4)将所述材料颗粒于氮气中自30℃以10℃/min的升温速率升温至1400℃,高温碳化处理3h,接着自然冷却至煅烧产物的温度为30℃,然后粉碎、振实以制得蜂窝状多孔硬碳锂离子电池负极材料A3。
实施例4
(1)将咖啡豆粉碎制得粒径小于100目的咖啡粉;
(2)将所述咖啡粉于氩气中自35℃以2℃/min的升温速率升温至500℃,低温碳化处理4h,接着自然冷却至煅烧产物的温度为35℃,然后粉碎以制得前驱体;
(3)将100重量份的所述前驱体分散在体积比为1:1的乙醇和丙酮的混合溶剂中,再加入4重量份的酚醛树脂,以200rpm的转速搅拌8h制得料浆、接着干燥处理以制得材料颗粒;
(4)将所述材料颗粒于氮气中自35℃以5℃/min的升温速率升温至1100℃,高温碳化处理6h,接着自然冷却至煅烧产物的温度为35℃,然后粉碎、振实以制得蜂窝状多孔硬碳锂离子电池负极材料A4。
检测例1
用日本岛津公司XRD-7000S型号的X-射线粉末衍射仪对蜂窝状多孔硬碳锂离子电池负极材料A1进行物相鉴定,结果见图1,测得d002为0.382nm,多孔硬碳负极材料出现具有一定无定形碳特征的宽峰,分别位于25°和45°附近,而且衍射峰宽化。
按照相同的方法对A2-A4进行检测,检测结果与A1的XRD图基本保持一致。
检测例2
用日本日电公司的JSM-6700F扫描电子显微镜对蜂窝状多孔硬碳锂离子电池负极材料A1进行形貌分析,结果见图2。从图上可以看出实施例1中所制得的蜂窝状多孔硬碳锂离子电池负极材料A1表面多孔呈蜂窝状。
按照相同的方法对A2-A4进行检测,检测结果与A1的SEM图基本保持一致。
检测例3
用丹东百特仪器有限公司的9300Z激光粒度分析仪对实施例1中所制得的蜂窝状多孔硬碳锂离子电池负极材料A1进行分析,测得D50为20.58μm。
按照相同的方法对A2-A4进行检测,检测结果与A1基本保持一致。
检测例4
用美国康塔NOVA 4000e对实施例1中所制得的蜂窝状多孔硬碳锂离子电池负极材料A1进行比表面积的测定,测得比表面积为2.512m2/g。
按照相同的方法对A2-A4进行检测,检测结果与A1基本保持一致。
检测例5
用美国康塔的Autotap对实施例1中所制得的蜂窝状多孔硬碳锂离子电池负极材料A1进行振实密度的测定,测得振实密度为0.85g/cm3
按照相同的方法对A2-A4进行检测,检测结果与A1基本保持一致。
应用例1
将实施例1中制得的蜂窝状多孔硬碳锂离子电池负极材料与粘合剂聚偏二氟乙烯PVDF以及导电炭黑按92∶5∶3的重量比研磨混合,并加入N-甲基吡咯烷酮NMP作为分散剂调成浆料,均匀涂覆在10μm厚的铜箔表面,烘干后压制成片,接着在120℃烘干12h制得蜂窝状多孔硬碳锂离子电池负极材料。
在充满氩气的德国布劳恩惰性气体手套箱系统有限公司型MBRAUN手套箱中,将制得的蜂窝状多孔硬碳材料与金属锂片组装成2025型扣式电池。其中,电解液是含1mol/LLiPF6的体积比为EC:DMC:EMC=1:1:1的混合溶液;隔膜为Celgard2400微孔膜。
将组装的2025型纽扣式电池在电压区间为0.001-2.0V,分别在0.1C、0.5C和1.0C倍率条件下进行恒流充放电测试,测试结果为:在0.1C倍率下,电池的首次放电比容量达到293.5mAh/g,首次库仑效率为66.7%;在0.5C和1.0C倍率充放电时,材料的放电容量分别为166和125.8mAh/g。图3为0.1C条件下的充放电曲线图。随着放电倍率的增大,所制备的硬碳材料的放电容量高于人造石墨,在1.0C倍率时明显高于市售人造石墨的放电容量。图4为蜂窝状多孔硬碳锂离子电池负极材料的倍率放电曲线。图5为A1与市售人造石墨样品在-20℃温度下的充放电曲线。从图上可以看出,在-20℃温度下,所制备的蜂窝状多孔硬碳锂离子电池负极材料的放电容量为53.5mAh/g,远远高于市售人造石墨。以上数据表明制得的蜂窝状多孔硬碳锂离子电池负极材料的可逆容量高、倍率循环性能好、低温性能好。
按照相同的方法对A2-A4进行检测,检测结果与A1的检测结果基本保持一致。
以上数据表明本发明公开的蜂窝状多孔硬碳锂离子电池负极材料的可逆容量高、倍率循环性能好、低温性能好。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

1.一种蜂窝状多孔硬碳锂离子电池负极材料的制备方法,其特征在于,所述制备方法包括:
(1)将咖啡豆粉碎制得咖啡粉;
(2)将所述咖啡粉于惰性气体中进行煅烧、冷却、粉碎以制得前驱体;
(3)将所述前驱体、溶剂和有机碳源进行搅拌、干燥处理以制得材料颗粒;
(4)将所述材料颗粒于惰性气体中进行煅烧、冷却、粉碎、振实以制得蜂窝状多孔硬碳锂离子电池负极材料;
其中,相对于100重量份的所述前驱体,所述有机碳源的用量为1-20重量份;在步骤(2)中,所述煅烧的步骤为:自15-35℃以1-3℃/min的升温速率升温至250-600℃,煅烧2-10h;在步骤(4)中,所述煅烧的步骤为:自18-25℃以2-10℃/min的升温速率升温至650-1400℃,煅烧3-20h;所述材料颗粒的质量含水量为0-1%。
2.根据权利要求1所述的制备方法,其中,在步骤(1)中,所述咖啡粉的粒径小于100目。
3.根据权利要求1或2所述的制备方法,其中,所述惰性气体为氦气、氩气和氮气的一种或多种。
4.根据权利要求3所述的制备方法,其中,所述冷却采用自然冷却的方式进行,且冷却至煅烧产物的温度为15-35℃。
5.根据权利要求1-4任意一项所述的制备方法,其中,在步骤(3)中,所述搅拌的转速为50-1000rpm,时间为0.5-10h。
6.根据权利要求1或5所述的制备方法,其中,在步骤(3)中,所述溶剂为水、乙醇、甲醇、丙酮、四氢呋喃、N-甲基吡咯烷酮、正丁醇、乙醚、石油醚、二氯甲烷和氯仿中的一种或多种;
优选地,所述溶剂为水、二氯甲烷、乙醇和水的混合溶剂和乙醇和丙酮的混合溶剂中的一种或多种。
7.根据权利要求5所述的制备方法,其中,在步骤(3)中,所述有机碳源为沥青、环氧树脂、酚醛树脂、呋喃树脂、丙烯酸树脂、乙基甲基碳酸酯、聚乙烯醇、聚苯乙烯、聚甲基丙烯酸甲酯、聚四氟乙烯、聚偏氟乙烯、聚丙烯腈、聚氯乙烯、聚乙烯、聚对苯、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇、聚乙二醇亚胺、聚乙炔、聚苯胺、聚吡咯、聚并苯、聚噻吩、聚间苯二胺、聚对苯撑乙烯、聚酰亚胺、聚苯硫醚、聚乙烯基吡咯烷酮、丁苯橡胶和羧甲基纤维素中的一种或多种;
优选地,所述有机碳源为聚乙烯醇、沥青、甲基纤维素和酚醛树脂中的一种或多种。
8.根据权利要求1所述的制备方法,其中,步骤(3)中的添料顺序为:先将所述前驱体分散在溶剂中,再加入有机碳源进行搅拌、干燥以制得材料颗粒。
9.一种蜂窝状多孔硬碳锂离子电池负极材料,其特征在于,所述蜂窝状多孔硬碳锂离子电池负极材料通过权利要求1-8中任意一项所述的制备方法制备而成。
10.一种锂离子电池,其特征在于,所述锂离子电池的负极包括权利要求9所述的蜂窝状多孔硬碳锂离子电池负极材料。
CN201611003608.5A 2016-11-15 2016-11-15 蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池 Active CN106744787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611003608.5A CN106744787B (zh) 2016-11-15 2016-11-15 蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611003608.5A CN106744787B (zh) 2016-11-15 2016-11-15 蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池

Publications (2)

Publication Number Publication Date
CN106744787A true CN106744787A (zh) 2017-05-31
CN106744787B CN106744787B (zh) 2019-12-17

Family

ID=58968630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611003608.5A Active CN106744787B (zh) 2016-11-15 2016-11-15 蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池

Country Status (1)

Country Link
CN (1) CN106744787B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107777686A (zh) * 2017-11-03 2018-03-09 中国科学院山西煤炭化学研究所 一种采用聚苯硫醚废弃物制备原位掺硫活性炭的方法及其应用
CN108383099A (zh) * 2018-02-01 2018-08-10 电子科技大学 一种利用蜂巢制备钠离子电池负极材料的方法
CN108584915A (zh) * 2018-06-03 2018-09-28 湖南科技大学 一种规整六边形的蜂窝状碳纳米材料及其制备方法
CN109734087A (zh) * 2019-01-28 2019-05-10 铜仁学院 一种利用废旧蜂巢制备高表面积活性炭的方法
CN113800496A (zh) * 2021-08-06 2021-12-17 深圳市德方纳米科技股份有限公司 一种硬碳材料及其制备方法和应用
CN117117189A (zh) * 2023-08-31 2023-11-24 深圳先进技术研究院 一种钠离子电池用负极活性材料及其制备方法和应用
CN117923463A (zh) * 2024-01-03 2024-04-26 广东钠壹新能源科技有限公司 一种碳纤维包覆的硬碳材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887966A (zh) * 2010-06-18 2010-11-17 深圳市贝特瑞新能源材料股份有限公司 锂离子电池复合硬碳负极材料及其制备方法
CN101916845A (zh) * 2010-08-05 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 适合于动力与储能电池用的硬碳材料及其制备方法
CN102153066A (zh) * 2010-02-12 2011-08-17 昊纺股份有限公司 咖啡碳粉的制造方法
CN103156317A (zh) * 2013-03-27 2013-06-19 江阴芗菲服饰有限公司 咖啡碳/porel/粘胶纤维功能毛衫及其制作方法
CN105047921A (zh) * 2015-07-14 2015-11-11 宁夏共享新能源材料有限公司 锂离子电池正极材料复合磷酸铁锂及其制备方法和锂离子电池
CN105742571A (zh) * 2016-03-30 2016-07-06 陕西科技大学 空心管状结构的生物碳用锂离子电池负极材料及制备方法
CN106099108A (zh) * 2016-08-30 2016-11-09 湖北宇电能源科技股份有限公司 一种电池级石墨/活性炭复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153066A (zh) * 2010-02-12 2011-08-17 昊纺股份有限公司 咖啡碳粉的制造方法
CN101887966A (zh) * 2010-06-18 2010-11-17 深圳市贝特瑞新能源材料股份有限公司 锂离子电池复合硬碳负极材料及其制备方法
CN101916845A (zh) * 2010-08-05 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 适合于动力与储能电池用的硬碳材料及其制备方法
CN103156317A (zh) * 2013-03-27 2013-06-19 江阴芗菲服饰有限公司 咖啡碳/porel/粘胶纤维功能毛衫及其制作方法
CN105047921A (zh) * 2015-07-14 2015-11-11 宁夏共享新能源材料有限公司 锂离子电池正极材料复合磷酸铁锂及其制备方法和锂离子电池
CN105742571A (zh) * 2016-03-30 2016-07-06 陕西科技大学 空心管状结构的生物碳用锂离子电池负极材料及制备方法
CN106099108A (zh) * 2016-08-30 2016-11-09 湖北宇电能源科技股份有限公司 一种电池级石墨/活性炭复合材料的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107777686A (zh) * 2017-11-03 2018-03-09 中国科学院山西煤炭化学研究所 一种采用聚苯硫醚废弃物制备原位掺硫活性炭的方法及其应用
CN108383099A (zh) * 2018-02-01 2018-08-10 电子科技大学 一种利用蜂巢制备钠离子电池负极材料的方法
CN108383099B (zh) * 2018-02-01 2021-09-24 电子科技大学 一种利用蜂巢制备钠离子电池负极材料的方法
CN108584915A (zh) * 2018-06-03 2018-09-28 湖南科技大学 一种规整六边形的蜂窝状碳纳米材料及其制备方法
CN108584915B (zh) * 2018-06-03 2021-09-14 湖南科技大学 一种规整六边形的蜂窝状碳纳米材料及其制备方法
CN109734087A (zh) * 2019-01-28 2019-05-10 铜仁学院 一种利用废旧蜂巢制备高表面积活性炭的方法
CN113800496A (zh) * 2021-08-06 2021-12-17 深圳市德方纳米科技股份有限公司 一种硬碳材料及其制备方法和应用
CN117117189A (zh) * 2023-08-31 2023-11-24 深圳先进技术研究院 一种钠离子电池用负极活性材料及其制备方法和应用
CN117923463A (zh) * 2024-01-03 2024-04-26 广东钠壹新能源科技有限公司 一种碳纤维包覆的硬碳材料及其制备方法与应用

Also Published As

Publication number Publication date
CN106744787B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
CN106744787A (zh) 蜂窝状多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池
CN105185997B (zh) 一种钠离子二次电池负极材料及其制备方法和用途
Huang et al. Calix [6] quinone as high-performance cathode for lithium-ion battery
CN106532009B (zh) 一种高容量锂离子电池硬炭复合负极材料的制备方法
CN103887502B (zh) 一种人造石墨锂离子电池负极材料及其制备方法
CN107369825A (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
CN103011127B (zh) 锂离子电池负极用沥青硬炭材料制备方法
CN105932234A (zh) 一种钠离子电池负极材料用掺杂多孔碳球及其制备方法
CN105914371A (zh) 酚醛树脂基硬碳微球,其制备方法及负极材料和二次电池
JP7162148B2 (ja) 負極活性材料、その製造方法、及びそれに関連した二次電池、電池モジュール、電池パック及び装置
CN102557009B (zh) 一种动力锂离子电池负极用层次孔结构炭材料及其制备方法
CN102306781A (zh) 一种掺杂石墨烯电极材料及其宏量制备方法和应用
CN103682327B (zh) 基于氮掺杂碳层包裹的空心多孔氧化镍复合材料的锂离子电池及其制备方法
CN103346293A (zh) 锂离子电池负极材料及其制备方法、锂离子电池
CN103754858B (zh) 一种动力储能电池用硬碳负极材料及其制备方法
CN106450313B (zh) 多孔硬碳锂离子电池负极材料及其制备方法和锂离子电池
CN102881869A (zh) 一种锂离子电池用的改性硬碳负极材料及其制备方法
CN107601579B (zh) 一种高性能多孔Co-Mn-O纳米片材料的制备方法及其所得材料和应用
CN108315028A (zh) 一种具有纵向孔结构的热解硬碳材料及其制备方法和应用
CN104393284A (zh) 负载氧化镍纳米颗粒的多孔硬碳球负极材料及制备方法
CN105977491A (zh) 一种氮掺杂分级多孔炭电极材料及其应用
CN104852020A (zh) 一种锂离子电池用硅氧化物复合负极材料的制备方法
JP2018022691A (ja) 黒鉛材料の製造方法
CN111211308A (zh) 丝瓜络生物质碳负载红磷的锂离子电池负极材料及其制备方法
CN106384824A (zh) 一种球形碳素电极材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180111

Address after: 518071 Guangdong city of Shenzhen province Nanshan District Xili Liuxian Avenue joygoal building room 602

Applicant after: Hou Chunping

Address before: 241000 Wuhu high tech Zone in the Southern District of small and medium enterprises entrepreneurship Park, building No. 1, No.

Applicant before: Anhui anda new energy materials Co. Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190111

Address after: Room 303, TMT Breeding Center, Tongda Nanjie, Yinchuan Development Zone, Yinchuan City, Ningxia Hui Autonomous Region, 750011

Applicant after: Ningxia Boulter Technology Co., Ltd.

Address before: 518071 Room 602, Zhongguan Building, Xili Liuxian Avenue, Nanshan District, Shenzhen City, Guangdong Province

Applicant before: Hou Chunping

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 750011 factory building No.20, zone a, Pioneer Park, Jinfeng Industrial Park, Yinchuan City, Ningxia Hui Autonomous Region

Patentee after: Bolt new materials (Yinchuan) Co.,Ltd.

Address before: Room 303, TMT Breeding Center, Tongda Nanjie, Yinchuan Development Zone, Yinchuan City, Ningxia Hui Autonomous Region, 750011

Patentee before: NINGXIA BOLT TECHNOLOGY Co.,Ltd.

CP03 Change of name, title or address