CN106456980A - 对馈通进行激光焊接 - Google Patents

对馈通进行激光焊接 Download PDF

Info

Publication number
CN106456980A
CN106456980A CN201480027780.7A CN201480027780A CN106456980A CN 106456980 A CN106456980 A CN 106456980A CN 201480027780 A CN201480027780 A CN 201480027780A CN 106456980 A CN106456980 A CN 106456980A
Authority
CN
China
Prior art keywords
insulator
lasso
case
described insulator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480027780.7A
Other languages
English (en)
Other versions
CN106456980B (zh
Inventor
J.马克汉
U.豪施
G.帕夫洛维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Materials Technology GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Materials Technology GmbH and Co KG filed Critical Heraeus Materials Technology GmbH and Co KG
Publication of CN106456980A publication Critical patent/CN106456980A/zh
Application granted granted Critical
Publication of CN106456980B publication Critical patent/CN106456980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/22Installations of cables or lines through walls, floors or ceilings, e.g. into buildings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3752Details of casing-lead connections
    • A61N1/3754Feedthroughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49227Insulator making

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Prostheses (AREA)
  • Electrotherapy Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一个方面是一种将绝缘体(112)联接到可植入医疗装置(100)中的周围套圈(110)的方法。提供绝缘体(112),多个传导元件(114)延伸通过该绝缘体(112)。将绝缘体与传导元件一起放置在具有框状形状的套圈内,套圈沿着界面围绕绝缘体。用第一激光器(140)将绝缘体加热直至使绝缘体的温度升高至第一温度水平。一旦绝缘体已经达到第一温度,则用第二激光器(150)沿着界面将套圈焊接到绝缘体。

Description

对馈通进行激光焊接
背景技术
一个方面涉及一种用于可植入医疗装置的馈通装置。馈通建立医疗装置的气密密封的内部与外部之间的电连接。已知的可植入治疗装置包括心脏起搏器或除颤器,其通常包括气密密封的金属壳体,该金属壳体在一侧设置有连接体,也称为集管。所述连接体包括用于连接电极引线的连接插口。在这个背景下,连接插口包括电接点,其用于将电极引线电连接到可植入治疗装置(也称为可植入装置)的壳体内部中的控制电子装置。用于此类电衬套的基本先决条件是相对于周围环境的气密密封。
因此,需要确保被引入到绝缘元件中且电信号经由其前进的导线在没有任何间隙的情况下被引入到绝缘元件中。在这个背景下,已经证明不利的是导线通常由金属制成且需要被引入到陶瓷绝缘元件中。为了确保两个元件之间的持久连接,必须将绝缘元件的钻孔的内表面金属化以便将导线焊接到其中。绝缘元件中的钻孔内部的所述金属化已被证明是难以施加的。只能借助于昂贵的程序来确保绝缘元件中的钻孔的内表面的均匀金属化。替代地或者除此之外,可使用铜焊来将导线连接到绝缘元件。然而,金属化和铜焊两者都会随时间推移而导致泄漏。
由于这些及其它原因,需要本发明。
附图说明
所包括的附图提供了实施例的进一步理解并被结合在本说明书中且构成其一部分。附图示出了实施例并且与说明书一起用于解释实施例的原理。将很容易认识到其它实施例以及实施例的许多预期优点,因为通过参考以下详细描述可更好地理解它们。附图的元件不一定相对于彼此按比例描绘。相同的附图标记指定相应的类似部分。
图1A和1B示出了根据现有技术的馈通装置。
图2示出了根据一个实施例的可植入医疗装置中的馈通组件的截面图。
图3A和3B分别地示出了根据一个实施例的馈通组件的截面图和平面图。
图4示出了根据一个实施例的馈通组件和形成方法。
图5示出了根据一个实施例的形成馈通组件的方法的流程图。
图6示出了根据一个实施例的可植入医疗装置中的馈通组件的截面图。
图7示出了根据一个实施例的可植入医疗装置中的馈通组件的截面图。
具体实施方式
在以下详细描述中,对构成其一部分的附图进行参考,并且在附图中以图示的方式示出了其中可实施本发明的特定实施例。在这方面,参考正在描述的(一个或多个)图的取向来使用方向术语,诸如“上”、“下”、“前”、“后”、“前导”、“拖后”等。由于实施例的部件可以以许多不同的取向定位,所以方向术语是用于说明的目的且绝不是限制性的。应理解的是在不脱离本发明的范围的情况下,可以采用其它实施例,或者可进行结构或逻辑上的改变。因此,不应在限制性意义上理解以下详细描述,并且本发明的范围由所附权利要求来限制。
应理解的是本文所述的各种示例性实施例的特征可被相互组合,除非另外具体地说明。
根据一个实施例,提供了一种将绝缘体联接到可植入医疗装置中的周围套圈的方法。提供绝缘体,多个传导元件延伸通过该绝缘体。将绝缘体与传导元件一起放置在具有框状形状的套圈内,套圈沿着界面围绕绝缘体。用第一激光器加热绝缘体直至将绝缘体的温度升高至第一温度水平。一旦绝缘体已经达到第一温度,则用第二激光器将套圈沿着界面焊接到绝缘体。
通常,沿着界面将套圈焊接到绝缘体所需的能量水平如此快且被限制在局部,以至于绝缘体的陶瓷通常会破裂。然而,由于第一激光器在焊接之前首先逐渐地升高陶瓷绝缘体的温度,所以焊接的热冲击被最小化。
在一个实施例中,在第二激光器将绝缘体焊接到套圈的同时用第一激光器来保持绝缘体的温度。这可以在焊接期间继续保持热冲击的减少以进一步使任何破裂最小化。在一个实施例中,第一激光器被控制成扫描绝缘体的整个表面。
在一个实施例中,传导元件被设置在绝缘体中,使得它们不延伸超过绝缘体的表面。这样,第一激光器能够在没有来自传导元件的干扰的情况下扫描绝缘体的整个表面。
在一个实施例中,在没有铜焊部的情况下提供绝缘体,使得第一激光器能够在不使任何铜焊部熔化的情况下扫描绝缘体的整个表面。这样,馈通的气密密闭度并未受到铜焊部熔化的损害。
在一个实施例中,第一激光器是构造成扫描绝缘体并使其温度上升到1300至1600摄氏度范围内的CO2激光器。在一个实施例中,第一激光器被控制为使绝缘体的温度以每秒100-150摄氏度的速率从室温斜坡上升至1300和1600摄氏度之间。在一个实施例中,第一激光器被控制为使绝缘体的温度以每秒100-150摄氏度的速率斜坡下降直至温度达到300摄氏度。以这些方式控制温度可以帮助防止使绝缘体材料破裂。
在一个实施例中,套圈设置有锥形的内边缘,其中,绝缘体具有也为锥形的外边缘,以与套圈的内边缘匹配,这可以对于在焊接期间相对于绝缘体保持套圈方面提供优点。
在一个实施例中,一种用于医疗可植入装置的馈通包括套圈,套圈包括构造成被焊接到可植入装置的罩壳的金属。绝缘体基本上被套圈围绕并与之共享界面。绝缘体包括玻璃或陶瓷材料。传导元件被形成为通过绝缘体,从而提供通过绝缘体的导电路径。在套圈和绝缘体之间的界面处不存在铜焊部或锡焊部,并且在传导元件附近不存在铜焊部或锡焊部。在界面处没有铜焊部或锡焊部的情况下,降低了泄漏的风险,并且保持了馈通的气密密闭度。
在一个实施例中,该套圈包括包含铌、钛、钛合金、钼、钴、锆、铬和铂的组中的一个,绝缘体包括氧化铝并且导电材料包括金属陶瓷。这些材料允许避免任何铜焊部以保护馈通中的气密密封。
在一个实施例中,套圈构造有锥形的内边缘,并且绝缘体构造有锥形的外边缘,以与套圈的内边缘匹配。在一个实施例中,套圈和绝缘体的各自边缘的锥形相对于垂直于馈通的顶面行进的线以5至15度的角成锥形。界面处的绝缘体和套圈的边缘的锥角允许绝缘体在绝缘体和套圈两者被沿着界面焊接在一起之前容易地座置在套圈中。绝缘体的外边缘相对于套圈的相应内边缘的锥角防止套圈和绝缘体在组装和焊接期间的相对移动。
在一个实施例中,沿着界面在套圈和绝缘体之间的距离不大于25微米。保持界面处的间隙小于25微米使焊接期间的绝缘体的破裂最小化。
在一个实施例中,提供了一种在可植入医疗装置中焊接绝缘体的方法。提供绝缘体,多个传导元件延伸通过该绝缘体。绝缘体被与传导元件一起放置在金属罩壳内,金属罩壳在界面处围绕绝缘体。用第一激光器将绝缘体加热直至使绝缘体的温度升高至第一温度水平。一旦绝缘体已经达到第一温度,则用第二激光器将罩壳焊接到绝缘体。
图1A和1B分别示出了根据现有技术的诸如用于可植入医疗装置的馈通装置10的透视图和剖视图。馈通装置10包括套圈12、绝缘体14和馈通引脚16。套圈12是具有内部开口的框状结构,绝缘体14被形成到该内部开口中且馈通引脚16延伸通过该内部开口。绝缘体14有助于馈通引脚16以不导电方式延伸通过套圈12的框状结构。
套圈12构造成配合到可植入医疗装置的罩壳的开口中,并且使得其可以被紧紧地固定到那里,以便确保相对于医疗装置的内部空间的气密密封。馈通引脚16从医疗装置的罩壳的内部空间延伸到装置外面,从而提供从内部到外部的电连接,同时保持气密密封。可以在套圈12上面提供凸缘22以进一步帮助将馈通装置10固定到可植入医疗装置的罩壳的开口并确保其气密密封。
通常,绝缘体14是陶瓷或玻璃材料,而套圈12是金属的。套圈12是金属的,使得其可以被容易地焊接到可植入医疗装置的金属罩壳。为了使绝缘体14的陶瓷材料被联接到套圈12的金属材料,绝缘体14通常被用金属化涂层20“金属化”。替代地,使用金属铜焊部来将绝缘体14的陶瓷材料固定到套圈12的金属材料。类似地,使用铜焊部18将绝缘体14的陶瓷材料联接到馈通引脚16,馈通引脚16是金属导体。
使用铜焊部18来将绝缘体14固定到馈通引脚16并将绝缘体14固定到套圈12和/或需要金属化涂层20来将绝缘体14固定到套圈12产生了额外的处理步骤并增加了制造馈通装置10的复杂性和费用。此类铜焊部18和金属化20还可以导致馈通装置10的气密密封的泄漏和失效。
图2示出了根据一个实施例的可植入医疗装置100。可植入医疗装置100包括馈通组件102和罩壳104。馈通组件102包括套圈110、绝缘体112和传导元件114。在一个实施例中,套圈10是框状结构,绝缘体112和传导元件114被形成到其中。在一个实施例中,馈通组件102被焊接到罩壳104,使得罩壳104的内部120被相对于其外部122气密密封。
在根据图1的示例性实施例中,套圈110构造成本质上是框形的并被固定到罩壳104,从而限定内部空间120和外部空间122。套圈110可以具有多种形状,例如,其可以是圆盘形的、圆形的、卵形的或多边形的,在一个实施例中,在垂直于图1的绘图平面的剖面中具有矩形或正方形截面。然而,一般说来,其它截面也是可行的。套圈110的圆盘可以被布置成完全在外部空间122中、在内部空间120中或者如图1中所示的那样跨越两者。
在一个实施例中,馈通组件102的套圈110是金属材料,如罩壳104一样,使得馈通组件102能够容易地焊接到罩壳104。在一个实施例中,传导元件114是导电材料的,使得它们提供从罩壳104的内部空间120到外部空间122的导电路径。绝缘体112是不导电材料的,使得在套圈110和传导元件114之间不存在导电连接。在绝缘体112和传导元件114之间以及在绝缘体112和套圈之间的所有界面必须被密封成使得在罩壳104的内部空间120和外部空间122之间保持气密的密封。在一个实施例中,所有这些界面都是在不使用铜焊部或锡焊部的情况下被如此密封的,如下面将更全面地解释的。
图3A示出了根据一个实施例的馈通组件102的截面图。图3B示出了相对于其在图3A中描绘的方式而言从“下”侧看的馈通组件102。在一个实施例中,通过在第一过程中形成绝缘体112和传导元件114来组装馈通组件102。在一个实施例中,绝缘体112是陶瓷材料,诸如氧化铝(Al2O3),并且传导元件114是金属陶瓷材料。
在一个实施例的上下文中,术语“金属陶瓷”或“含金属陶瓷的”应指代由金属基体(粘结剂)中的陶瓷材料制成的所有复合材料。这些材料的特征在于它们特别高的硬度和耐磨损性。“金属陶瓷”和/或“含金属陶瓷的”物质是与硬质合金有关的切割材料,但是不包含碳化钨硬质合金,并且由粉末冶金手段生产。用于金属陶瓷和/或含金属陶瓷的元件的烧结过程与用均匀粉末的情况一样进行,例外的是在相同的压力下与陶瓷材料相比金属被更强烈地压紧。含金属陶瓷的轴承元件具有比烧结硬质合金更高的热冲击和抗氧化性。在大多数情况下,金属陶瓷的陶瓷组分是氧化铝(Al2O3)和二氧化锆(ZrO2),而铌、钼、钛、钴、锆、铬和铂可设想作为金属组分。
绝缘体112的陶瓷可以是例如多层陶瓷片材,多个过孔被引入到其中。传导元件114的金属陶瓷然后被引入到过孔中。在一个实施例中,两个材料都是在生坯状态下引入的,这样,该组合被一起烧制。因此,在不使用铜焊部或锡焊部的情况下,绝缘体112和传导元件114的结合在它们之间形成气密密封。
根据一个实施例,绝缘体112也在不使用锡焊部的铜焊部的情况下被固定到套圈110以在它们之间形成气密密封。为了将绝缘体112固定到套圈110,它们被激光焊接在一起。在一个实施例中,使用两部分激光焊接过程。在一个实施例中,跨绝缘体112扫描第一激光器以便将陶瓷加热。一旦达到适当的热水平,则使用第二激光器来执行焊接以将绝缘体112结合到套圈110。在一个实施例中,在用第二激光器进行焊接之前和之后均使用第一激光器来扫描绝缘体112和套圈110两者。
图4示出了根据一个实施例的馈通组件102。在一个实施例中,使用激光焊接沿着界面130将套圈110结合到绝缘体112。为了使界面130准备好用于激光焊,第一激光器140扫描绝缘体112以便提高绝缘体112的温度。在一个实施例中,第一激光器140是CO2激光器,其构造成在绝缘体112的陶瓷材料上进行扫描以便提高陶瓷的温度。在一个实施例中,第一激光器140在绝缘体112上进行扫描以使其温度上升至1300至1600摄氏度的范围内。
一旦实现此温度范围,则使用第二激光器150来沿着套圈110和绝缘体112之间的界面130进行焊接。在一个实施例中,第二激光器150是YAG或光纤激光器,其将套圈110焊接到绝缘体112,同时第一激光器140保持绝缘体112的温度。由于第二激光器150沿着界面130产生快速且被限制在局部的能量,所以其通过将使类似于绝缘体112的陶瓷之类的材料破裂。因此,在应用第二激光器150的局部化能量之前使用第一激光器140来首先提高绝缘体112的陶瓷的温度,这使得由第二激光器150进行的焊接的热冲击最小化。
在一个实施例中,套圈110是被选择成具有与绝缘体112的材料类似的热膨胀系数的材料。在一个实施例中,绝缘体112是氧化铝(Al2O3)且套圈110是铌。由于氧化铝(Al2O3)具有8.5×10-6/C的热膨胀系数且铌具有8.7×l0-6/C的热膨胀系数,所以两种材料在第一和第二激光器140和150的热量被去除之后将会收缩非常类似的量,使得在沿着界面130的焊缝处将存在非常小的应力或破裂。这样,通过将套圈110焊接到罩壳104而建立的气密密封将不会泄漏。
在一个实施例中,被选择用于绝缘体112的材料将会具有在被选择用于套圈110的材料的热膨胀系数(CTE)的25%内的CTE。在一个实施例中,材料的CTE保持相似或者在彼此的25%内,使得一旦馈通组件102被固定于罩壳104时,可植入医疗装置100的氦泄漏率小于3.0E-09 Atm cc/sec。
在其它实施例中,与氧化铝(Al2O3)绝缘体112一起,可以将具有相似热膨胀系数的其它金属用于套圈110。例如,在某些实施例中还可使用具有8.6×10-6/C的CTE的锆(ZrO2)、具有10.1×10-6/C的CTE的钛(2级)以及具有10.6×10-6/C的CTE的钛-45铌(36级)。
在一个实施例中,第一激光器140被控制成将其能量聚焦在绝缘体112上以及聚焦到套圈110上。在焊接之前将绝缘体120的陶瓷和套圈110的金属两者加热可以改善焊接的质量。在一个实施例中,在第二激光器150在界面130处执行焊接的同时第一激光器140继续保持绝缘体112的已加热温度也是重要的。
在一个实施例中,套圈110被特别地构造成在用第二激光器150进行焊接之前用第一激光器140进行加热。如图1A和1B中所示,具有延伸通过绝缘体14的馈通引脚16的馈通装置10并不容易被激光器加热。由于馈通引脚16延伸超过绝缘体14的表面许多,所以它们将趋向于与需要扫描绝缘体的整个表面以便在用另一激光器进行焊接之前将其充分地加热的激光器相干扰。
另外,馈通装置10还需要铜焊部18以将馈通引脚16相对于绝缘体14密封。这样,即使激光器能够围绕着馈通引脚16以某种方式行进以扫描绝缘体14的整个表面,铜焊部18也将很有可能由于激光器所引起的热量而回熔。通常,铜焊部18是诸如金之类的金属,并且其熔点低于第一激光器140将会把绝缘体和相邻材料(诸如铜焊部18)加热到的温度。这将非常有可能损害馈通引脚16和绝缘体14之间的密封并潜在地引起泄漏。
如先前所指示的,根据一个实施例的馈通组件102包括被引入到绝缘体112内的过孔中的传导元件114。在一些实施例中,传导元件114可构造成延伸超过绝缘体112的顶面和底面,并且在其它实施例中,传导元件可构造成与一个或两个表面齐平。如图3A中所示,例如,传导元件114构造成与绝缘体112的顶面和底面两者齐平或对齐。在此构造中,第一激光器140能够容易地扫描绝缘体112的整个表面而没有来自从表面突出的任何东西的干扰。此外,由于传导元件114和绝缘体112被用共同烧结过程密封,使得不使用铜焊,所以使第一激光器140在绝缘体112的表面扫描将不会引起铜焊部回熔的问题。
在一个实施例中,沿着界面130的套圈110和绝缘体112之间的距离被控制成使得结构在被第二激光器150焊接之前被紧贴地配合。如果在套圈110和绝缘体112之间存在显著地间隙,则在焊接过程期间可能发生一定程度的破裂。在一个实施例中,在沿着界面130的任何位置处的套圈110和绝缘体112之间的距离不大于25微米。这样,当两种材料被焊接时,绝缘体112的破裂被最小化。
图5是流程图,示出了根据一个实施例的制造馈通组件的过程200。在第一步骤210中,向绝缘体中引入传导元件。在一个实施例中,传导元件被形成为与绝缘体的表面齐平或者被铣削或研磨至齐平。在步骤220处,传导元件和绝缘体被放置在框状套圈中。绝缘体和套圈彼此紧邻,形成界面。
在步骤230,第一激光器在绝缘体的整个表面上扫描以便提高绝缘体的温度。在一个实施例中,绝缘体被从室温加热至1300和1600摄氏度之间。在一个实施例中,第一激光器被控制成使温度以每秒100-150摄氏度的速率从室温斜坡上升至1300和1600摄氏度之间。在一个实施例中,此速率下的加热将不会导致绝缘体材料破碎或破裂。在一个实施例中,虽然第一激光器被引导而扫描绝缘体的整个表面,而在一个实施例中被引导为另外还扫描围绕绝缘体的套圈。
在步骤240,使用第二激光器来沿着套圈和绝缘体之间的界面将套圈焊接到绝缘体。在一个实施例中,在第二激光器将套圈焊接到绝缘体的同时,第一激光器继续扫描绝缘体,以便保持绝缘体上的温度。在一个实施例中,在第二激光器将套圈焊接到绝缘体的同时,第一激光器继续将绝缘体的温度保持在1300和1600摄氏度之间。在一个实施例中,一旦整个界面被焊接,则第一激光器被控制成允许温度以受控的速率斜坡下降。在一个实施例中,第一激光器被控制成使温度以每秒100-150摄氏度的速率斜坡下降直至温度达到300摄氏度。然后,第一激光器可以被关掉或者可以被控制成继续斜坡下降直至温度达到室温。
图6示出了根据一个实施例的可植入医疗装置300。可植入医疗装置300包括馈通组件302和罩壳304。馈通组件302包括套圈310、绝缘体312和传导元件314。在一个实施例中,套圈310是框状结构,绝缘体312和传导元件314被形成到其中。在一个实施例中,馈通组件302被焊接到罩壳304,使得罩壳304的内部320被相对于其外部322气密密封。
在一个实施例中,套圈310具有锥形的内边缘,并且绝缘体312具有也是锥形的外边缘,以在界面330处与套圈310的内边缘匹配。在一个实施例中,界面330处的边缘相对于垂直于馈通组件302的顶面行进的线以一定的锥角α成锥形。在一个实施例中,锥角α在5和15度之间。在一个实施例中,界面330处的绝缘体312和套圈310的边缘的锥角α允许在绝缘体和套圈310两者被沿着界面330焊接在一起之前绝缘体312容易地座置在套圈310中。绝缘体312的外边缘相对于套圈的相应内边缘的锥角α防止套圈310和绝缘体312在组装和焊接期间的相对移动。
在一个实施例中,一旦绝缘体312抵靠着套圈310就位,则如上文关于先前的实施例所述的那样用第一激光器将绝缘体312加热。在达到一温度范围之后,第二激光器被引导在套圈310和绝缘体312之间的界面330处,使得套圈310被焊接到绝缘体312,类似于上文关于馈通组件102所述的。
图7示出了根据一个实施例的可植入医疗装置400。可植入医疗装置400包括馈通组件402和罩壳404。馈通组件402包括绝缘体412和传导元件414。如从图7与图6或图2的比较所显见的,馈通组件402不包括套圈,使得绝缘体412被直接焊接到罩壳404,使得罩壳404的内部420被相对于其外部422气密密封。
在一个实施例中,馈通组件402包括具有锥形的外边缘的绝缘体412,并且罩壳404具有也是锥形的内边缘,以与绝缘体412的外边缘匹配。一旦馈通组件402被放置在罩壳404的开口中,则绝缘体412被用第一激光器加热,如上文关于先前的实施例所述的。在达到一温度范围之后,第二激光器被引导在罩壳404和绝缘体412之间的界面处,使得罩壳404被焊接到馈通组件402。由于罩壳404通常是金属的,诸如由钛组成,所以第二激光器将金属罩壳焊接到绝缘体412,类似于上文针对套圈和绝缘体如何被焊接在一起所述的。
在不需要套圈的情况下将馈通组件402直接附接到罩壳404,这简化了组装过程和步骤,减少了零件和材料,并且减少了总时间和成本。
虽然在这里已经示出并描述了特定实施例,但本领域普通技术人员将认识到的是在不脱离本发明的范围的情况下多种替代的和/或等同的实施方式可代替所示和所述的特定实施例。本申请意图涵盖本文所讨论的特定实施例的任何修改或改变。因此,所意图的是本发明仅仅由权利要求及其等同物限制。

Claims (23)

1.一种将绝缘体联接到可植入医疗装置中的周围套圈的方法,包括:
提供绝缘体,多个传导元件延伸通过所述绝缘体;
将所述绝缘体与所述传导元件一起放置在具有框状形状的套圈内,所述套圈沿着界面围绕所述绝缘体;
用第一激光器将所述绝缘体加热直至使所述绝缘体的温度上升至第一温度水平;以及
一旦所述绝缘体已经达到所述第一温度,则用第二激光器沿着所述界面将所述套圈焊接到所述绝缘体。
2.如权利要求1所述的方法,还包括在所述第二激光器将所述绝缘体焊接到所述套圈的同时用所述第一激光器将所述绝缘体保持在所述第一温度。
3.如权利要求1所述的方法,其中,所述第一激光器被控制成扫描所述绝缘体的整个表面。
4.如权利要求1所述的方法,其中,所述传导元件被设置在所述绝缘体中,使得它们不延伸超过所述绝缘体的表面,使得所述第一激光器能够在没有来自所述传导元件的干扰的情况下扫描所述绝缘体的整个表面。
5.如权利要求1所述的方法,其中,在没有铜焊部的情况下提供所述绝缘体,使得所述第一激光器能够在不使任何铜焊部熔化的情况下扫描所述绝缘体的整个表面。
6.如权利要求1所述的方法,其中,所述第一激光器是构造成扫描所述绝缘体并使其温度上升到1300至1600摄氏度的范围内的CO2激光器。
7.如权利要求1所述的方法,其中,所述第一激光器被控制成使所述绝缘体的温度以每秒100-150摄氏度的速率从室温斜坡上升至1300和1600摄氏度之间。
8.如权利要求1所述的方法,其中,所述第一激光器被控制成使所述绝缘体的温度以每秒100-150摄氏度的速率斜坡下降直至温度达到300摄氏度。
9.如权利要求1所述的方法,其中,套圈设置有锥形的内边缘,其中,所述绝缘体具有也是锥形的外边缘,以与所述套圈的内边缘匹配。
10.一种用于医疗可植入装置的馈通,包括:
套圈,所述套圈包括构造成被焊接到所述可植入装置的罩壳的金属;
绝缘体,所述绝缘体基本上被所述套圈围绕并与之共享界面,所述绝缘体包括玻璃或陶瓷材料;
传导元件,所述传导元件被形成为通过所述绝缘体,从而提供通过所述绝缘体的导电路径;
其特征在于,在所述套圈和所述绝缘体之间的界面处不存在铜焊部或锡焊部,并且在所述传导元件附近不存在铜焊部或锡焊部。
11.如权利要求10所述的馈通,其中,所述套圈包括包含铌、钛、钛合金、钼、钴、锆、铬和铂的组中的一个,所述绝缘体包括氧化铝且所述传导元件包括金属陶瓷。
12.如权利要求10所述的馈通,其中,所述套圈构造有锥形的内边缘,并且所述绝缘体构造有锥形的外边缘,以与所述套圈的内边缘匹配。
13.如权利要求12所述的馈通,其中,所述套圈和所述绝缘体的各自边缘的锥形相对于垂直于所述馈通的顶面行进的线以5至15度的角成锥形。
14.如权利要求10所述的馈通,其中,沿着所述界面的所述套圈和所述绝缘体之间的距离不大于25微米。
15.一种在可植入医疗装置中焊接绝缘体的方法,包括:
提供绝缘体,多个传导元件延伸通过所述绝缘体;
将所述绝缘体与所述传导元件一起放置在金属罩壳内,所述罩壳在界面处围绕所述绝缘体;
用第一激光器将所述绝缘体加热直至使所述绝缘体的温度上升至第一温度水平;以及
一旦所述绝缘体已经达到所述第一温度,则用第二激光器将所述罩壳焊接到所述绝缘体。
16.如权利要求15所述的方法,还包括在所述第二激光器将所述绝缘体焊接到所述罩壳的同时用所述第一激光器将所述绝缘体保持在所述第一温度。
17.如权利要求15所述的方法,其中,所述第一激光器被控制成扫描所述绝缘体的整个表面。
18.如权利要求15所述的方法,其中,所述传导元件被设置在所述绝缘体中,使得它们不延伸超过所述绝缘体的表面,使得所述第一激光器能够在没有来自所述传导元件的干扰的情况下扫描所述绝缘体的整个表面。
19.如权利要求15所述的方法,其中,在没有铜焊部的情况下提供所述绝缘体,使得所述第一激光器能够在不使任何铜焊部熔化的情况下扫描所述绝缘体的整个表面。
20.一种用于医疗可植入装置的馈通,包括:
绝缘体,所述绝缘体基本上被所述可植入装置的罩壳中的开口围绕并与之共享界面,所述绝缘体包括玻璃或陶瓷材料;
传导元件,所述传导元件被形成为通过所述绝缘体,从而提供通过所述绝缘体的导电路径;
其特征在于,在所述绝缘体和所述罩壳之间的界面处不存在金属套圈,并且所述罩壳被直接焊接到所述绝缘体。
21.如权利要求20所述的馈通,其中,所述罩壳的开口构造有锥形的内边缘,并且所述绝缘体构造有锥形的外边缘,以与所述罩壳的内边缘匹配。
22.如权利要求21所述的馈通,其中,所述罩壳和所述绝缘体的各自边缘的锥形相对于垂直于所述馈通的顶面行进的线以5至15度的角成锥形。
23.如权利要求20所述的馈通,其中,沿着所述界面的所述罩壳和所述绝缘体之间的距离不大于25微米。
CN201480027780.7A 2013-03-14 2014-03-13 对馈通进行激光焊接 Active CN106456980B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/804,888 US9478959B2 (en) 2013-03-14 2013-03-14 Laser welding a feedthrough
US13/804888 2013-03-14
PCT/US2014/026011 WO2014160193A2 (en) 2013-03-14 2014-03-13 Laser welding a feedthrough

Publications (2)

Publication Number Publication Date
CN106456980A true CN106456980A (zh) 2017-02-22
CN106456980B CN106456980B (zh) 2019-04-12

Family

ID=50483559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480027780.7A Active CN106456980B (zh) 2013-03-14 2014-03-13 对馈通进行激光焊接

Country Status (5)

Country Link
US (3) US9478959B2 (zh)
EP (1) EP2968956B1 (zh)
CN (1) CN106456980B (zh)
SG (1) SG11201507542YA (zh)
WO (1) WO2014160193A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338034A (zh) * 2019-03-07 2020-06-26 祥茂光电科技股份有限公司 具有安装在光发射次组件壳体的馈通装置的激光二极管驱动器电路的光发射次组件

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478959B2 (en) 2013-03-14 2016-10-25 Heraeus Deutschland GmbH & Co. KG Laser welding a feedthrough
US9431801B2 (en) * 2013-05-24 2016-08-30 Heraeus Deutschland GmbH & Co. KG Method of coupling a feedthrough assembly for an implantable medical device
US10136535B2 (en) * 2014-12-24 2018-11-20 Medtronic, Inc. Hermetically-sealed packages including feedthrough assemblies
US20170222411A1 (en) * 2016-01-29 2017-08-03 Onesubsea Ip Uk Limited Electrical Conductor and Method of Making the Same
EP3332836B1 (de) * 2016-12-09 2019-07-03 BIOTRONIK SE & Co. KG Durchführung eines implantierbaren medizinelektronischen geräts
US10350422B2 (en) 2017-06-09 2019-07-16 Medtronic, Inc. Feedthrough assembly including ferrule with tapered extension(s)
KR20200079272A (ko) * 2017-10-24 2020-07-02 컴포넌트 알이-엔지니어링 컴퍼니, 인코포레이티드 세라믹 절연체 및 알루미늄 슬리브를 갖는 전기 커넥터 및 이를 제조하기 위한 방법
JP2022547845A (ja) * 2019-09-17 2022-11-16 アーデント コンセプツ,アイエヌシー. 密閉封止され、制御されたインピーダンスのフィードスルーアセンブリ
US11268385B2 (en) 2019-10-07 2022-03-08 Nov Canada Ulc Hybrid core progressive cavity pump
EP4230258A1 (en) 2020-02-21 2023-08-23 Heraeus Medical Components, LLC Ferrule with strain relief spacer for implantable medical device
EP3900783B1 (en) 2020-02-21 2023-08-16 Heraeus Medical Components, LLC Ferrule for non-planar medical device housing
WO2021201837A1 (en) 2020-03-31 2021-10-07 Advanced Bionics Ag Medical implants and electronics and antenna assemblies for use with same
DE102020118371A1 (de) * 2020-07-13 2022-01-13 Heraeus Deutschland GmbH & Co. KG Mehrlagige Ringelektrode mit mehreren Öffnungen
EP3939730A1 (de) 2020-07-14 2022-01-19 BIOTRONIK SE & Co. KG Verfahren zum fügen einer ersten und einer zweiten komponente einer elektrischen durchführung unter verwendung eines reaktiven multischichtsystems
US11813580B2 (en) 2020-09-02 2023-11-14 Nov Canada Ulc Static mixer suitable for additive manufacturing
EP4147746A1 (en) 2021-09-10 2023-03-15 Greatbatch Ltd. A ceramic reinforced metal composite for hermetic bodies for implantable devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034966A1 (en) * 2009-08-04 2011-02-10 W. C. Heraeus Gmbh Electrical bushing for an implantable medical device
CN102614588A (zh) * 2011-01-31 2012-08-01 贺利氏贵金属有限责任两合公司 用于可植入医疗设备的具有连接层的含有金属陶瓷的套管
CN102872529A (zh) * 2012-10-22 2013-01-16 清华大学 用于植入式电刺激器的陶瓷馈通连接器及其制造方法

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563320A5 (zh) 1973-10-01 1975-06-30 Bbc Brown Boveri & Cie
US4152540A (en) 1977-05-03 1979-05-01 American Pacemaker Corporation Feedthrough connector for implantable cardiac pacer
US4352951A (en) 1977-09-26 1982-10-05 Medical Components Corp. Ceramic seals between spaced members such as a terminal pin and a ferrule
US4217137A (en) 1978-03-13 1980-08-12 Medtronic, Inc. Gold based alloy composition and brazing therewith, particularly for ceramic-metal seals in electrical feedthroughs
US4678868A (en) 1979-06-25 1987-07-07 Medtronic, Inc. Hermetic electrical feedthrough assembly
DE2930912C2 (de) 1979-07-30 1981-10-15 Jenaer Glaswerk Schott & Gen., 6500 Mainz Rißunanfällige, wärmeabsorbierende Verschmelzgläser im System SiO↓2↓-Al↓2↓O↓3↓-Na↓2↓O-PbO-Fe↓3↓O↓4↓ mit niedrigen Verarbeitungstemperaturen zur hermetischen Kapselung elektrotechnischer Bauteile
DE3063533D1 (en) 1979-11-12 1983-07-07 Emi Plc Thorn An electrically conducting cermet, its production and use
US4456786A (en) 1979-11-19 1984-06-26 James C. Kyle Terminal assembly for heart pacemaker
US4362792A (en) 1980-12-01 1982-12-07 Emerson Electric Co. Conductor seal assembly
US5272283A (en) 1982-07-27 1993-12-21 Commonwealth Of Australia Feedthrough assembly for cochlear prosthetic package
US4488673A (en) 1982-07-29 1984-12-18 The United States Of America As Represented By The United States Department Of Energy Direct metal brazing to cermet feedthroughs
US4602956A (en) 1984-12-17 1986-07-29 North American Philips Lighting Corporation Cermet composites, process for producing them and arc tube incorporating them
US4737601A (en) 1986-08-18 1988-04-12 Dynawave Incorporated Hermetically sealed electrical feedthrough and method of making same
GB8620057D0 (en) * 1986-08-18 1986-10-01 Philips Nv Cathode ray tube display device
EP0269007A1 (de) 1986-11-28 1988-06-01 Siemens Aktiengesellschaft Keramik-Metall-Durchführung, insbesondere für Nerven- oder Herzschrittmacher, und Verfahren zu deren Herstellung
US4774953A (en) 1987-04-03 1988-10-04 Telectronics, N.V. Self-supporting terminal for implantable pulse generator and method of manufacturing the same
JP2585653B2 (ja) * 1987-12-04 1997-02-26 宮本 勇 セラミックスの接合方法
JPH02133378A (ja) * 1988-11-10 1990-05-22 Fujitsu Ltd 窒化珪素セラミックスと金属の接合方法
US5043535A (en) 1989-03-10 1991-08-27 Olin Corporation Hermetic cerglass and cermet electronic packages
US4991582A (en) 1989-09-22 1991-02-12 Alfred E. Mann Foundation For Scientific Research Hermetically sealed ceramic and metal package for electronic devices implantable in living bodies
US5821011A (en) 1989-10-11 1998-10-13 Medtronic, Inc. Body implanted device with electrical feedthrough
US4992910A (en) 1989-11-06 1991-02-12 The Evans Findings Company, Inc. Electrical component package
SE9001747D0 (sv) 1990-05-15 1990-05-15 Siemens Elema Ab Genomfoerande hos en implanterbar apparat foer stimulering av levande vaevnad och metod foer framstaellning av genomfoerandet
US5046262A (en) 1990-09-26 1991-09-10 Kerbaugh Steven M Spherical edge locator for machining
US5306891A (en) * 1992-04-02 1994-04-26 Motorola, Inc. Laser welding process for attaching metal to ceramic substrate
GB9220181D0 (en) 1992-09-24 1992-11-04 Brico Eng Sintered articles
US5515604A (en) 1992-10-07 1996-05-14 Fujitsu Limited Methods for making high-density/long-via laminated connectors
US5407119A (en) 1992-12-10 1995-04-18 American Research Corporation Of Virginia Laser brazing for ceramic-to-metal joining
US5333095A (en) 1993-05-03 1994-07-26 Maxwell Laboratories, Inc., Sierra Capacitor Filter Division Feedthrough filter capacitor assembly for human implant
US5408066A (en) 1993-10-13 1995-04-18 Trapani; Richard D. Powder injection apparatus for a plasma spray gun
US5782891A (en) 1994-06-16 1998-07-21 Medtronic, Inc. Implantable ceramic enclosure for pacing, neurological, and other medical applications in the human body
US5513793A (en) 1994-10-07 1996-05-07 Advanced Bionics Corporation Brazeless ceramic-to-metal bond for use in implantable devices
US5738270A (en) 1994-10-07 1998-04-14 Advanced Bionics Corporation Brazeless ceramic-to-metal bonding for use in implantable devices
DE19502129C2 (de) 1995-01-25 2003-03-20 Heraeus Gmbh W C Verfahren zur Herstellung eines elektrisch leitenden Cermets
US5817984A (en) 1995-07-28 1998-10-06 Medtronic Inc Implantable medical device wtih multi-pin feedthrough
US5750926A (en) 1995-08-16 1998-05-12 Alfred E. Mann Foundation For Scientific Research Hermetically sealed electrical feedthrough for use with implantable electronic devices
US5620476A (en) 1995-11-13 1997-04-15 Pacesetter, Inc. Implantable medical device having shielded and filtered feedthrough assembly and methods for making such assembly
SE9601154D0 (sv) 1996-03-26 1996-03-26 Pacesetter Ab Aktivt implantat
JP3780386B2 (ja) 1996-03-28 2006-05-31 株式会社村田製作所 セラミック回路基板及びその製造方法
US5693580A (en) * 1996-09-13 1997-12-02 Sandia Corporation Titanium sealing glasses and seals formed therefrom
US6146743A (en) 1997-02-21 2000-11-14 Medtronic, Inc. Barrier metallization in ceramic substrate for implantable medical devices
EP0870517B1 (en) 1997-04-10 2004-06-30 Greatbatch-Hittman, Incorporated Filtered feedthrough assembly for medical implantable devices and method of manufacture therefor
US5871513A (en) 1997-04-30 1999-02-16 Medtronic Inc. Centerless ground feedthrough pin for an electrical power source in an implantable medical device
US5926362A (en) 1997-05-01 1999-07-20 Wilson Greatbatch Ltd. Hermetically sealed capacitor
JPH10308565A (ja) 1997-05-02 1998-11-17 Shinko Electric Ind Co Ltd 配線基板
US5870272A (en) 1997-05-06 1999-02-09 Medtronic Inc. Capacitive filter feedthrough for implantable medical device
US5861714A (en) 1997-06-27 1999-01-19 Osram Sylvania Inc. Ceramic envelope device, lamp with such a device, and method of manufacture of such devices
US5905627A (en) 1997-09-10 1999-05-18 Maxwell Energy Products, Inc. Internally grounded feedthrough filter capacitor
US6008980A (en) 1997-11-13 1999-12-28 Maxwell Energy Products, Inc. Hermetically sealed EMI feedthrough filter capacitor for human implant and other applications
US6643903B2 (en) 1997-11-13 2003-11-11 Greatbatch-Sierra, Inc. Process for manufacturing an EMI filter feedthrough terminal assembly
US6530727B2 (en) 1998-04-13 2003-03-11 Harmand Family Limited Partnership Contour machining head
US6232004B1 (en) 1998-05-06 2001-05-15 Pacific Coast Technologies, Inc. Methods for treating ceramic materials and improved treated ceramic materials produced thereby
US6322856B1 (en) 1999-02-27 2001-11-27 Gary A. Hislop Power injection for plasma thermal spraying
DE10017952A1 (de) 1999-04-11 2000-12-14 Ceramtec Ag Medizinische Instrumente
US6586675B1 (en) 1999-12-03 2003-07-01 Morgan Advanced Ceramics, Inc. Feedthrough devices
US20010034966A1 (en) 2000-01-24 2001-11-01 Angelica Golubkov Method of reducing the vapor pressure of ethanol-containing motor fuels for spark ignition combustion engines
JP3536763B2 (ja) 2000-02-04 2004-06-14 日本電気株式会社 封止装置
US6414835B1 (en) 2000-03-01 2002-07-02 Medtronic, Inc. Capacitive filtered feedthrough array for an implantable medical device
AU2001255845A1 (en) 2000-07-28 2002-02-13 The Penn State Research Foundation A process for fabricating hollow electroactive devices
US7107099B1 (en) 2000-11-03 2006-09-12 Cardiac Pacemakers, Inc. Capacitor having a feedthrough assembly with a coupling member
US20040128016A1 (en) 2001-03-22 2004-07-01 Stewart David H. Method for manufacturing a near net-shape mold
US7480988B2 (en) 2001-03-30 2009-01-27 Second Sight Medical Products, Inc. Method and apparatus for providing hermetic electrical feedthrough
US20020166739A1 (en) 2001-04-10 2002-11-14 Yngve Naerheim Brake assembly cooling
US6579492B2 (en) 2001-09-06 2003-06-17 Metaldyne Sintered Components, Inc. Forged in bushing article and method of making
US20030109903A1 (en) 2001-12-12 2003-06-12 Epic Biosonics Inc. Low profile subcutaneous enclosure
US7222419B2 (en) 2001-12-19 2007-05-29 Chung-Shan Institute Of Science And Technology Method of fabricating a ceramic substrate with a thermal conductive plug of a multi-chip package
US6765779B2 (en) 2002-02-28 2004-07-20 Greatbatch-Sierra, Inc. EMI feedthrough filter terminal assembly for human implant applications utilizing oxide resistant biostable conductive pads for reliable electrical attachments
EP1504477A1 (en) 2002-05-07 2005-02-09 The Regents Of The University Of California Electrochemical cell stack assembly
US7274963B2 (en) 2002-12-16 2007-09-25 Cardiac Pacemakers, Inc. Interconnect for implantable medical device header
US7623335B2 (en) 2003-02-27 2009-11-24 Greatbatch-Sierra, Inc Hermetic feedthrough terminal assembly with wire bond pads for human implant applications
US6999818B2 (en) 2003-05-23 2006-02-14 Greatbatch-Sierra, Inc. Inductor capacitor EMI filter for human implant applications
US7038900B2 (en) 2003-02-27 2006-05-02 Greatbatch-Sierra, Inc. EMI filter terminal assembly with wire bond pads for human implant applications
US9259508B2 (en) 2003-03-07 2016-02-16 Louis A. Serafin, Jr. Trust Ceramic manufactures
AU2003901146A0 (en) 2003-03-12 2003-03-27 Cochlear Limited Feedthrough assembly
WO2004110555A1 (en) 2003-06-06 2004-12-23 Medtronic, Inc. Implantable medical device including a hermetic connector block extension
US7966070B2 (en) 2003-09-12 2011-06-21 Medtronic, Inc. Feedthrough apparatus with noble metal-coated leads
US7765005B2 (en) 2004-02-12 2010-07-27 Greatbatch Ltd. Apparatus and process for reducing the susceptability of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7174219B2 (en) 2004-03-30 2007-02-06 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7035076B1 (en) 2005-08-15 2006-04-25 Greatbatch-Sierra, Inc. Feedthrough filter capacitor assembly with internally grounded hermetic insulator
US7035077B2 (en) * 2004-05-10 2006-04-25 Greatbatch-Sierra, Inc. Device to protect an active implantable medical device feedthrough capacitor from stray laser weld strikes, and related manufacturing process
US7260434B1 (en) 2004-09-23 2007-08-21 Pacesetter, Inc. Integrated 8-pole filtered feedthrough with backfill tube for implantable medical devices
US7551963B2 (en) 2005-02-01 2009-06-23 Greatbatch Ltd. Apparatus to improve the high voltage flashover characteristics of EMI feedthrough filters used in active implantable medical devices
US7145076B2 (en) 2005-02-08 2006-12-05 Greatbatch, Inc. Method for minimizing stress in feedthrough capacitor filter assemblies
US7742817B2 (en) 2005-03-04 2010-06-22 Boston Scientific Neuromodulation Corporation Hermetic implantable stimulator
US7136273B2 (en) 2005-03-30 2006-11-14 Greatbatch-Sierra, Inc. Hybrid spring contact system for EMI filtered hermetic seals for active implantable medical devices
US20060247714A1 (en) 2005-04-28 2006-11-02 Taylor William J Glass-to-metal feedthrough seals having improved durability particularly under AC or DC bias
AU2006241404B2 (en) 2005-04-28 2011-07-07 Second Sight Medical Products, Inc. Package for an implantable neural stimulation device
US7340305B2 (en) 2005-06-09 2008-03-04 Cardiac Pacemakers, Inc. Implantable medical device feedthrough assembly having a coated conductor
EP1760735B1 (en) 2005-09-02 2015-03-11 Greatbatch Ltd. Screen-printed capacitors for filter feedthrough assemblies
US7068491B1 (en) 2005-09-15 2006-06-27 Medtronic, Inc. Implantable co-fired electrical interconnect systems and devices and methods of fabrication therefor
US7761165B1 (en) 2005-09-29 2010-07-20 Boston Scientific Neuromodulation Corporation Implantable stimulator with integrated plastic housing/metal contacts and manufacture and use
US7853324B2 (en) 2005-11-11 2010-12-14 Greatbatch Ltd. Tank filters utilizing very low K materials, in series with lead wires or circuits of active medical devices to enhance MRI compatibility
EP1796115A3 (en) 2005-12-12 2009-03-18 Greatbatch Ltd. Feedthrough filter capacitor assemblies having low cost terminal pins
US20070150020A1 (en) * 2005-12-28 2007-06-28 Hokanson Karl E Externally oriented battery feedthrough with integral connector
US20070183117A1 (en) 2006-02-07 2007-08-09 Greatbatch Ltd. Nano-Titanium For Making Medical Implantable Hermetic Feedthrough Assemblies
US20070217121A1 (en) 2006-03-14 2007-09-20 Greatbatch Ltd. Integrated Filter Feedthrough Assemblies Made From Low Temperature Co-Fired (LTCC) Tape
US8131376B1 (en) 2007-09-11 2012-03-06 Second Sight Medical Products, Inc. Method of inspection of materials for defects
US7561917B2 (en) 2006-03-22 2009-07-14 Cardiac Pacemakers, Inc. Feedthrough assembly including sleeve and methods related thereto
US7668597B2 (en) 2006-03-31 2010-02-23 Medtronic, Inc. Feedthrough array for use in implantable medical devices
US7901761B1 (en) 2006-04-17 2011-03-08 Alfred E. Mann Foundation For Scientific Research Hermetic vias utilizing metal-metal oxides
US7818876B2 (en) 2006-04-25 2010-10-26 Gregg Jorgen Suaning Method for fabrication of hermetic electrical conductor feedthroughs
DE102006041940A1 (de) 2006-09-07 2008-03-27 Biotronik Crm Patent Ag Elektrische Durchführung
DE102006041939A1 (de) 2006-09-07 2008-03-27 Biotronik Crm Patent Ag Elektrische Durchführung
US7630768B1 (en) 2006-10-04 2009-12-08 Greatbatch Ltd. One-piece header assembly for an implantable medical device and methods for making same
US8000804B1 (en) 2006-10-27 2011-08-16 Sandia Corporation Electrode array for neural stimulation
DE102006054249A1 (de) 2006-11-17 2008-05-21 Biotronik Crm Patent Ag Filterdurchführung für Implantate
US8288654B2 (en) 2006-11-30 2012-10-16 Medtronic, Inc. Feedthrough assembly including a ferrule, an insulating structure and a glass
US7720538B2 (en) 2007-01-18 2010-05-18 Medtronic, Inc. Internal hermetic lead connector for implantable device
US7502217B2 (en) 2007-02-16 2009-03-10 Medtronic, Inc. Filtering capacitor feedthrough assembly
WO2008103166A1 (en) 2007-02-19 2008-08-28 Warsaw Orthopedic, Inc. Filtered multipolar feedthrough assembly
US7652429B2 (en) 2007-02-26 2010-01-26 Resat Corporation Electrodes with cermets for ceramic metal halide lamps
US8103347B2 (en) 2007-04-25 2012-01-24 Advanced Neuromodulation Systems, Inc. Implantable pulse generator comprising MRI current limiting windings in header structure
US7794256B1 (en) 2007-08-09 2010-09-14 Jerzy Roman Sochor Implantable connector with contact-containing feedthrough pins
US8355785B1 (en) 2007-09-06 2013-01-15 Pacesetter, Inc. Implantable pulse generator including an integrated block feedthru and header assembly
JP2009095851A (ja) * 2007-10-16 2009-05-07 Toshiba Corp 表面き裂の封止方法
EP2624371B1 (en) * 2007-12-28 2015-09-02 Emerson Electric Co. Hermetic feed-through with hybrid seal structure
US8065009B2 (en) 2008-01-25 2011-11-22 Greatbatch Ltd. Header over-molded on a feedthrough assembly for an implantable device
US9233253B2 (en) 2012-01-16 2016-01-12 Greatbatch Ltd. EMI filtered co-connected hermetic feedthrough, feedthrough capacitor and leadwire assembly for an active implantable medical device
DE102008021064A1 (de) 2008-04-26 2009-10-29 Biotronik Crm Patent Ag Anschlussgehäuse für ein elektromedizinisches Implantat
US8391983B2 (en) 2008-05-08 2013-03-05 Pacesetter, Inc. Implantable pulse generator EMI filtered feedthru
US20090281586A1 (en) 2008-05-08 2009-11-12 Pacesetter, Inc. Implantable pulse generator emu filtered feedthru
US7736191B1 (en) 2008-05-27 2010-06-15 Jerzy Roman Sochor Implantable connector with protected contacts
JP5056619B2 (ja) 2008-06-30 2012-10-24 株式会社明電舎 電気機器のケーブル取付け構造
US20100023086A1 (en) 2008-07-24 2010-01-28 Pacesetter, Inc. Implantable pulse generator emi filtered feedthru using discrete capacitors
US8155743B2 (en) 2008-07-29 2012-04-10 Pacesetter, Inc. Implantable pulse generator feedthrus and methods of manufacture
US8346362B2 (en) 2008-08-13 2013-01-01 Greatbatch Ltd. Molded header connected to a medical device by lateral deformation of a sleeve/feedthrough pin sub-assembly
WO2010030998A1 (en) 2008-09-15 2010-03-18 Pacific Aerospace & Electronics, Inc. Connector assemblies incorporating ceramic inserts having conductive pathways and interfaces
US20100109966A1 (en) 2008-10-31 2010-05-06 Mateychuk Duane N Multi-Layer Miniature Antenna For Implantable Medical Devices and Method for Forming the Same
US8179658B2 (en) 2008-11-12 2012-05-15 Greatbatch Ltd. Electromagnetic interference filter and method for attaching a lead and/or a ferrule to capacitor electrodes
US8550974B2 (en) 2008-11-13 2013-10-08 Robert Jarvik Sub-miniature electromechanical medical implants with integrated hermetic feedthroughs
US20120035684A1 (en) 2009-02-09 2012-02-09 Todd Thompson Multiplexed, Multi-Electrode Neurostimulation Devices with Integrated Circuits Having Integrated Electrodes
US8095224B2 (en) 2009-03-19 2012-01-10 Greatbatch Ltd. EMI shielded conduit assembly for an active implantable medical device
WO2010117383A1 (en) 2009-04-08 2010-10-14 National Ict Australia Limited (Nicta) Bonded hermetic feed through for an active implantable medical device
JP5638605B2 (ja) * 2009-06-25 2014-12-10 アイメックImec 生体適合性パッケージング
DE102009035972B4 (de) 2009-08-04 2011-11-17 W.C. Heraeus Gmbh Cermethaltige Durchführung für eine medizinisch implantierbare Vorrichtung
US20110032658A1 (en) 2009-08-07 2011-02-10 Medtronic, Inc. Capacitor assembly and associated method
US20110048770A1 (en) 2009-08-31 2011-03-03 Medtronic Inc. Injection molded ferrule for cofired feedthroughs
US20110094768A1 (en) 2009-10-28 2011-04-28 Pacesetter, Inc. Implantable medical device having feedthru with an integrated interconnect/filter substrate
US20110106228A1 (en) 2009-10-30 2011-05-05 Medtronic, Inc. Brazing of ceramic to metal components
DE102010006689B4 (de) 2010-02-02 2013-04-18 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zum Herstellen einer elektrischen Durchführung, elektrische Durchführung sowie implantierbare Vorrichtung
DE102010006690B4 (de) 2010-02-02 2013-03-28 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zum Herstellen einer elektrischen Durchführung, elektrische Durchführung sowie implantierbare Vorrichtung
DE102010006837B4 (de) 2010-02-03 2013-01-17 Heraeus Precious Metals Gmbh & Co. Kg (Meth)acrylsäurealkylester aufweisende elektrische Durchführung
DE102010006838A1 (de) 2010-02-03 2011-08-04 W.C. Heraeus GmbH, 63450 Ein organisches Polymer aufweisende elektrische Durchführung
EP2371418B1 (de) 2010-03-29 2021-11-03 BIOTRONIK SE & Co. KG Elektrische Durchführung für elektromedizinische Implantate
EP2371417B1 (de) 2010-03-29 2019-07-24 BIOTRONIK SE & Co. KG Elektrische Durchführung, Verfahren zur Herstellung und Verwendung einer solchen
US20110303458A1 (en) 2010-06-15 2011-12-15 Greatbatch Ltd. Coating of Non-Solderable Base Metal for Soldering Application in Medical Device Component
JP2012019108A (ja) 2010-07-08 2012-01-26 Seiko Instruments Inc ガラス基板の製造方法及び電子部品の製造方法
US8604341B2 (en) 2010-07-08 2013-12-10 Cardiac Pacemakers, Inc. Feedthrough assembly for an implantable device
US8552311B2 (en) 2010-07-15 2013-10-08 Advanced Bionics Electrical feedthrough assembly
US8659870B2 (en) 2010-11-22 2014-02-25 Greatbatch Ltd. Modular EMI filtered terminal assembly for an active implantable medical device
DE102011009861B4 (de) 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zur Herstellung einer cermethaltigen Durchführung
DE102011009857B8 (de) 2011-01-31 2013-01-17 Heraeus Precious Metals Gmbh & Co. Kg Elektrische Durchführung mit cermethaltigem Verbindungselement für eine aktive, implantierbare, medizinische Vorrichtung
DE102011009865B4 (de) 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Kopfteil für eine medizinisch implantierbare Vorrichtung
DE102011009867B4 (de) 2011-01-31 2013-09-05 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung für eine medizinisch implantierbare Vorrichtung
DE102011009859B4 (de) 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung mit Filter
DE102011009855B8 (de) 2011-01-31 2013-01-03 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung mit induktivem Filter
DE102011009856B8 (de) 2011-01-31 2012-12-27 W.C. Heraeus Gmbh Elektrische Durchführung und Verfahren zur Herstellung einer cermethaltigen Durchführung für eine medizinisch implantierbare Vorrichtung
DE102011009860B4 (de) 2011-01-31 2013-03-07 Heraeus Precious Metals Gmbh & Co. Kg Implantierbare Vorrichtung mit integrierter Keramikdurchführung
DE102011009863B9 (de) 2011-01-31 2020-08-13 Heraeus Deutschland GmbH & Co. KG Keramikdurchführung mit Leitungselementen hoher Leitfähigkeit
DE102011009866B4 (de) 2011-01-31 2013-09-05 Heraeus Precious Metals Gmbh & Co. Kg Direkt aufbringbare elektrische Durchführung
DE102011009862B4 (de) 2011-01-31 2012-11-08 Heraeus Precious Metals Gmbh & Co. Kg Cermethaltige Durchführung mit Halteelement für eine medizinisch implantierbare Vorrichtung
US9724524B2 (en) 2011-08-02 2017-08-08 Medtronic, Inc. Interconnection of conductor to feedthrough
US8844103B2 (en) 2011-09-01 2014-09-30 Medtronic, Inc. Methods for making feedthrough assemblies including a capacitive filter array
DE102011119125B4 (de) 2011-11-23 2014-01-23 Heraeus Precious Metals Gmbh & Co. Kg Kontaktierungsanordnung mit Durchführung und Filterstruktur
US9478959B2 (en) 2013-03-14 2016-10-25 Heraeus Deutschland GmbH & Co. KG Laser welding a feedthrough

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034966A1 (en) * 2009-08-04 2011-02-10 W. C. Heraeus Gmbh Electrical bushing for an implantable medical device
CN102614588A (zh) * 2011-01-31 2012-08-01 贺利氏贵金属有限责任两合公司 用于可植入医疗设备的具有连接层的含有金属陶瓷的套管
CN102872529A (zh) * 2012-10-22 2013-01-16 清华大学 用于植入式电刺激器的陶瓷馈通连接器及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338034A (zh) * 2019-03-07 2020-06-26 祥茂光电科技股份有限公司 具有安装在光发射次组件壳体的馈通装置的激光二极管驱动器电路的光发射次组件
CN111338034B (zh) * 2019-03-07 2023-07-04 祥茂光电科技股份有限公司 具有安装在光发射次组件壳体的馈通装置的激光二极管驱动器电路的光发射次组件

Also Published As

Publication number Publication date
US10418798B2 (en) 2019-09-17
CN106456980B (zh) 2019-04-12
US10770879B2 (en) 2020-09-08
US9478959B2 (en) 2016-10-25
EP2968956B1 (en) 2017-07-19
WO2014160193A2 (en) 2014-10-02
US20190356122A1 (en) 2019-11-21
US20160126712A1 (en) 2016-05-05
WO2014160193A3 (en) 2014-12-18
SG11201507542YA (en) 2015-10-29
EP2968956A2 (en) 2016-01-20
US20140262493A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
CN106456980B (zh) 对馈通进行激光焊接
US9653893B2 (en) Ceramic feedthrough brazed to an implantable medical device housing
CN103842024B (zh) 利用充足厚度的衬垫互连导体和馈通的方法
US5866851A (en) Implantable medical device with multi-pin feedthrough
US7818876B2 (en) Method for fabrication of hermetic electrical conductor feedthroughs
CN102671299B (zh) 可直接施加的电气套管
CN102614589B (zh) 用于可植入医疗设备的具有保持元件的含金属陶瓷的套管
CN102481455A (zh) 包括注塑套圈的共烧馈通装置的制造方法
CN105992610A (zh) 通过使用金合金将馈通直接整合于可植入医疗装置外壳
CN102614587A (zh) 具有集成陶瓷套管的可植入设备
CN102824692B (zh) 用于植入式医疗设备的馈通连接器及制造方法
CN106061550A (zh) 通过烧结将馈通直接整合到可植入医疗装置外壳
CN105771089B (zh) 可植入式的人造视网膜陶瓷封装体的制造方法
EP3297722B1 (en) 3d printed ceramic to metal assemblies for electric feedthroughs in implantable medical devices
CN109107042B (zh) 一种植入式神经刺激器的封装结构及封装方法
CN102872529A (zh) 用于植入式电刺激器的陶瓷馈通连接器及其制造方法
CN103842026B (zh) 用于馈通的电导线
KR101656723B1 (ko) 피드스루 제조방법
US11944830B2 (en) Feedthrough system
EP3019235B1 (en) Method for reducing zirconium oxide to elemental zirconium by laser and an implantable medical device comprising zirconium
JP2015106430A (ja) フィードスルー

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant