CN106133923A - 单片式多结能量转换器 - Google Patents

单片式多结能量转换器 Download PDF

Info

Publication number
CN106133923A
CN106133923A CN201580007461.4A CN201580007461A CN106133923A CN 106133923 A CN106133923 A CN 106133923A CN 201580007461 A CN201580007461 A CN 201580007461A CN 106133923 A CN106133923 A CN 106133923A
Authority
CN
China
Prior art keywords
semiconductor layer
energy
bragg reflector
distributed bragg
energy transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580007461.4A
Other languages
English (en)
Other versions
CN106133923B (zh
Inventor
费伦·苏阿雷兹阿里亚斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alei Photonics
Original Assignee
Solar Junction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Junction Corp filed Critical Solar Junction Corp
Priority to CN201810666885.7A priority Critical patent/CN108807571A/zh
Publication of CN106133923A publication Critical patent/CN106133923A/zh
Application granted granted Critical
Publication of CN106133923B publication Critical patent/CN106133923B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

公开了一种共振腔能量转换器,该共振腔能量转换器用于转换介于1微米至1.55微米的波长范围内的辐射。共振腔能量转换器可包括一个或多个晶格匹配的GaInNAsSb结,并且可包括用于提高能量转换效率的分布式布拉格反射器和/或镜面。

Description

单片式多结能量转换器
技术领域
本公开涉及能量转换领域。
背景技术
能量转换器可用于多个应用中以从能量源为诸如手机、音频系统、家庭影院的电子装置或任何其它电子装置充电。本领域中公知的是,欧姆损耗与电压的增大反相关而与电流的增大正相关。因此,通过增大装置的电压来增大能量转换器装置的填充因子(fillfactor)是有益的。
本领域中现有技术的能量转换器包括由诸如GaAs的半导体片制成的单片式串联单层转换器。这种能量转换器可通过导线串联连接,或者可通过利用绝缘沟道在半绝缘衬底上制造转换器而分区从而在每个分区的转换器之间提供电绝缘。用于这种能量转换器的能量源是单色光,诸如在特定波长或能量下工作的激光。在该具体应用中,单色光介于1微米至1.55微米之间,位于波谱的红外区中。接近1微米对于家庭使用是欠佳的,这是因为该光源对人眼具有潜在危害,所以,因此本文中公开的实施方式致力于介于1.3-1.55微米之间的光源,以及在某些实施方式中,致力于约1.3微米的光源。然而,本领域技术人员可易于修改本文中公开的发明来转换多个波长的光。
发明内容
本发明包括紧凑型单片式多结能量转换器,该能量转换器具有相同材料的两个或更多个外延层,该两个或更多个外延层堆叠在彼此的顶部上,其中,在各外延层之间具有隧道结。因为外延层堆叠在彼此的顶部上,所以,各外延层被减薄来收集最大量的光,并且各外延层串联地转换能量,以通过增大整个装置的电压以及降低欧姆损耗(随电流增加而增加)来增加填充因子。在具有堆叠的外延层的情况下,在一个层中未吸收的光在第一层正下方的下一层中吸收,以此类推。能量转换器可达到约50%的总效率。由于使用外延层的纵向堆叠来避免复杂的电路,所以与需要半导体光吸收部之间的相互连接的现有技术相比,存在最小的电流损失。
在第一方面,提供了能量转换器,能量转换器包括:一个或多个GaInNAsSb结;第一半导体层,覆盖一个或多个GaInNAsSb结;以及第二半导体层,位于一个或多个GaInNAsSb结下方;其中,该一个或多个GaInNAsSb结、第一半导体层和第二半导体层的厚度选择成在照射波长下提供共振腔。
附图说明
本文中描述的附图仅为了图示的目的。附图不旨在限制本公开的范围。
图1示出了单片式多结能量转换器的实施方式,其中,E1、E2和E3表示具有相同带隙的半导体材料。
图2A和2B分别示出了根据某些实施方式的具有双分布式布拉格反射器(DBR)的单结共振能量转换器和三结共振能量转换器。
图3A和3B分别示出了根据某些实施方式的具有单个DBR的单结共振能量转换器和三结共振能量转换器。
图4A和4B分别示出了根据某些实施方式的具有顶部DBR和背面镜的单结共振能量转换器和三结共振能量转换器。
图5A和5B分别示出了根据某些实施方式的具有背面镜的单结共振能量转换器和三结共振能量转换器。
图6A和6B分别示出了根据某些实施方式的具有两个DBR和顶部衬底的单结共振能量转换器和三结共振能量转换器。
图7A和8B分别示出了根据某些实施方式的具有覆盖顶部DBR的衬底和背面镜的单结共振能量转换器和三结共振能量转换器。
图8A和8B分别示出了根据某些实施方式的具有两个DBR和连接至横向导电层(LCL)的蚀刻背面接触件的单结共振能量转换器和三结共振能量转换器。
图9示出了根据某些实施方式的具有互相串联连接的多个能量转换器的Pi结构的俯视图。
图10A和图10B示出了根据某些实施方式的具有双通配置且特征为具有单区(图10A)或四象限区(10B)的三结能量转换器。
图11A和图11B分别示出了图10A和图10B中示意性示出的三结能量转换器的俯视图的照片。
图12示出了对于单晶格匹配GaInNAsSb结能量转换器、双晶格匹配GaInNAsSb结能量转换器和三晶格匹配GaInNAsSb结能量转换器,在最大功率点(Mpp)下的效率、输出功率和电压,其作为激光输入功率的函数。
图13示出了对于单晶格匹配GaInNAsSb结能量转换器、双晶格匹配GaInNAsSb结能量转换器和三晶格匹配GaInNAsSb结能量转换器的归一化电流密度(J),其作为针对许多激光输入功率水平的电压的函数。
现在详细叙述本公开的实施方式。虽然对本公开的某些实施方式进行了描述,但是将理解的是,所进行的描述不旨在将本公开的实施方式限于所公开的实施方式。相反,对本公开的实施方式的叙述旨在覆盖如可包括在如由所附权利要求限定的本公开的实施方式的精神和范围内的替代、修改和等同。
具体实施方式
在由本公开提供的某些实施方式中,在衬底(诸如GaInNAs、GaInNAsSb、GaAs、Ge、GaSb、InP或本领域中已知的其它衬底)上形成的相同半导体材料的两个或更多个外延层堆叠在彼此的顶部上,其中,在各外延层之间具有隧道结。图1示出了单片式多结能量转换器的实施方式,其中,E1、E2和E3表示具有相同带隙的半导体材料。每个外延层具有相同的带隙,该带隙与单色光源的能量大致匹配以最小化少数载流子和热量损耗。在某些实施方式中,光源到达与衬底相距最远的最上外延层。在某些实施方式中,外延层材料可以是稀氮材料,诸如GaInNAs或GaInNAsSb或本领域中已知的其它稀氮材料。在一些实施方式中,单色光源介于1微米至多达1.55微米之间,以及在某些实施方式中,光源为约1.3微米。虽然一部分电流可通过由一个或多个隧道结进行的光吸收而损失,但是在第一外延层中未被收集的光在第二外延层中收集,以此类推。这种装置的总效率可达到至少50%的能量效率,诸如介于50%至60%,或者介于50%至70%。在某些实施方式中,单结能量转换器的能量转换效率为至少20%,诸如介于20%至40%。在某些实施方式中,单结能量转换器的能量转换效率为至少30%,诸如介于30%至50%。在某些实施方式中,当用1.32微米的辐射照射时在介于约0.6W至约6W的输入功率下由本公开提供的三结装置呈现介于约23%至约25%的转换效率。
在某些实施方式中,在衬底(诸如GaInNAs、GaInNAsSb、GaAs、Ge、GaSb、InP或本领域中已知的其它衬底)上形成的相同半导体材料的三个或更多个外延层堆叠在彼此的顶部上,其中,在各外延层之间具有隧道结。增加能量转换器装置中的结的数目可使填充因子增大、开路电压(Voc)增大以及短路电流(Jsc)减小。各外延层具有相同的带隙,该带隙与单色光源的能量大致匹配以最小化少数载流子和热量损耗。在某些实施方式中,光源首先到达与衬底相距最近的最底部的外延层。衬底具有比外延层的带隙高的带隙。只要衬底具有比外延层的带隙高的带隙,光源就会穿过衬底并且被外延层吸收。这种实施方式的示例采用GaInNAs外延层(带隙为0.95eV)和GaAs衬底(带隙为1.42eV)。在该示例中的光源将不会被GaAs衬底吸收而将被GaInNAs活性区吸收。散热器可联接至最上外延层的顶部,并且可用作冷却装置以及防止由于过热而引起的缺陷。在一些实施方式中,外延层材料可以是稀氮材料,诸如GaInNAs或GaInNAsSb或本领域中已知的其它稀氮材料。在一些实施方式中,单色光源具有介于1微米至多达1.55微米之间的波长,在某些实施方式中,单色光源具有介于1微米至1.4微米的波长,以及在某些实施方式中,光源为约1.3微米。虽然一部分电流可通过由一个或多个隧道结进行的光吸收而损失,但是在第一外延层中未被收集的光可在第二外延层中收集,以此类推。这种装置的总效率可至少达到50%的能量效率。
在某些实施方式中,一个或多个光吸收层包括GaInNAsSb。在一些实施方式中,GaInNAsSb结包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值是0≤x≤0.24、0.01≤y≤0.07和0.001≤z≤0.20;在某些实施方式中,0.02≤x≤0.24、0.01≤y≤0.07和0.001≤z≤0.03;在某些实施方式中,0.02≤x≤0.18、0.01≤y≤0.04和0.001≤z≤0.03;在某些实施方式中,0.08≤x≤0.18、0.025≤y≤0.04和0.001≤z≤0.03;以及在某些实施方式中,0.06≤x≤0.20、0.02≤y≤0.05和0.005≤z≤0.02。
在一些实施方式中,GaInNAsSb结包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值是0≤x≤0.18、0.001≤y≤0.05和0.001≤z≤0.15,以及在某些实施方式中,0≤x≤0.18、0.001≤y≤0.05和0.001≤z≤0.03;在某些实施方式中,0.02≤x≤0.18、0.005≤y≤0.04和0.001≤z≤0.03;在某些实施方式中,0.04≤x≤0.18、0.01≤y≤0.04和0.001≤z≤0.03;在某些实施方式中,0.06≤x≤0.18、0.015≤y≤0.04和0.001≤z≤0.03;以及在某些实施方式中,0.08≤x≤0.18、0.025≤y≤0.04和0.001≤z≤0.03。
在某些实施方式中,GaInNAsSb结特征为具有0.92eV的带隙并且包括Ga1- xInxNyAs1-y-zSbz,其中,x、y和z的值是:x是0.175,y是0.04,以及0.012≤z≤0.019。
在某些实施方式中,GaInNAsSb结特征为具有0.90eV的带隙并且包括Ga1- xInxNyAs1-y-zSbz,其中,x、y和z的值是:x是0.18,y是0.045,以及0.012≤z≤0.019。
在某些实施方式中,GaInNAsSb包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值是:0.13≤x≤0.19、0.03≤y≤0.048和0.007≤z≤0.02。
在某些实施方式中,GaInNAsSb结包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值选择成具有与用于将能量输送至装置的辐射的能量匹配或近似匹配的带隙。在某些实施方式中,GaInNAsSb结与GaAs衬底基本上晶格匹配。应注意的是,“基本上晶格匹配”通常理解为当材料以大于100nm的厚度存在时材料在其完全弛豫的状态下的面内晶格常数相差小于0.6%。另外,如本文中所使用的基本上互相晶格匹配的子单元意指子单元中以大于100nm的厚度存在的所有材料在其完全弛豫的状态下具有相差小于0.6%的平面内晶格常数。
在某些实施方式中,能量转换器中的外延层中的每个与GaAs衬底晶格匹配。
在某些实施方式中,使用不同折射率的分层材料可在结构内产生分布式布拉格反射器(DBR)并且用于增加能量转换器的效率。一个这种示例将稀氮材料用作结构的外延堆叠中的吸收材料,在某些实施方式中,稀氮材料是GaInNAsSb材料。腔可通过使用诸如GaAs/AlGaAs的材料作为在稀氮层之下且在衬底之上的DBR以及通过使用在稀氮层之上形成的可由半导体或多种氧化物制成的另一DBR来形成。
在某些实施方式中,在衬底具有比吸收材料高的带隙的情况中,背侧金属可用作结构式镜,结构式镜允许未吸收的光从背面金属反射以在位于之上的外延层中被再吸收。图2A和图2B中示出了使用双通配置的共振腔能量转换器的示例。图2A示出了具有顶部DBR和底部DBR的单结共振腔。单个GaInNAsSb结布置在两个DBR之间,并且通过半导体层d1和半导体层d2与DBR分开。半导体层可由不明显吸收入射辐射且可以与GaAs和吸收层晶格匹配的材料形成,而且,在某些实施方式中,该材料可以为GaAs。可将d1、d2以及GaInNAsSb结的厚度选择成提供处于入射辐射的波长的驻波。图2B示出了与图2A所示的配置类似的配置,但是该配置包括多个GaInNAsSb结,其中,多个GaInNAsSb结中的每个由隧道结分开。GaInNAsSb结的厚度可以为介于约100nm至约1微米。在某些实施方式中,衬底是半绝缘GaAs衬底或n型掺杂GaAs衬底,其具有背面金属以作为结构的最底层。
为了供1微米至1.55微米的辐射使用,镜层可以是例如金或金/镍合金。
在某些实施方式中,能量转换器结构使用一个DBR而不使用两个DBR。图3A和图3B中示出了采用单个DBR的共振能量转换器。图3A示出了布置在两个半导体层d1和d2之间的单个GaInNAsSb结。这些层覆盖底部DBR,底部DBR覆盖衬底。装置的上表面(诸如层d1与入射辐射面对的上表面)可涂有抗反射涂覆物。抗反射涂覆物可针对入射辐射的波长进行优化以减少散射。图3B示出了具有多个GaInNAsSb结的单DBR共振腔配置。
在某些实施方式中,能量转换器结构包括一个DBR和在衬底之下的背面镜。这种装置配置在图4A、图4B、图5A和图5B中示出。图4A和图4B示出了这样的能量转换器,该能量转换器具有顶部DBR、包括在两个半导体层d1和d2之间的单个GaInNAsSb结的共振腔、以及在半导体层d2下方的背面镜。在某些实施方式中,背面镜还可用作电接触件。图4B中示出了多结能量转换器,其中,多个GaInNAsSb结布置在顶部DBR与背面镜之间。
在图5A和图5B中所示的能量转换器中,DBR和背面镜均在装置的底部处使用。在该配置中,与具有底部DBR而不具有背面镜的配置相比,DBR的厚度可减小。如同其它装置一样,层D1的上表面可包括抗反射涂覆物。在某些实施方式中,衬底被移除,并且在衬底的位置处将金属用作背面镜。在这种结构中,光穿过顶部DBR,然后经过外延层,然后经过底部DBR并且最后到达背面镜。在这些实施方式中,外延层包括GaInNAsSb以作为一个或多个吸收层。
在某些实施方式中,结构的最上层包括在外延层之上的空气-半导体界面,外延层可包括一个或多个GaInNAsSb层。在外延层之下是覆盖背面镜的底部DBR。在这些实施方式中,光到达空气-半导体界面的最上层并且传播至外延层,然后传播至DBR,并且最后在由背面镜反射之后往回反射通过该结构。
图6A和图6B中示出了具有两个DBR和顶部衬底层的共振腔配置。顶部衬底层对于用于产生能量的入射辐射基本上是透明的。在某些实施方式中,衬底可以是诸如n型GaAs的GaAs并且可具有介于约150微米至约250微米的厚度,诸如介于175微米至225微米。衬底的厚度可例如通过研磨或蚀刻变薄以使吸收最小化,并且在这些实施方式中,衬底的厚度可以是50微米或小于50微米。在某些实施方式中,底部DBR可结合至散热器。将DBR直接结合至散热器可降低能量转换器的温度。
图7A和图7B示出了与图6A和图6B中所示的装置配置类似的、但是用背面镜来代替底部DBR的装置配置。
在某些实施方式中,结构具有腔内接触件以避免来自DBR结构的电阻率。接触件通过绕过DBR结构的横向传输导电层(LCL)在腔中制造。图8A和图8B中示出了具有腔内接触件的能量转换器。在这些装置结构中,外延层被蚀刻到覆盖底部DBR的LCL或蚀刻到覆盖半导体层d1的LCL。LCL提高到电接触件(背面接触件和顶部接触件)的载流子迁移率,并且可例如由诸如n型GaAs的掺杂GaAs形成。LCL和类似的蚀刻背面电接触件可应用于由本公开提供的其它装置结构。
在某些实施方式中,结构可反向地形成。在这些情况中,在使用多种剥离技术的生长之后,衬底可变薄至某一厚度或者被移除。在穿过外延层之前,光首先穿过衬底。在这种结构中,衬底的带隙大于外延层的带隙。
包括多个串联连接的子单元的多个光伏转换器可构造成增大输出电压。子单元可并联连接以增大输出电流。示例为如图9所示的Pi结构。红外吸收体通常特征为具有低电压;然而,在某些应用中,理想的是增大能量转换器的电压。这可通过串联连接多个能量转换器实现。一个这种配置称为Pi结构,在Pi结构中,多个能量转换器单元布置成围绕中心轴的同心环,其中每个单元由绝缘体分离开,而且多个单元或多个单元的子装置串联连接,该配置的俯视图在图9中示出。这种结构可使用单结制造并且提供高密度的单元。较高的电压提供改善的DC-DC转换器效率和较低的欧姆损耗。虽然之后电流可产生欧姆损耗,但是欧姆损耗可以被补偿,这是因为增加数量的子单元使电流减小。
图10A和图10B中示出了其它装置结构。图10A示出了单个三结双通能量转换器。图10B示出了四象限三结双通能量转换器。装置的尺寸为300微米乘300微米。四个转换器可互相串联连接以增大电压和/或减小电流。互相串联连接还可以降低对入射辐射的空间定向的敏感性。另外,对于大面积能量转换器,将收集区分成象限或其它子区域可通过使电接触件更靠近能量产生表面来降低欧姆损耗。图11A和图11B中示出了单象限装置和四象限装置的照片。
图10A、图10B、图11A和图11B中所示的能量转换器使用GaInNAsSb结制造。所有的外延层与GaAs衬底晶格匹配。在GaAs衬底的底部处布置有背面镜。三结结构的共振腔配置为支持在约1.3微米下的驻波,诸如在1.32微米下或在1.342微米下的驻波。对于配置为在1.32微米下进行能量转换的装置,GaInNAsSb结的带隙为约0.92eV。确定的是,这种装置呈现介于约65%至约75%的填充因子、介于约1.47V至约1.5V的Voc和介于约0.6A至约1.4A的Jsc。能量转换效率在介于约0.6W至约6W的输入功率下为介于约23%至25%。
在某些实施方式中,相同半导体材料的两个或更多个外延层具有变化的厚度。具体地,外延层越远离光源,则其厚度可越小。在某些实施方式中,各外延层中的厚度可相同。在某些实施方式中,外延层的厚度是变化的,外延层的厚度根据光源位置增大或减小。
在一些实施方式中,在最上外延层的顶部上存在窗层。
在某些实施方式中,整个装置的厚度或高度可以在1微米至高达10微米之间,能量转换器的面积可以在例如100微米×100微米至高达1厘米×1厘米之间或者更大。例如,总面积介于10-4cm2至1cm2。每个外延层的厚度可介于几百纳米至几微米之间。
图12示出了对于单GaInNAsSb结(空心圆)能量转换器、双GaInNAsSb结(正方形)能量转换器和三GaInNAsSb结(加号)能量转换器,在最大功率点(Mpp)下的效率、输出功率和电压,其作为激光输入功率的函数。
图13示出了对于单GaInNAsSb结(空心圆)能量转换器、双GaInNAsSb结(正方形)能量转换器和三GaInNAsSb结(加号)能量转换器的归一化电流密度(J),其作为针对许多激光输入功率水平的电压的函数。
最后,应注意的是,存在实现本文中公开的实施方式的可替代方式。相应地,本实施方式应被理解为说明性的而非限制性的。此外,权利要求不应限于本文中所给出的细节,而应被赋予其全部范围和等同的权利。

Claims (17)

1.能量转换器,包括:
一个或多个GaInNAsSb结;
第一半导体层,覆盖所述一个或多个GaInNAsSb结;以及
第二半导体层,位于所述一个或多个GaInNAsSb结下方;
其中,所述一个或多个GaInNAsSb结、所述第一半导体层和所述第二半导体层的厚度选择成在照射波长下提供共振腔。
2.根据权利要求1所述的能量转换器,其中,所述一个或多个GaInNAsSb结中的每个:
与GaAs晶格匹配;
包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值为0≤x≤0.24、0.01≤y≤0.07和0.001≤z≤0.20;以及
特征为具有与所述照射波长的能量对应的带隙。
3.根据权利要求1所述的能量转换器,其中,所述波长介于1.3微米至1.55微米。
4.根据权利要求1所述的能量转换器,其中,所述波长介于1.30微米至1.35微米。
5.根据权利要求1所述的能量转换器,包括:
第一分布式布拉格反射器,覆盖所述第一半导体层;
第二分布式布拉格反射器,位于所述第二半导体层下方;或者包括:
覆盖所述第一半导体层的第一分布式布拉格反射器和位于所述第二半导体层下方的第二分布式布拉格反射器。
6.根据权利要求1所述的能量转换器,包括:
第一分布式布拉格反射器,覆盖所述第一半导体层;
第二分布式布拉格反射器,位于所述第二半导体层下方;以及
衬底,位于所述第二分布式布拉格反射器下方。
7.根据权利要求1所述的能量转换器,包括:
第二分布式布拉格反射器,位于所述第二半导体层下方;以及
衬底,位于所述第二分布式布拉格反射器下方。
8.根据权利要求7所述的能量转换器,包括覆盖所述第一半导体层的抗反射涂覆物。
9.根据权利要求1所述的能量转换器,包括:
第一分布式布拉格反射器,覆盖所述第一半导体层;以及
背面镜,位于所述第二半导体层下方。
10.根据权利要求1所述的能量转换器,包括:
第二分布式布拉格反射器,位于所述第二半导体层下方;以及
背面镜,位于所述第二分布式布拉格反射器下方。
11.根据权利要求1所述的能量转换器,包括:
第一分布式布拉格反射器,覆盖所述第一半导体层;
第二分布式布拉格反射器,位于所述第二半导体层下方;以及
衬底,覆盖所述第一分布式布拉格反射器。
12.根据权利要求1所述的能量转换器,包括:
第一分布式布拉格反射器,覆盖所述第一半导体层;
衬底,覆盖所述第一分布式布拉格反射器;以及
背面镜,位于所述第二半导体层下方。
13.根据权利要求1所述的能量转换器,包括:
第一横向导电层,覆盖所述第一半导体层;以及
第二横向导电层,覆盖所述第二半导体层。
14.根据权利要求13所述的能量转换器,包括:
第一电接触件,连接至覆盖所述第一半导体层的所述第一横向导电层;以及
第二电接触件,连接至覆盖所述第二半导体层的所述第二横向导电层。
15.根据权利要求1所述的能量转换器,其特征在于对于介于0.6W至6W的照射输入功率,效率为至少20%。
16.能量转换器,包括以Pi结构配置的多个根据权利要求1所述的能量转换器。
17.能量转换器,包括互相串联连接的多个根据权利要求1所述的能量转换器。
CN201580007461.4A 2014-02-05 2015-02-05 单片式多结能量转换器 Expired - Fee Related CN106133923B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810666885.7A CN108807571A (zh) 2014-02-05 2015-02-05 单片式多结能量转换器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461936222P 2014-02-05 2014-02-05
US61/936,222 2014-02-05
PCT/US2015/014650 WO2015120169A1 (en) 2014-02-05 2015-02-05 Monolithic multijunction power converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810666885.7A Division CN108807571A (zh) 2014-02-05 2015-02-05 单片式多结能量转换器

Publications (2)

Publication Number Publication Date
CN106133923A true CN106133923A (zh) 2016-11-16
CN106133923B CN106133923B (zh) 2018-07-24

Family

ID=52472636

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810666885.7A Pending CN108807571A (zh) 2014-02-05 2015-02-05 单片式多结能量转换器
CN201580007461.4A Expired - Fee Related CN106133923B (zh) 2014-02-05 2015-02-05 单片式多结能量转换器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810666885.7A Pending CN108807571A (zh) 2014-02-05 2015-02-05 单片式多结能量转换器

Country Status (8)

Country Link
US (4) US20150221803A1 (zh)
EP (2) EP3761375A1 (zh)
CN (2) CN108807571A (zh)
ES (1) ES2831831T3 (zh)
SA (1) SA516371606B1 (zh)
SG (1) SG11201606353TA (zh)
TW (1) TWI656651B (zh)
WO (1) WO2015120169A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX337295B (es) 2009-02-09 2016-02-23 Semprius Inc Modulos, receptores y sub-receptores fotovoltaicos tipo concentrador y metodos para formar los mismos.
SG11201606353TA (en) 2014-02-05 2016-09-29 Solar Junction Corp Monolithic multijunction power converter
US20170110613A1 (en) * 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
EP3669402A1 (en) 2017-09-27 2020-06-24 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer
EP3766104A1 (en) * 2018-03-12 2021-01-20 Solar Junction Corporation Chirped distributed bragg reflectors for photovoltaic cells and other light absorption devices
US10797197B2 (en) * 2018-06-18 2020-10-06 Alta Devices, Inc. Thin-film, flexible optoelectronic devices incorporating a single lattice-matched dilute nitride junction and methods of fabrication
WO2020047069A1 (en) * 2018-08-30 2020-03-05 Array Photonics, Inc. Multijunction solar cells and multicolor photodetectors having an integrated edge filter
WO2020185528A1 (en) 2019-03-11 2020-09-17 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
CN114207845A (zh) 2019-07-15 2022-03-18 Slt科技公司 功率光电二极管结构、制造方法和使用方法
US11575055B2 (en) 2019-07-15 2023-02-07 SLT Technologies, Inc Methods for coupling of optical fibers to a power photodiode
US11569398B2 (en) 2019-07-15 2023-01-31 SLT Technologies, Inc Power photodiode structures and devices
US11670735B2 (en) * 2020-12-14 2023-06-06 Lumileds Llc Monolithic electrical power converter formed with layers
WO2023061637A1 (en) * 2021-10-15 2023-04-20 Ams-Osram International Gmbh Optoelectronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979901A (zh) * 2005-12-02 2007-06-13 中国科学院半导体研究所 具有双吸收区结构的高效可调谐光探测器
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US20110232730A1 (en) * 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
CN102280587A (zh) * 2010-12-31 2011-12-14 友达光电股份有限公司 堆叠式太阳能电池模块

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127862A (en) 1977-09-06 1978-11-28 Bell Telephone Laboratories, Incorporated Integrated optical detectors
US4179702A (en) 1978-03-09 1979-12-18 Research Triangle Institute Cascade solar cells
US4404421A (en) 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
GB2132016B (en) 1982-12-07 1986-06-25 Kokusai Denshin Denwa Co Ltd A semiconductor device
JPS6061513A (ja) 1983-09-14 1985-04-09 Sansho Seiyaku Kk 化粧料
JPS6061516A (ja) 1983-09-14 1985-04-09 Sansho Seiyaku Kk パ−マネントウエ−ブ用第1液
US4547622A (en) 1984-04-27 1985-10-15 Massachusetts Institute Of Technology Solar cells and photodetectors
US4881979A (en) 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
JPS63100781A (ja) 1986-10-17 1988-05-02 Nippon Telegr & Teleph Corp <Ntt> 半導体素子
US5016562A (en) 1988-04-27 1991-05-21 Glasstech Solar, Inc. Modular continuous vapor deposition system
US4935384A (en) 1988-12-14 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Method of passivating semiconductor surfaces
JPH02218174A (ja) 1989-02-17 1990-08-30 Mitsubishi Electric Corp 光電変換半導体装置
US5223043A (en) 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5166761A (en) 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
US5330585A (en) 1992-10-30 1994-07-19 Spectrolab, Inc. Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell
US5342453A (en) 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5316593A (en) 1992-11-16 1994-05-31 Midwest Research Institute Heterojunction solar cell with passivated emitter surface
US5800630A (en) 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US5376185A (en) 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5689123A (en) 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
FR2722612B1 (fr) 1994-07-13 1997-01-03 Centre Nat Rech Scient Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif
JPH1012905A (ja) 1996-06-27 1998-01-16 Hitachi Ltd 太陽電池及びその製造方法
KR19980046586A (ko) 1996-12-12 1998-09-15 양승택 공진파장 제어 기능을 구비한 고분자 광검출기
US5911839A (en) 1996-12-16 1999-06-15 National Science Council Of Republic Of China High efficiency GaInP NIP solar cells
JP3683669B2 (ja) 1997-03-21 2005-08-17 株式会社リコー 半導体発光素子
US6281426B1 (en) 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US5944913A (en) 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6150603A (en) 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US6252287B1 (en) 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
JP4064592B2 (ja) 2000-02-14 2008-03-19 シャープ株式会社 光電変換装置
AU2002216611A1 (en) 2000-09-29 2002-04-08 Board Of Regents, The University Of Texas System A theory of the charge multiplication process in avalanche photodiodes
US7345327B2 (en) 2000-11-27 2008-03-18 Kopin Corporation Bipolar transistor
US6815736B2 (en) 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6787385B2 (en) 2001-05-31 2004-09-07 Midwest Research Institute Method of preparing nitrogen containing semiconductor material
US6586669B2 (en) 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US20030070707A1 (en) 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US7119271B2 (en) 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US6764926B2 (en) 2002-03-25 2004-07-20 Agilent Technologies, Inc. Method for obtaining high quality InGaAsN semiconductor devices
US6660928B1 (en) 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6756325B2 (en) 2002-05-07 2004-06-29 Agilent Technologies, Inc. Method for producing a long wavelength indium gallium arsenide nitride(InGaAsN) active region
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8173891B2 (en) 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6967154B2 (en) 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US7255746B2 (en) 2002-09-04 2007-08-14 Finisar Corporation Nitrogen sources for molecular beam epitaxy
US7122733B2 (en) 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6765238B2 (en) 2002-09-12 2004-07-20 Agilent Technologies, Inc. Material systems for semiconductor tunnel-junction structures
US7126052B2 (en) 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
US7122734B2 (en) 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
WO2004054003A1 (en) 2002-12-05 2004-06-24 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US7161170B1 (en) 2002-12-12 2007-01-09 Triquint Technology Holding Co. Doped-absorber graded transition enhanced multiplication avalanche photodetector
JP2004296658A (ja) 2003-03-26 2004-10-21 Sharp Corp 多接合太陽電池およびその電流整合方法
US7812249B2 (en) 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
US7123638B2 (en) 2003-10-17 2006-10-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Tunnel-junction structure incorporating N-type layer comprising nitrogen and a group VI dopant
GB2409572B (en) 2003-12-24 2006-02-15 Intense Photonics Ltd Generating multiple bandgaps using multiple epitaxial layers
CN100477289C (zh) 2004-01-20 2009-04-08 瑟雷姆技术公司 具有外延生长量子点材料的太阳能电池
US7807921B2 (en) 2004-06-15 2010-10-05 The Boeing Company Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
US20060048811A1 (en) * 2004-09-09 2006-03-09 Krut Dimitri D Multijunction laser power converter
DE102005000767A1 (de) 2005-01-04 2006-07-20 Rwe Space Solar Power Gmbh Monolithische Mehrfach-Solarzelle
JP5008874B2 (ja) 2005-02-23 2012-08-22 住友電気工業株式会社 受光素子と受光素子を用いた光通信用受信モジュールおよび受光素子を用いた計測器
KR100932821B1 (ko) 2005-03-11 2009-12-21 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 게르마늄규소주석계 화합물, 주형 및 반도체 구조물
US7473941B2 (en) 2005-08-15 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
US20070113887A1 (en) 2005-11-18 2007-05-24 Lih-Hong Laih Material system of photovoltaic cell with micro-cavity
US11211510B2 (en) 2005-12-13 2021-12-28 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
US20070227588A1 (en) 2006-02-15 2007-10-04 The Regents Of The University Of California Enhanced tunnel junction for improved performance in cascaded solar cells
JP2009530818A (ja) 2006-03-13 2009-08-27 ナノグラム・コーポレイション 薄シリコンまたはゲルマニウムシートおよび薄型シート製太陽電池
US20100229926A1 (en) 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20090078310A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US7872252B2 (en) 2006-08-11 2011-01-18 Cyrium Technologies Incorporated Method of fabricating semiconductor devices on a group IV substrate with controlled interface properties and diffusion tails
US7842881B2 (en) 2006-10-19 2010-11-30 Emcore Solar Power, Inc. Solar cell structure with localized doping in cap layer
US20080149173A1 (en) 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
US20100116318A1 (en) * 2007-03-08 2010-05-13 Hrl Laboratories, Llc Pixelated photovoltaic array method and apparatus
JP5515162B2 (ja) 2007-03-23 2014-06-11 住友電気工業株式会社 半導体ウエハの製造方法
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US20080257405A1 (en) 2007-04-18 2008-10-23 Emcore Corp. Multijunction solar cell with strained-balanced quantum well middle cell
JP2009010175A (ja) 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd 受光素子およびその製造方法
US20090014061A1 (en) * 2007-07-10 2009-01-15 The Board Of Trustees Of The Leland Stanford Junior University GaInNAsSb solar cells grown by molecular beam epitaxy
JP5260909B2 (ja) 2007-07-23 2013-08-14 住友電気工業株式会社 受光デバイス
JP5417694B2 (ja) 2007-09-03 2014-02-19 住友電気工業株式会社 半導体素子およびエピタキシャルウエハの製造方法
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
GB0719554D0 (en) 2007-10-05 2007-11-14 Univ Glasgow semiconductor optoelectronic devices and methods for making semiconductor optoelectronic devices
TW200924214A (en) 2007-11-16 2009-06-01 Univ Nat Chunghsing Solar cell
US20090155952A1 (en) 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090188561A1 (en) 2008-01-25 2009-07-30 Emcore Corporation High concentration terrestrial solar array with III-V compound semiconductor cell
JP5303962B2 (ja) * 2008-02-28 2013-10-02 三菱電機株式会社 半導体受光素子
US20090255575A1 (en) 2008-04-04 2009-10-15 Michael Tischler Lightweight solar cell
US20090255576A1 (en) 2008-04-04 2009-10-15 Michael Tischler Window solar cell
US20090272438A1 (en) 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US8202788B2 (en) 2008-06-26 2012-06-19 Nanyang Technological University Method for fabricating GaNAsSb semiconductor
US9080425B2 (en) * 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
TW201027784A (en) 2008-10-07 2010-07-16 Applied Materials Inc Advanced platform for processing crystalline silicon solar cells
WO2010044978A1 (en) 2008-10-15 2010-04-22 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Hybrid group iv/iii-v semiconductor structures
US7915639B2 (en) 2008-10-20 2011-03-29 Aerius Photonics Llc InGaAsSbN photodiode arrays
US8912428B2 (en) 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
US8093559B1 (en) 2008-12-02 2012-01-10 Hrl Laboratories, Llc Methods and apparatus for three-color infrared sensors
US20150357501A1 (en) 2008-12-17 2015-12-10 Solaero Technologies Corp. Four junction inverted metamorphic solar cell
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
KR20100084843A (ko) 2009-01-19 2010-07-28 삼성전자주식회사 다중접합 태양전지
US9105783B2 (en) 2009-01-26 2015-08-11 The Aerospace Corporation Holographic solar concentrator
US20100282305A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100282306A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
EP2251912A1 (de) 2009-05-11 2010-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tunneldioden aus spannungskompensierten Verbindungshalbleiterschichten
US20100319764A1 (en) 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
IT1394853B1 (it) 2009-07-21 2012-07-20 Cesi Ct Elettrotecnico Sperimentale Italiano Giacinto Motta S P A Cella fotovoltaica ad elevata efficienza di conversione
CN102576778B (zh) 2009-07-29 2015-05-13 瑟雷姆技术公司 太阳能电池及其制作方法
JP5649157B2 (ja) 2009-08-01 2015-01-07 住友電気工業株式会社 半導体素子およびその製造方法
JP5444994B2 (ja) * 2009-09-25 2014-03-19 三菱電機株式会社 半導体受光素子
US20110114163A1 (en) 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
US8895838B1 (en) 2010-01-08 2014-11-25 Magnolia Solar, Inc. Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same
TWI436488B (zh) 2010-03-12 2014-05-01 Epistar Corp 一種具有漸變緩衝層太陽能電池
US8269223B2 (en) 2010-05-27 2012-09-18 The United States Of America As Represented By The Secretary Of The Army Polarization enhanced avalanche photodetector and method thereof
US20110303268A1 (en) 2010-06-15 2011-12-15 Tan Wei-Sin HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
US8642883B2 (en) 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US20190013430A1 (en) 2010-10-28 2019-01-10 Solar Junction Corporation Optoelectronic devices including dilute nitride
TWI412149B (zh) 2010-12-16 2013-10-11 Univ Nat Central Laser energy conversion device
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8927857B2 (en) 2011-02-28 2015-01-06 International Business Machines Corporation Silicon: hydrogen photovoltaic devices, such as solar cells, having reduced light induced degradation and method of making such devices
US20120255600A1 (en) 2011-04-06 2012-10-11 International Business Machines Corporation Method of bonding and formation of back surface field (bsf) for multi-junction iii-v solar cells
US20130112239A1 (en) * 2011-04-14 2013-05-09 Cool Earh Solar Solar energy receiver
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
US20130074901A1 (en) 2011-09-22 2013-03-28 Rosestreet Labs Energy, Inc. Compositionally graded dilute group iii-v nitride cell with blocking layers for multijunction solar cell
FR2981195A1 (fr) 2011-10-11 2013-04-12 Soitec Silicon On Insulator Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
EP2618385A1 (de) 2012-01-20 2013-07-24 AZUR SPACE Solar Power GmbH Halbzeug einer Mehrfachsolarzelle und Verfahren zur Herstellung einer Mehrfachsolarzelle
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
CN104541379B (zh) 2012-06-22 2017-09-12 埃皮沃克斯股份有限公司 半导体基多结光伏装置的制造
US8636844B1 (en) 2012-07-06 2014-01-28 Translucent, Inc. Oxygen engineered single-crystal REO template
GB2504977B (en) 2012-08-16 2017-10-04 Airbus Defence & Space Gmbh Laser power converter
CN102829884B (zh) * 2012-09-10 2014-10-08 清华大学 具有强吸收结构的高速snspd及其制备方法
US20140182667A1 (en) 2013-01-03 2014-07-03 Benjamin C. Richards Multijunction solar cell with low band gap absorbing layer in the middle cell
TWI602315B (zh) 2013-03-08 2017-10-11 索泰克公司 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法
US20140290737A1 (en) 2013-04-02 2014-10-02 The Regents Of The University Of California Thin film vls semiconductor growth process
US20160300973A1 (en) 2013-05-24 2016-10-13 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector with enhanced high photon energy response and method thereof
ITMI20131297A1 (it) 2013-08-01 2015-02-02 Cesi Ct Elettrotecnico Sperim Entale Italian Cella fotovoltaica con banda proibita variabile
US8957376B1 (en) 2013-08-07 2015-02-17 Bah Holdings, Llc Optopairs with temperature compensable electroluminescence for use in optical gas absorption analyzers
CN103426965B (zh) * 2013-08-16 2016-12-28 中国科学院苏州纳米技术与纳米仿生研究所 太阳能电池及其制作方法
US10388817B2 (en) 2013-12-09 2019-08-20 Avago Technologies International Sales Pte. Limited Transducer to convert optical energy to electrical energy
SG11201606353TA (en) 2014-02-05 2016-09-29 Solar Junction Corp Monolithic multijunction power converter
CN104282793A (zh) 2014-09-30 2015-01-14 中山大学 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
JP2018518848A (ja) 2015-06-22 2018-07-12 アイキューイー ピーエルシーIQE plc GaAsにほぼ合致する格子パラメータを有する基板上に希薄窒化物層を有する光電子検出器
US9669740B2 (en) 2015-08-04 2017-06-06 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle having interchangeably storable and mountable stowable folding seat and center console
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US9954128B2 (en) 2016-01-12 2018-04-24 The Boeing Company Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length
WO2017205100A1 (en) 2016-05-23 2017-11-30 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells
GB2555409B (en) 2016-10-25 2020-07-15 Iqe Plc Photovoltaic Device
CN106711253B (zh) 2016-12-14 2018-07-27 江苏华功第三代半导体产业技术研究院有限公司 一种iii族氮化物半导体雪崩光电二极管探测器
EP3669402A1 (en) 2017-09-27 2020-06-24 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer
CN107644921B (zh) 2017-10-18 2023-08-29 五邑大学 一种新型雪崩二极管光电探测器及其制备方法
TW202114242A (zh) 2019-06-04 2021-04-01 美商太陽結公司 具有梯度摻雜之稀氮化物光學吸收層

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979901A (zh) * 2005-12-02 2007-06-13 中国科学院半导体研究所 具有双吸收区结构的高效可调谐光探测器
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US20110232730A1 (en) * 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
CN102280587A (zh) * 2010-12-31 2011-12-14 友达光电股份有限公司 堆叠式太阳能电池模块

Also Published As

Publication number Publication date
EP3761375A1 (en) 2021-01-06
TW201539772A (zh) 2015-10-16
US20190348562A1 (en) 2019-11-14
SA516371606B1 (ar) 2020-11-26
TWI656651B (zh) 2019-04-11
WO2015120169A1 (en) 2015-08-13
CN108807571A (zh) 2018-11-13
US11233166B2 (en) 2022-01-25
CN106133923B (zh) 2018-07-24
US20150221803A1 (en) 2015-08-06
US20180337301A1 (en) 2018-11-22
EP3103142B1 (en) 2020-08-19
SG11201606353TA (en) 2016-09-29
US20220102569A1 (en) 2022-03-31
EP3103142A1 (en) 2016-12-14
ES2831831T3 (es) 2021-06-09

Similar Documents

Publication Publication Date Title
CN106133923B (zh) 单片式多结能量转换器
US8847824B2 (en) Apparatuses and method for converting electromagnetic radiation to direct current
US8115683B1 (en) Rectenna solar energy harvester
US8736108B1 (en) Photovoltaic system
US8750653B1 (en) Infrared nanoantenna apparatus and method for the manufacture thereof
US9917225B2 (en) Black body infrared antenna array
TW200539275A (en) Laminate type thin-film solar cell and production method thereof
US20100059097A1 (en) Bifacial multijunction solar cell
TW201607143A (zh) 與太陽能電池陣列整合之可撓性天線
JP2016526304A (ja) 太陽電池構造及びその製造方法
US20160155872A1 (en) Method to assemble a rectangular cic from a circular wafer
US10658968B2 (en) Near-field based thermoradiative device
JP6888859B2 (ja) マルチスタック積層レーザ太陽電池及びその製造方法
WO2006025260A1 (ja) 積層型有機無機複合高効率太陽電池
Shen et al. Resonant-cavity-enhanced p-type GaAs/AlGaAs quantum-well infrared photodetectors
CN109690800A (zh) 光伏装置
US11901473B2 (en) Thermophotovoltaic cells with integrated air-bridge for improved efficiency
US10483297B2 (en) Energy harvesting devices and method of fabrication thereof
US10389020B2 (en) Solar element comprising resonator for application in energetics
KR101520804B1 (ko) 광대역 파장 흡수 및 에너지변환을 이용한 고효율 태양전지
US20110220173A1 (en) Active solar concentrator with multi-junction devices
TW201349545A (zh) 多接面光伏電池及其製造方法
US20140093995A1 (en) Method of Hybrid Stacked Chip for a Solar Cell
KR101614913B1 (ko) 태양전지
KR101535281B1 (ko) 태양전지 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: Alei Photonics

Address before: California, USA

Patentee before: SOLAR JUNCTION Corp.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180724

CF01 Termination of patent right due to non-payment of annual fee