CN106356175A - 一种双主相Nd2Fe14B‑Ce2Fe14B复合永磁体及其制备方法 - Google Patents

一种双主相Nd2Fe14B‑Ce2Fe14B复合永磁体及其制备方法 Download PDF

Info

Publication number
CN106356175A
CN106356175A CN201610752759.4A CN201610752759A CN106356175A CN 106356175 A CN106356175 A CN 106356175A CN 201610752759 A CN201610752759 A CN 201610752759A CN 106356175 A CN106356175 A CN 106356175A
Authority
CN
China
Prior art keywords
permanent magnet
preparation
powder
composite permanent
gained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610752759.4A
Other languages
English (en)
Other versions
CN106356175B (zh
Inventor
付刚
赵映
贾元波
伍建军
刘倩琛
李波
万宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICHUAN NONFERROUS METALLURGY INSTITUTE Co Ltd
Original Assignee
SICHUAN NONFERROUS METALLURGY INSTITUTE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICHUAN NONFERROUS METALLURGY INSTITUTE Co Ltd filed Critical SICHUAN NONFERROUS METALLURGY INSTITUTE Co Ltd
Priority to CN201610752759.4A priority Critical patent/CN106356175B/zh
Publication of CN106356175A publication Critical patent/CN106356175A/zh
Application granted granted Critical
Publication of CN106356175B publication Critical patent/CN106356175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种双主相Nd2Fe14B‑Ce2Fe14B复合永磁体,Nd2Fe14B和Ce2Fe14B质量分数分别为80%‑90%和10%‑20%。其制备方法包括:(1)按要求称取各物质,置于真空电弧熔炼炉里熔炼得成分均匀的两种合金;(2)将合金分别置于真空玻璃管中,再放入退火炉中,于700‑800℃条件下保温10‑12天,然后在冰水中淬火;(3)制速凝片;(4)将速凝片进行氢爆工艺,得粉体;(5)粉体分别与磁粉保护剂混合,得粉末;(6)压制;(7)烧结;(8)退火,制得。该制备方法简单,制出的产品磁体矫顽力高,同时还可促进稀土资源的均衡利用。

Description

一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法
技术领域
本发明属于稀土永磁材料技术领域,具体涉及一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法。
背景技术
第三代稀土永磁材料钕铁硼具有其他永磁体无法比拟的高磁能积(BH)m,高矫顽力Hcj和高剩磁Br等特性,因而被誉为“永磁之王”,在电子、汽车、计算机、电力、机械、能源、环保、国防、医疗器械等众多领域得到广泛的应用。但随着科技的发展,对于该材料的技术指标有了更高的要求,特别是对于内禀矫顽力的要求,由于内禀矫顽力的大小是判断永磁材料优良特性的一个重要标志。市场上要求Nd-Fe-B稀土永磁材料的矫顽力超过1.7T,然而研究者们通过成分优化以及工艺的调节,未能达到此要求。另一方面由于在烧结Nd-Fe-B稀土永磁材料时用量相对较大,通过调研发现每辆汽车的发动机中需要至少90g的Nd-Fe-B材料,现如今每年全球会有大约1亿辆的汽车生产,这就导致了稀土Nd含量的大大降低,而对于其他的轻稀土,例如成本较低,含量占稀土总量的30%以上的稀土Ce,却未能被有效的开发利用,导致资源利用严重不均衡。稀土Ce与Fe-B合金通过熔炼的方式比较容易形成Ce2Fe14B,该物相与Nd2Fe14B具有相似的晶体结构,然而由于Ce2Fe14B单相合金磁晶各向异性相对较低,不能满足市场需求,因此不被很好的利用。
目前,为提高Nd-Fe-B稀土永磁材料的综合性能,都是以单合金法直接通过熔炼的方式加入到Nd-Fe-B合金中,这使得其他性能较弱轻稀土直接进入了Nd2Fe14B主相,最终会导致磁体的性能严重下降。
发明内容
针对现有技术中的上述不足,本发明提供了一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法,可有效解决资源利用不平衡、生产成本低和矫顽力低的问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体,包括Nd2Fe14B和Ce2Fe14B,Nd2Fe14B和Ce2Fe14B质量分数分别为80%-90%和10%-20%。
上述双主相Nd2Fe14B-Ce2Fe14B复合永磁体的制备方法,包括以下步骤:
(1)按CeaGdbFecAldZreBf和Nda1Gdb1Fec1Ald1Zre1Bf1进行称取纯度均为99.99%的Nd,Ce,Gd,Fe,Al,Zr,B块体,然后分别置于真空电弧熔炼炉里反复熔炼4-5次,直至得到成分均匀的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金;其中a、b、c、d、e、f、a1、b1、c1、d1、e1和f1分别为对应元素的质量分数;熔炼温度为1600-1800℃;
(2)将步骤(1)所得的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05分别置于真空玻璃管中,然后再放入退火炉中,于700-800℃条件下保温10-12天,然后在冰水中淬火;
(3)步骤(2)所得物质分别进行甩带工艺,得到速凝片;
(4)将步骤(3)所得速凝片分别进行氢爆工艺,得到粒径为1-3mm的粉体;
(5)将步骤(4)所得粉体分别与磁粉保护剂混合,在气压为0.8-1.0MPa下经气流磨制得粒径为3-7μm的粉末;其中粉体与磁粉保护剂按每千克粉体添加5-8mL磁粉保护剂进行混合;磁粉保护剂是97#汽油和硅烷按质量比为0.6:1混合而成;
(6)将步骤(5)所得Nd2Fe14B和Ce2Fe14B粉末按质量比为4-9:1混合,然后在8.0T的磁场取向压型,将其压制成密度为5.1-5.5g/cm3,等静压为180MPa的物质;
(7)将压制后的物质放入真空石英管中,于1020-1040℃下进行真空烧结2-3h,然后在冰水中淬火;
(8)将步骤(7)所得物质在900-950℃退火1-2h,然后在630-650℃退火2-3h,得双主相Nd2Fe14B-Ce2Fe14B复合永磁体。
进一步地,步骤(2)中的退火过程为:放入退火炉后,以每分钟5℃的速度升为700℃后,保温1h,再以每分钟2℃的速度升为800℃,保温10天,然后在冰水中淬火。
进一步地,步骤(3)中速凝片的制备过程为:
①将退火后的两种合金分别切成块,放入底部带有喷口的石英管中,将石英管放入熔体真空电磁感应加热炉中,通过机械泵、扩散泵及分子泵对炉体内进行真空处理,保持炉体内的真空度为1×10-3Pa,然后通入氩气作为保护气体,启动旋转铜辊,使其速度在28~33m/s;
②启动加热装置对石英管内部的合金进行加热熔炼,Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05熔炼温度均为1500℃,当合金达到熔融状态时,通过气压将石英管中的合金浇注到速度为28-33m/s的旋转铜辊上,制得速凝片。
本发明提供的双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法,具有以下有益效果:
(1)利用稀土Ce来部分取代Nd,降低成本的同时,促进稀土资源的均衡利用,有助于保护珍贵的稀土资源,并且可有效实现成本控制。
(2)以Nd2Fe14B为基体,通过烧结工艺,让Ce2Fe14B这种磁性较弱的材料不进入主相中,只富集在主相Nd2Fe14B的周围,通过这种弱磁性相的存在减弱了主相磁性耦合作用,具有提高磁体矫顽力的效果,最终为工业生产提供高饱和磁化强度和剩磁。
附图说明
图1为实施例1所得(Nd2Fe14B)90(Ce2Fe14B)10双主相合金的磁滞回线。
图2为实施例2所得(Nd2Fe14B)80(Ce2Fe14B)20双主相合金的磁滞回线。
具体实施方式
实施例1
一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体,包括Nd2Fe14B和Ce2Fe14B,Nd2Fe14B和Ce2Fe14B质量分数分别为90%和10%((Nd2Fe14B)90(Ce2Fe14B)10)该双主相Nd2Fe14B-Ce2Fe14B复合永磁体的制备方法,包括以下步骤:
(1)取纯度均为99.99%的Nd,Ce,Gd,Fe,Al,Zr,B块体,按Nd的质量分数为29.89%,Gd的质量分数为0.61%,Fe的质量分数为67%,Al的质量分数为1.05%,Zr的质量分数为0.4%,B的质量分数为1.05%配制Nd-Gd-Fe-Al-Zr-B合金;按Ce的质量分数为29.89%,Gd的质量分数为0.61%,Fe的质量分数为67%,Al的质量分数为1.05%,Zr的质量分数为0.4%,B的质量分数为1.05%配制Ce-Gd-Fe-Al-Zr-B合金,将称取的各物质按配制要求置于真空电弧熔炼炉里反复熔炼4-5次,熔炼温度为1600℃,直至得到成分均匀的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金;
(2)将步骤(1)所得的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05分别置于真空玻璃管中,然后再放入退火炉中,以每分钟5℃的速度升为700℃后,保温1h,再以每分钟2℃的速度升为800℃,保温10天,然后在冰水中淬火;
(3)步骤(2)所得物质分别切成块,放入底部带有喷口的石英管中,将石英管放入熔体真空电磁感应加热炉中,通过机械泵、扩散泵及分子泵对炉体内进行真空处理,保持炉体内的真空度为1×10-3Pa,然后通入氩气作为保护气体,启动旋转铜辊,使其速度在28-33m/s;
②启动加热装置对石英管内部的合金进行加热熔炼,Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05熔炼温度均为1500℃,当合金达到熔融状态时,通过气压将石英管中的合金浇注到速度为28-33m/s的旋转铜辊上,制得速凝片;
(4)将步骤(3)所得速凝片分别进行氢爆工艺,得到粒径为1-3mm的粉体;
(5)将步骤(4)所得粉体分别与磁粉保护剂混合,每千克粉体添加5mL磁粉保护剂,然后在气压为0.9MPa下经气流磨制得粒径为3-7μm的粉末;磁粉保护剂是97#汽油和硅烷按质量比为0.6:1混合而成;
(6)将步骤(5)所得Nd2Fe14B和Ce2Fe14B粉末按质量比为9:1混合,然后在8.0T的磁场取向压型,压制成密度为5.1-5.5g/cm3,等静压为180MPa;
(7)将压制后的物质放入真空石英管中,于1040℃下进行真空烧结2h,然后在冰水中淬火;
(8)将步骤(7)所得物质在900℃退火1h,然后在630℃退火2h,得双主相Nd2Fe14B-Ce2Fe14B复合永磁体。
该方法制备的(Nd2Fe14B)90(Ce2Fe14B)10双主相复合永磁体的磁滞回线图见图1。
若用单合金法直接将Ce替代Nd,通过熔炼的方法形成(NdCe)2Fe14B为基体的稀土永磁材料其矫顽力一般小于12kOe,而由图1可知,通过本发明方法制得的产品所得到的矫顽力超过了13kOe,矫顽力明显提高。
实施例2
一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体,包括Nd2Fe14B和Ce2Fe14B,Nd2Fe14B和Ce2Fe14B质量分数分别为80%和20%(Nd2Fe14B)80(Ce2Fe14B)20。该双主相Nd2Fe14B-Ce2Fe14B复合永磁体的制备方法,包括以下步骤:
(1)取纯度均为99.99%的Nd,Ce,Gd,Fe,Al,Zr,B块体,按Nd的质量分数为29.89%,Gd的质量分数为0.61%,Fe的质量分数为67%,Al的质量分数为1.05%,Zr的质量分数为0.4%,B的质量分数为1.05%配制Nd-Gd-Fe-Al-Zr-B合金;按Ce的质量分数为29.89%,Gd的质量分数为0.61%,Fe的质量分数为67%,Al的质量分数为1.05%,Zr的质量分数为0.4%,B的质量分数为1.05%配制Ce-Gd-Fe-Al-Zr-B合金,将称取的各物质按配制要求置于真空电弧熔炼炉里反复熔炼4-5次,熔炼温度为1600℃,直至得到成分均匀的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金;
(2)将步骤(1)所得的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05分别置于真空玻璃管中,然后再放入退火炉中,以每分钟5℃的速度升为700℃后,保温1h,再以每分钟2℃的速度升为800℃,保温10天,然后在冰水中淬火;
(3)步骤(2)所得物质分别切成块,放入底部带有喷口的石英管中,将石英管放入熔体真空电磁感应加热炉中,通过机械泵、扩散泵及分子泵对炉体内进行真空处理,保持炉体内的真空度为1×10-3Pa,然后通入氩气作为保护气体,启动旋转铜辊,使其速度在28~33m/s;
②启动加热装置对石英管内部的合金进行加热熔炼,Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05熔炼温度均为1500℃,当合金达到熔融状态时,通过气压将石英管中的合金浇注到速度为28-33m/s的旋转铜辊上,制得速凝片;
(4)将步骤(3)所得速凝片分别进行氢爆工艺,得到粒径为1-3mm的粉体;
(5)将步骤(4)所得粉体分别与磁粉保护剂混合,每千克粉体添加5mL磁粉保护剂,然后在气压为0.9MPa下经气流磨制得粒径为3-7μm的粉末;磁粉保护剂是97#汽油和硅烷按质量比为0.6:1混合而成;
(6)将步骤(5)所得Nd2Fe14B和Ce2Fe14B粉末按质量比为8:2混合,然后在8.0T的磁场取向压型,压制成密度为5.1-5.5g/cm3,等静压为180MPa;
(7)将压制后的物质放入真空石英管中,于1040℃下进行真空烧结2h,然后在冰水中淬火;
(8)将步骤(7)所得物质在900℃退火1h,然后在630℃退火2h,得双主相Nd2Fe14B-Ce2Fe14B复合永磁体。
该方法制备的(Nd2Fe14B)80(Ce2Fe14B)20双主相复合永磁体的磁滞回线图见图2。
若用单合金法直接将20%的Ce替代Nd,通过熔炼的方法形成(NdCe)2Fe14B为基体的稀土永磁材料其矫顽力一般小于11kOe,而由图2可知,通过本发明方法制得的产品所得到的矫顽力超过了12kOe,矫顽力明显提高。

Claims (7)

1.一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体,其特征在于,包括Nd2Fe14B和Ce2Fe14B,Nd2Fe14B和Ce2Fe14B质量分数分别为80%-90%和10%-20%。
2.根据权利要求1所述的双主相Nd2Fe14B-Ce2Fe14B复合永磁体,其特征在于,包括Nd2Fe14B和Ce2Fe14B,Nd2Fe14B和Ce2Fe14B质量分数分别为80%和20%。
3.根据权利要求1所述的双主相Nd2Fe14B-Ce2Fe14B复合永磁体,其特征在于,包括Nd2Fe14B和Ce2Fe14B,Nd2Fe14B和Ce2Fe14B质量分数分别为90%和10%。
4.如权利要求1-3任一项所述的双主相Nd2Fe14B-Ce2Fe14B复合永磁体的制备方法,其特征在于,包括以下步骤:
(1)按CeaGdbFecAldZreBf和Nda1Gdb1Fec1Ald1Zre1Bf1进行称取纯度均为99.99%的Nd,Ce,Gd,Fe,Al,Zr,B块体,然后分别置于真空电弧熔炼炉里熔炼4-5次,直至得到成分均匀的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05合金;其中a、b、c、d、e、f、a1、b1、c1、d1、e1和f1分别为对应元素的质量分数;熔炼温度为1600-1800℃;
(2)将步骤(1)所得的Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05分别置于真空玻璃管中,然后再放入退火炉中,于700-800℃条件下保温10-12天,然后在冰水中淬火;
(3)步骤(2)所得物质分别进行甩带工艺,得到速凝片;
(4)将步骤(3)所得速凝片分别进行氢爆工艺,得到粒径为1-3mm的粉体;
(5)将步骤(4)所得粉体分别与磁粉保护剂混合,在气压为0.8-1.0MPa下经气流磨制得粒径为3-7μm的粉末;其中粉体与磁粉保护剂按每千克粉体添加5-8mL磁粉保护剂进行混合;磁粉保护剂是97#汽油和硅烷按质量比为0.6:1混合而成;
(6)将步骤(5)所得Nd2Fe14B和Ce2Fe14B粉末按质量比为4-9:1混合,然后在8.0T的磁场取向压型,压制成密度为5.1-5.5g/cm3,等静压为180MPa的物质;
(7)将压制后的物质放入真空石英管中,于1020-1040℃下进行真空烧结2-3h,然后在冰水中淬火;
(8)将步骤(7)所得物质在900-950℃退火1-2h,然后在630-650℃退火2-3h,得双主相Nd2Fe14B-Ce2Fe14B复合永磁体。
5.根据权利要求4所述的双主相Nd2Fe14B-Ce2Fe14B复合永磁体的制备方法,其特征在于,步骤(2)中的退火过程为:放入退火炉后,以每分钟5℃的速度升为700℃后,保温1h,再以每分钟2℃的速度升为800℃,保温10天,然后在冰水中淬火。
6.根据权利要求4所述的双主相Nd2Fe14B-Ce2Fe14B复合永磁体的制备方法,其特征在于,步骤(3)中速凝片的制备过程为:
①将退火后的两种合金分别切成块,放入底部带有喷口的石英管中,将石英管放入熔体真空电磁感应加热炉中,通过机械泵、扩散泵及分子泵对炉体内进行真空处理,保持炉体内的真空度为1×10-3Pa,然后通入氩气作为保护气体,启动旋转铜辊,使其速度在28-33m/s;
②启动加热装置对石英管内部的合金进行加热熔炼,Nd29.89Gd0.61Fe67Al1.05Zr0.4B1.05和Ce29.89Gd0.61Fe67Al1.05Zr0.4B1.05熔炼温度均为1500℃,当合金达到熔融状态时,通过气压将石英管中的合金浇注到速度为28-33m/s的旋转铜辊上,制得速凝片。
7.根据权利要求4所述的双主相Nd2Fe14B-Ce2Fe14B复合永磁体的制备方法,其特征在于,步骤(5)中粉体与磁粉保护剂按每千克粉体添加5mL磁粉保护剂进行混合。
CN201610752759.4A 2016-08-29 2016-08-29 一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法 Active CN106356175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610752759.4A CN106356175B (zh) 2016-08-29 2016-08-29 一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610752759.4A CN106356175B (zh) 2016-08-29 2016-08-29 一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN106356175A true CN106356175A (zh) 2017-01-25
CN106356175B CN106356175B (zh) 2018-11-02

Family

ID=57855603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610752759.4A Active CN106356175B (zh) 2016-08-29 2016-08-29 一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN106356175B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242336A (zh) * 2017-12-25 2018-07-03 江苏大学 一种高性能低成本复合磁体的制备方法
CN108376596A (zh) * 2017-12-31 2018-08-07 江西荧光磁业有限公司 一种双主相合金磁体的组成成分及其制备方法
CN108538530A (zh) * 2018-05-31 2018-09-14 江苏大学 一种Nd2Fe14B/Al复合材料的制备方法及应用
CN109003801A (zh) * 2018-08-01 2018-12-14 江苏师范大学 一种高矫顽力钕铁硼烧结永磁体的制备方法
CN116844810A (zh) * 2023-06-12 2023-10-03 宁波中杭实业有限公司 一种高铈含量高性能的钕铁硼磁体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266858A (zh) * 2008-01-11 2008-09-17 安徽雄风新材料股份有限公司 一种烧结钕铁硼磁性材料的加工方法
CN102800454A (zh) * 2012-08-30 2012-11-28 钢铁研究总院 低成本双主相Ce永磁合金及其制备方法
CN103280290A (zh) * 2013-06-09 2013-09-04 钢铁研究总院 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN105321644A (zh) * 2015-10-21 2016-02-10 钢铁研究总院 一种高矫顽力烧结态Ce磁体或富Ce磁体及其制备方法
CN105845303A (zh) * 2016-01-08 2016-08-10 宁波宏垒磁业有限公司 一种高性能烧结钕铁硼磁体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266858A (zh) * 2008-01-11 2008-09-17 安徽雄风新材料股份有限公司 一种烧结钕铁硼磁性材料的加工方法
CN102800454A (zh) * 2012-08-30 2012-11-28 钢铁研究总院 低成本双主相Ce永磁合金及其制备方法
CN103280290A (zh) * 2013-06-09 2013-09-04 钢铁研究总院 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN105321644A (zh) * 2015-10-21 2016-02-10 钢铁研究总院 一种高矫顽力烧结态Ce磁体或富Ce磁体及其制备方法
CN105845303A (zh) * 2016-01-08 2016-08-10 宁波宏垒磁业有限公司 一种高性能烧结钕铁硼磁体的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242336A (zh) * 2017-12-25 2018-07-03 江苏大学 一种高性能低成本复合磁体的制备方法
CN108242336B (zh) * 2017-12-25 2019-12-03 江苏大学 一种高性能低成本复合磁体的制备方法
CN108376596A (zh) * 2017-12-31 2018-08-07 江西荧光磁业有限公司 一种双主相合金磁体的组成成分及其制备方法
CN108538530A (zh) * 2018-05-31 2018-09-14 江苏大学 一种Nd2Fe14B/Al复合材料的制备方法及应用
CN108538530B (zh) * 2018-05-31 2020-02-21 江苏大学 一种Nd2Fe14B/Al复合材料的制备方法及应用
CN109003801A (zh) * 2018-08-01 2018-12-14 江苏师范大学 一种高矫顽力钕铁硼烧结永磁体的制备方法
CN109003801B (zh) * 2018-08-01 2020-11-10 江苏师范大学 一种高矫顽力钕铁硼烧结永磁体的制备方法
CN116844810A (zh) * 2023-06-12 2023-10-03 宁波中杭实业有限公司 一种高铈含量高性能的钕铁硼磁体及其制备方法

Also Published As

Publication number Publication date
CN106356175B (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN102592777B (zh) 一种低成本烧结钕铁硼磁体及其制备方法
CN106356175B (zh) 一种双主相Nd2Fe14B-Ce2Fe14B复合永磁体及其制备方法
CN102800454B (zh) 低成本双主相Ce永磁合金及其制备方法
CN104700973B (zh) 一种由白云鄂博共伴生原矿混合稀土制成的稀土永磁体及其制备方法
CN105489334A (zh) 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN103187133B (zh) 一种稀土永磁合金及其磁性相复合制备方法
CN102568806A (zh) 一种通过渗透法制备稀土永磁体的方法及方法中使用的石墨盒
CN104599801A (zh) 一种稀土永磁材料及其制备方法
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN103834863A (zh) 用共伴生混合稀土制造钕铁硼永磁材料的方法
CN101826386A (zh) 一种稀土永磁材料的成分和制造工艺
CN103632792A (zh) 一种高磁能积烧结钕铁硼永磁材料及制备方法
CN103996477A (zh) 一种铜锡晶界改性抗蚀烧结钕铁硼磁体及其制备工艺
CN103779064A (zh) 非晶态制备钕铁硼磁钢的方法
CN104347218A (zh) 一种新型烧结钕铁硼永磁体及其制备方法
CN108389711A (zh) 一种具有高矫顽力的烧结钕铁硼磁体的制备方法
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN107742564A (zh) 一种高镝辅合金添加制备低成本钕铁硼磁体的方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN103971875A (zh) 一种镁铜晶界改性高磁性烧结钕铁硼磁体及其制备工艺
CN105355412A (zh) 一种硫化处理获得高磁性烧结钕铁硼的方法
CN105006327A (zh) 一种高性能含钆铸片磁体及其制备方法
CN104599802A (zh) 稀土永磁材料及其制备方法
CN103137314B (zh) 一种制备稀土-铁-硼永磁体的方法
CN102592778B (zh) 低成本烧结钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant