CN106133923B - 单片式多结能量转换器 - Google Patents
单片式多结能量转换器 Download PDFInfo
- Publication number
- CN106133923B CN106133923B CN201580007461.4A CN201580007461A CN106133923B CN 106133923 B CN106133923 B CN 106133923B CN 201580007461 A CN201580007461 A CN 201580007461A CN 106133923 B CN106133923 B CN 106133923B
- Authority
- CN
- China
- Prior art keywords
- energy converter
- resonant cavity
- gainnassb
- semiconductor layer
- cavity energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims description 37
- 239000004065 semiconductor Substances 0.000 claims description 31
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 19
- 235000007164 Oryza sativa Nutrition 0.000 claims description 3
- 235000009566 rice Nutrition 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 239000006117 anti-reflective coating Substances 0.000 claims 1
- 238000005242 forging Methods 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 75
- 239000000463 material Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000002165 resonance energy transfer Methods 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910005542 GaSb Inorganic materials 0.000 description 2
- 240000001439 Opuntia Species 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- LYKJEJVAXSGWAJ-UHFFFAOYSA-N compactone Natural products CC1(C)CCCC2(C)C1CC(=O)C3(O)CC(C)(CCC23)C=C LYKJEJVAXSGWAJ-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L31/03046—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0725—Multiple junction or tandem solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022433—Particular geometry of the grid contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L31/03046—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
- H01L31/03048—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0687—Multiple junction or tandem solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Lasers (AREA)
- Photovoltaic Devices (AREA)
Abstract
公开了一种共振腔能量转换器,该共振腔能量转换器用于转换介于1微米至1.55微米的波长范围内的辐射。共振腔能量转换器可包括一个或多个晶格匹配的GaInNAsSb结,并且可包括用于提高能量转换效率的分布式布拉格反射器和/或镜面。
Description
技术领域
本公开涉及能量转换领域。
背景技术
能量转换器可用于多个应用中以从能量源为诸如手机、音频系统、家庭影院的电子装置或任何其它电子装置充电。本领域中公知的是,欧姆损耗与电压的增大反相关而与电流的增大正相关。因此,通过增大装置的电压来增大能量转换器装置的填充因子(fillfactor)是有益的。
本领域中现有技术的能量转换器包括由诸如GaAs的半导体片制成的单片式串联单层转换器。这种能量转换器可通过导线串联连接,或者可通过利用绝缘沟道在半绝缘衬底上制造转换器而分区从而在每个分区的转换器之间提供电绝缘。用于这种能量转换器的能量源是单色光,诸如在特定波长或能量下工作的激光。在该具体应用中,单色光介于1微米至1.55微米之间,位于波谱的红外区中。接近1微米对于家庭使用是欠佳的,这是因为该光源对人眼具有潜在危害,所以,因此本文中公开的实施方式致力于介于1.3-1.55微米之间的光源,以及在某些实施方式中,致力于约1.3微米的光源。然而,本领域技术人员可易于修改本文中公开的发明来转换多个波长的光。
发明内容
本发明包括紧凑型单片式多结能量转换器,该能量转换器具有相同材料的两个或更多个外延层,该两个或更多个外延层堆叠在彼此的顶部上,其中,在各外延层之间具有隧道结。因为外延层堆叠在彼此的顶部上,所以,各外延层被减薄来收集最大量的光,并且各外延层串联地转换能量,以通过增大整个装置的电压以及降低欧姆损耗(随电流增加而增加)来增加填充因子。在具有堆叠的外延层的情况下,在一个层中未吸收的光在第一层正下方的下一层中吸收,以此类推。能量转换器可达到约50%的总效率。由于使用外延层的纵向堆叠来避免复杂的电路,所以与需要半导体光吸收部之间的相互连接的现有技术相比,存在最小的电流损失。
在第一方面,提供了能量转换器,能量转换器包括:一个或多个GaInNAsSb结;第一半导体层,覆盖一个或多个GaInNAsSb结;以及第二半导体层,位于一个或多个GaInNAsSb结下方;其中,该一个或多个GaInNAsSb结、第一半导体层和第二半导体层的厚度选择成在照射波长下提供共振腔。
附图说明
本文中描述的附图仅为了图示的目的。附图不旨在限制本公开的范围。
图1示出了单片式多结能量转换器的实施方式,其中,E1、E2和E3表示具有相同带隙的半导体材料。
图2A和2B分别示出了根据某些实施方式的具有双分布式布拉格反射器(DBR)的单结共振能量转换器和三结共振能量转换器。
图3A和3B分别示出了根据某些实施方式的具有单个DBR的单结共振能量转换器和三结共振能量转换器。
图4A和4B分别示出了根据某些实施方式的具有顶部DBR和背面镜的单结共振能量转换器和三结共振能量转换器。
图5A和5B分别示出了根据某些实施方式的具有背面镜的单结共振能量转换器和三结共振能量转换器。
图6A和6B分别示出了根据某些实施方式的具有两个DBR和顶部衬底的单结共振能量转换器和三结共振能量转换器。
图7A和8B分别示出了根据某些实施方式的具有覆盖顶部DBR的衬底和背面镜的单结共振能量转换器和三结共振能量转换器。
图8A和8B分别示出了根据某些实施方式的具有两个DBR和连接至横向导电层(LCL)的蚀刻背面接触件的单结共振能量转换器和三结共振能量转换器。
图9示出了根据某些实施方式的具有互相串联连接的多个能量转换器的Pi结构的俯视图。
图10A和图10B示出了根据某些实施方式的具有双通配置且特征为具有单区(图10A)或四象限区(10B)的三结能量转换器。
图11A和图11B分别示出了图10A和图10B中示意性示出的三结能量转换器的俯视图的照片。
图12示出了对于单晶格匹配GaInNAsSb结能量转换器、双晶格匹配GaInNAsSb结能量转换器和三晶格匹配GaInNAsSb结能量转换器,在最大功率点(Mpp)下的效率、输出功率和电压,其作为激光输入功率的函数。
图13示出了对于单晶格匹配GaInNAsSb结能量转换器、双晶格匹配GaInNAsSb结能量转换器和三晶格匹配GaInNAsSb结能量转换器的归一化电流密度(J),其作为针对许多激光输入功率水平的电压的函数。
现在详细叙述本公开的实施方式。虽然对本公开的某些实施方式进行了描述,但是将理解的是,所进行的描述不旨在将本公开的实施方式限于所公开的实施方式。相反,对本公开的实施方式的叙述旨在覆盖如可包括在如由所附权利要求限定的本公开的实施方式的精神和范围内的替代、修改和等同。
具体实施方式
在由本公开提供的某些实施方式中,在衬底(诸如GaInNAs、GaInNAsSb、GaAs、Ge、GaSb、InP或本领域中已知的其它衬底)上形成的相同半导体材料的两个或更多个外延层堆叠在彼此的顶部上,其中,在各外延层之间具有隧道结。图1示出了单片式多结能量转换器的实施方式,其中,E1、E2和E3表示具有相同带隙的半导体材料。每个外延层具有相同的带隙,该带隙与单色光源的能量大致匹配以最小化少数载流子和热量损耗。在某些实施方式中,光源到达与衬底相距最远的最上外延层。在某些实施方式中,外延层材料可以是稀氮材料,诸如GaInNAs或GaInNAsSb或本领域中已知的其它稀氮材料。在一些实施方式中,单色光源介于1微米至多达1.55微米之间,以及在某些实施方式中,光源为约1.3微米。虽然一部分电流可通过由一个或多个隧道结进行的光吸收而损失,但是在第一外延层中未被收集的光在第二外延层中收集,以此类推。这种装置的总效率可达到至少50%的能量效率,诸如介于50%至60%,或者介于50%至70%。在某些实施方式中,单结能量转换器的能量转换效率为至少20%,诸如介于20%至40%。在某些实施方式中,单结能量转换器的能量转换效率为至少30%,诸如介于30%至50%。在某些实施方式中,当用1.32微米的辐射照射时在介于约0.6W至约6W的输入功率下由本公开提供的三结装置呈现介于约23%至约25%的转换效率。
在某些实施方式中,在衬底(诸如GaInNAs、GaInNAsSb、GaAs、Ge、GaSb、InP或本领域中已知的其它衬底)上形成的相同半导体材料的三个或更多个外延层堆叠在彼此的顶部上,其中,在各外延层之间具有隧道结。增加能量转换器装置中的结的数目可使填充因子增大、开路电压(Voc)增大以及短路电流(Jsc)减小。各外延层具有相同的带隙,该带隙与单色光源的能量大致匹配以最小化少数载流子和热量损耗。在某些实施方式中,光源首先到达与衬底相距最近的最底部的外延层。衬底具有比外延层的带隙高的带隙。只要衬底具有比外延层的带隙高的带隙,光源就会穿过衬底并且被外延层吸收。这种实施方式的示例采用GaInNAs外延层(带隙为0.95eV)和GaAs衬底(带隙为1.42eV)。在该示例中的光源将不会被GaAs衬底吸收而将被GaInNAs活性区吸收。散热器可联接至最上外延层的顶部,并且可用作冷却装置以及防止由于过热而引起的缺陷。在一些实施方式中,外延层材料可以是稀氮材料,诸如GaInNAs或GaInNAsSb或本领域中已知的其它稀氮材料。在一些实施方式中,单色光源具有介于1微米至多达1.55微米之间的波长,在某些实施方式中,单色光源具有介于1微米至1.4微米的波长,以及在某些实施方式中,光源为约1.3微米。虽然一部分电流可通过由一个或多个隧道结进行的光吸收而损失,但是在第一外延层中未被收集的光可在第二外延层中收集,以此类推。这种装置的总效率可至少达到50%的能量效率。
在某些实施方式中,一个或多个光吸收层包括GaInNAsSb。在一些实施方式中,GaInNAsSb结包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值是0≤x≤0.24、0.01≤y≤0.07和0.001≤z≤0.20;在某些实施方式中,0.02≤x≤0.24、0.01≤y≤0.07和0.001≤z≤0.03;在某些实施方式中,0.02≤x≤0.18、0.01≤y≤0.04和0.001≤z≤0.03;在某些实施方式中,0.08≤x≤0.18、0.025≤y≤0.04和0.001≤z≤0.03;以及在某些实施方式中,0.06≤x≤0.20、0.02≤y≤0.05和0.005≤z≤0.02。
在一些实施方式中,GaInNAsSb结包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值是0≤x≤0.18、0.001≤y≤0.05和0.001≤z≤0.15,以及在某些实施方式中,0≤x≤0.18、0.001≤y≤0.05和0.001≤z≤0.03;在某些实施方式中,0.02≤x≤0.18、0.005≤y≤0.04和0.001≤z≤0.03;在某些实施方式中,0.04≤x≤0.18、0.01≤y≤0.04和0.001≤z≤0.03;在某些实施方式中,0.06≤x≤0.18、0.015≤y≤0.04和0.001≤z≤0.03;以及在某些实施方式中,0.08≤x≤0.18、0.025≤y≤0.04和0.001≤z≤0.03。
在某些实施方式中,GaInNAsSb结特征为具有0.92eV的带隙并且包括Ga1- xInxNyAs1-y-zSbz,其中,x、y和z的值是:x是0.175,y是0.04,以及0.012≤z≤0.019。
在某些实施方式中,GaInNAsSb结特征为具有0.90eV的带隙并且包括Ga1- xInxNyAs1-y-zSbz,其中,x、y和z的值是:x是0.18,y是0.045,以及0.012≤z≤0.019。
在某些实施方式中,GaInNAsSb包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值是:0.13≤x≤0.19、0.03≤y≤0.048和0.007≤z≤0.02。
在某些实施方式中,GaInNAsSb结包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值选择成具有与用于将能量输送至装置的辐射的能量匹配或近似匹配的带隙。在某些实施方式中,GaInNAsSb结与GaAs衬底基本上晶格匹配。应注意的是,“基本上晶格匹配”通常理解为当材料以大于100nm的厚度存在时材料在其完全弛豫的状态下的面内晶格常数相差小于0.6%。另外,如本文中所使用的基本上互相晶格匹配的子单元意指子单元中以大于100nm的厚度存在的所有材料在其完全弛豫的状态下具有相差小于0.6%的平面内晶格常数。
在某些实施方式中,能量转换器中的外延层中的每个与GaAs衬底晶格匹配。
在某些实施方式中,使用不同折射率的分层材料可在结构内产生分布式布拉格反射器(DBR)并且用于增加能量转换器的效率。一个这种示例将稀氮材料用作结构的外延堆叠中的吸收材料,在某些实施方式中,稀氮材料是GaInNAsSb材料。腔可通过使用诸如GaAs/AlGaAs的材料作为在稀氮层之下且在衬底之上的DBR以及通过使用在稀氮层之上形成的可由半导体或多种氧化物制成的另一DBR来形成。
在某些实施方式中,在衬底具有比吸收材料高的带隙的情况中,背侧金属可用作结构式镜,结构式镜允许未吸收的光从背面金属反射以在位于之上的外延层中被再吸收。图2A和图2B中示出了使用双通配置的共振腔能量转换器的示例。图2A示出了具有顶部DBR和底部DBR的单结共振腔。单个GaInNAsSb结布置在两个DBR之间,并且通过半导体层d1和半导体层d2与DBR分开。半导体层可由不明显吸收入射辐射且可以与GaAs和吸收层晶格匹配的材料形成,而且,在某些实施方式中,该材料可以为GaAs。可将d1、d2以及GaInNAsSb结的厚度选择成提供处于入射辐射的波长的驻波。图2B示出了与图2A所示的配置类似的配置,但是该配置包括多个GaInNAsSb结,其中,多个GaInNAsSb结中的每个由隧道结分开。GaInNAsSb结的厚度可以为介于约100nm至约1微米。在某些实施方式中,衬底是半绝缘GaAs衬底或n型掺杂GaAs衬底,其具有背面金属以作为结构的最底层。
为了供1微米至1.55微米的辐射使用,镜层可以是例如金或金/镍合金。
在某些实施方式中,能量转换器结构使用一个DBR而不使用两个DBR。图3A和图3B中示出了采用单个DBR的共振能量转换器。图3A示出了布置在两个半导体层d1和d2之间的单个GaInNAsSb结。这些层覆盖底部DBR,底部DBR覆盖衬底。装置的上表面(诸如层d1与入射辐射面对的上表面)可涂有抗反射涂覆物。抗反射涂覆物可针对入射辐射的波长进行优化以减少散射。图3B示出了具有多个GaInNAsSb结的单DBR共振腔配置。
在某些实施方式中,能量转换器结构包括一个DBR和在衬底之下的背面镜。这种装置配置在图4A、图4B、图5A和图5B中示出。图4A和图4B示出了这样的能量转换器,该能量转换器具有顶部DBR、包括在两个半导体层d1和d2之间的单个GaInNAsSb结的共振腔、以及在半导体层d2下方的背面镜。在某些实施方式中,背面镜还可用作电接触件。图4B中示出了多结能量转换器,其中,多个GaInNAsSb结布置在顶部DBR与背面镜之间。
在图5A和图5B中所示的能量转换器中,DBR和背面镜均在装置的底部处使用。在该配置中,与具有底部DBR而不具有背面镜的配置相比,DBR的厚度可减小。如同其它装置一样,层D1的上表面可包括抗反射涂覆物。在某些实施方式中,衬底被移除,并且在衬底的位置处将金属用作背面镜。在这种结构中,光穿过顶部DBR,然后经过外延层,然后经过底部DBR并且最后到达背面镜。在这些实施方式中,外延层包括GaInNAsSb以作为一个或多个吸收层。
在某些实施方式中,结构的最上层包括在外延层之上的空气-半导体界面,外延层可包括一个或多个GaInNAsSb层。在外延层之下是覆盖背面镜的底部DBR。在这些实施方式中,光到达空气-半导体界面的最上层并且传播至外延层,然后传播至DBR,并且最后在由背面镜反射之后往回反射通过该结构。
图6A和图6B中示出了具有两个DBR和顶部衬底层的共振腔配置。顶部衬底层对于用于产生能量的入射辐射基本上是透明的。在某些实施方式中,衬底可以是诸如n型GaAs的GaAs并且可具有介于约150微米至约250微米的厚度,诸如介于175微米至225微米。衬底的厚度可例如通过研磨或蚀刻变薄以使吸收最小化,并且在这些实施方式中,衬底的厚度可以是50微米或小于50微米。在某些实施方式中,底部DBR可结合至散热器。将DBR直接结合至散热器可降低能量转换器的温度。
图7A和图7B示出了与图6A和图6B中所示的装置配置类似的、但是用背面镜来代替底部DBR的装置配置。
在某些实施方式中,结构具有腔内接触件以避免来自DBR结构的电阻率。接触件通过绕过DBR结构的横向传输导电层(LCL)在腔中制造。图8A和图8B中示出了具有腔内接触件的能量转换器。在这些装置结构中,外延层被蚀刻到覆盖底部DBR的LCL或蚀刻到覆盖半导体层d1的LCL。LCL提高到电接触件(背面接触件和顶部接触件)的载流子迁移率,并且可例如由诸如n型GaAs的掺杂GaAs形成。LCL和类似的蚀刻背面电接触件可应用于由本公开提供的其它装置结构。
在某些实施方式中,结构可反向地形成。在这些情况中,在使用多种剥离技术的生长之后,衬底可变薄至某一厚度或者被移除。在穿过外延层之前,光首先穿过衬底。在这种结构中,衬底的带隙大于外延层的带隙。
包括多个串联连接的子单元的多个光伏转换器可构造成增大输出电压。子单元可并联连接以增大输出电流。示例为如图9所示的Pi结构。红外吸收体通常特征为具有低电压;然而,在某些应用中,理想的是增大能量转换器的电压。这可通过串联连接多个能量转换器实现。一个这种配置称为Pi结构,在Pi结构中,多个能量转换器单元布置成围绕中心轴的同心环,其中每个单元由绝缘体分离开,而且多个单元或多个单元的子装置串联连接,该配置的俯视图在图9中示出。这种结构可使用单结制造并且提供高密度的单元。较高的电压提供改善的DC-DC转换器效率和较低的欧姆损耗。虽然之后电流可产生欧姆损耗,但是欧姆损耗可以被补偿,这是因为增加数量的子单元使电流减小。
图10A和图10B中示出了其它装置结构。图10A示出了单个三结双通能量转换器。图10B示出了四象限三结双通能量转换器。装置的尺寸为300微米乘300微米。四个转换器可互相串联连接以增大电压和/或减小电流。互相串联连接还可以降低对入射辐射的空间定向的敏感性。另外,对于大面积能量转换器,将收集区分成象限或其它子区域可通过使电接触件更靠近能量产生表面来降低欧姆损耗。图11A和图11B中示出了单象限装置和四象限装置的照片。
图10A、图10B、图11A和图11B中所示的能量转换器使用GaInNAsSb结制造。所有的外延层与GaAs衬底晶格匹配。在GaAs衬底的底部处布置有背面镜。三结结构的共振腔配置为支持在约1.3微米下的驻波,诸如在1.32微米下或在1.342微米下的驻波。对于配置为在1.32微米下进行能量转换的装置,GaInNAsSb结的带隙为约0.92eV。确定的是,这种装置呈现介于约65%至约75%的填充因子、介于约1.47V至约1.5V的Voc和介于约0.6A至约1.4A的Jsc。能量转换效率在介于约0.6W至约6W的输入功率下为介于约23%至25%。
在某些实施方式中,相同半导体材料的两个或更多个外延层具有变化的厚度。具体地,外延层越远离光源,则其厚度可越小。在某些实施方式中,各外延层中的厚度可相同。在某些实施方式中,外延层的厚度是变化的,外延层的厚度根据光源位置增大或减小。
在一些实施方式中,在最上外延层的顶部上存在窗层。
在某些实施方式中,整个装置的厚度或高度可以在1微米至高达10微米之间,能量转换器的面积可以在例如100微米×100微米至高达1厘米×1厘米之间或者更大。例如,总面积介于10-4cm2至1cm2。每个外延层的厚度可介于几百纳米至几微米之间。
图12示出了对于单GaInNAsSb结(空心圆)能量转换器、双GaInNAsSb结(正方形)能量转换器和三GaInNAsSb结(加号)能量转换器,在最大功率点(Mpp)下的效率、输出功率和电压,其作为激光输入功率的函数。
图13示出了对于单GaInNAsSb结(空心圆)能量转换器、双GaInNAsSb结(正方形)能量转换器和三GaInNAsSb结(加号)能量转换器的归一化电流密度(J),其作为针对许多激光输入功率水平的电压的函数。
最后,应注意的是,存在实现本文中公开的实施方式的可替代方式。相应地,本实施方式应被理解为说明性的而非限制性的。此外,权利要求不应限于本文中所给出的细节,而应被赋予其全部范围和等同的权利。
Claims (13)
1.共振腔能量转换器,包括:
两个或更多个GaInNAsSb结,其中,所述两个或更多个GaInNAsSb结中的每个GaInNAsSb结具有与单色光源的能量匹配的带隙,其中,所述单色光源发射波长介于1.3微米至1.55微米的范围内的单色光;
隧道结,所述隧道结将所述两个或更多个GaInNAsSb结中的每个GaInNAsSb结分开;
第一半导体层,覆盖所述两个或更多个GaInNAsSb结;
第二半导体层,位于所述两个或更多个GaInNAsSb结下方;
第一分布式布拉格反射器,覆盖所述第一半导体层;以及
第二分布式布拉格反射器和背面镜中的至少一项,位于所述第二半导体层下方;
其中,所述两个或更多个GaInNAsSb结的厚度、所述第一半导体层的厚度和所述第二半导体层的厚度选择成在所述单色光的波长下提供共振腔;以及
其中,所述第一半导体层和所述第二半导体层在所述单色光的波长下不进行吸收。
2.根据权利要求1所述的共振腔能量转换器,其中,所述两个或更多个GaInNAsSb结中的每个:
与GaAs晶格匹配;以及
包括Ga1-xInxNyAs1-y-zSbz,其中,x、y和z的值为0≤x≤0.24、0.01≤y≤0.07和0.001≤z≤0.20。
3.根据权利要求1所述的共振腔能量转换器,其中,所述波长介于1.30微米至1.35微米的范围内。
4.根据权利要求1所述的共振腔能量转换器,包括:
第二分布式布拉格反射器,位于所述第二半导体层下方;以及
衬底,位于所述第二分布式布拉格反射器下方。
5.根据权利要求4所述的共振腔能量转换器,包括覆盖所述第一半导体层的抗反射涂覆物。
6.根据权利要求1所述的共振腔能量转换器,包括:
第二分布式布拉格反射器,位于所述第二半导体层下方;以及
背面镜,位于所述第二分布式布拉格反射器下方。
7.根据权利要求1所述的共振腔能量转换器,包括:
第二分布式布拉格反射器,位于所述第二半导体层下方;以及
衬底,覆盖所述第一分布式布拉格反射器。
8.根据权利要求1所述的共振腔能量转换器,包括:
衬底,覆盖所述第一分布式布拉格反射器;以及
背面镜,位于所述第二半导体层下方。
9.根据权利要求1所述的共振腔能量转换器,包括:
第一横向导电层,覆盖所述第一半导体层以及位于所述第一分布式布拉格反射器下方;以及
第二横向导电层,位于所述第二半导体层下方以及覆盖所述第二分布式布拉格反射器。
10.根据权利要求9所述的共振腔能量转换器,包括:
第一电接触件,连接至所述第一横向导电层;以及
第二电接触件,连接至所述第二横向导电层。
11.根据权利要求1所述的共振腔能量转换器,其特征在于对于介于0.6W至6W的照射输入功率,效率为至少20%。
12.共振腔能量转换器,包括以Pi结构配置的多个根据权利要求1所述的共振腔能量转换器。
13.共振腔能量转换器,包括互相串联连接的多个根据权利要求1所述的共振腔能量转换器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810666885.7A CN108807571A (zh) | 2014-02-05 | 2015-02-05 | 单片式多结能量转换器 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461936222P | 2014-02-05 | 2014-02-05 | |
US61/936,222 | 2014-02-05 | ||
PCT/US2015/014650 WO2015120169A1 (en) | 2014-02-05 | 2015-02-05 | Monolithic multijunction power converter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810666885.7A Division CN108807571A (zh) | 2014-02-05 | 2015-02-05 | 单片式多结能量转换器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106133923A CN106133923A (zh) | 2016-11-16 |
CN106133923B true CN106133923B (zh) | 2018-07-24 |
Family
ID=52472636
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810666885.7A Pending CN108807571A (zh) | 2014-02-05 | 2015-02-05 | 单片式多结能量转换器 |
CN201580007461.4A Expired - Fee Related CN106133923B (zh) | 2014-02-05 | 2015-02-05 | 单片式多结能量转换器 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810666885.7A Pending CN108807571A (zh) | 2014-02-05 | 2015-02-05 | 单片式多结能量转换器 |
Country Status (8)
Country | Link |
---|---|
US (4) | US20150221803A1 (zh) |
EP (2) | EP3103142B1 (zh) |
CN (2) | CN108807571A (zh) |
ES (1) | ES2831831T3 (zh) |
SA (1) | SA516371606B1 (zh) |
SG (1) | SG11201606353TA (zh) |
TW (1) | TWI656651B (zh) |
WO (1) | WO2015120169A1 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10416425B2 (en) | 2009-02-09 | 2019-09-17 | X-Celeprint Limited | Concentrator-type photovoltaic (CPV) modules, receiver and sub-receivers and methods of forming same |
TWI656651B (zh) | 2014-02-05 | 2019-04-11 | 美商太陽光電公司 | 單片多接面換能器 |
DE102015012007A1 (de) * | 2015-09-19 | 2017-03-23 | Azur Space Solar Power Gmbh | Skalierbare Spannungsquelle |
US20170110613A1 (en) * | 2015-10-19 | 2017-04-20 | Solar Junction Corporation | High efficiency multijunction photovoltaic cells |
DE102016013749A1 (de) * | 2016-11-18 | 2018-05-24 | Azur Space Solar Power Gmbh | Stapelförmige Halbleiterstruktur |
US10930808B2 (en) | 2017-07-06 | 2021-02-23 | Array Photonics, Inc. | Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells |
WO2019067553A1 (en) | 2017-09-27 | 2019-04-04 | Solar Junction Corporation | SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER |
CN112514084A (zh) * | 2018-03-12 | 2021-03-16 | 阿雷光子学公司 | 用于光伏电池和其他光吸收装置的啁啾分布式布拉格反射器 |
US10797197B2 (en) * | 2018-06-18 | 2020-10-06 | Alta Devices, Inc. | Thin-film, flexible optoelectronic devices incorporating a single lattice-matched dilute nitride junction and methods of fabrication |
EP3844816A4 (en) * | 2018-08-30 | 2022-05-18 | Array Photonics, Inc. | SOLAR CELLS WITH MULTIPLE JUNCTIONS AND MULTICOLOR PHOTOSENSORS WITH INTEGRATED MARGINAL FILTER |
WO2020185528A1 (en) | 2019-03-11 | 2020-09-17 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions |
US11575055B2 (en) | 2019-07-15 | 2023-02-07 | SLT Technologies, Inc | Methods for coupling of optical fibers to a power photodiode |
US11569398B2 (en) | 2019-07-15 | 2023-01-31 | SLT Technologies, Inc | Power photodiode structures and devices |
CN114207845B (zh) * | 2019-07-15 | 2024-08-20 | Slt科技公司 | 功率光电二极管结构、制造方法和使用方法 |
US11670735B2 (en) * | 2020-12-14 | 2023-06-06 | Lumileds Llc | Monolithic electrical power converter formed with layers |
WO2023061637A1 (en) * | 2021-10-15 | 2023-04-20 | Ams-Osram International Gmbh | Optoelectronic device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1979901A (zh) * | 2005-12-02 | 2007-06-13 | 中国科学院半导体研究所 | 具有双吸收区结构的高效可调谐光探测器 |
Family Cites Families (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4127862A (en) | 1977-09-06 | 1978-11-28 | Bell Telephone Laboratories, Incorporated | Integrated optical detectors |
US4179702A (en) | 1978-03-09 | 1979-12-18 | Research Triangle Institute | Cascade solar cells |
US4404421A (en) | 1982-02-26 | 1983-09-13 | Chevron Research Company | Ternary III-V multicolor solar cells and process of fabrication |
GB2132016B (en) | 1982-12-07 | 1986-06-25 | Kokusai Denshin Denwa Co Ltd | A semiconductor device |
JPS6061516A (ja) | 1983-09-14 | 1985-04-09 | Sansho Seiyaku Kk | パ−マネントウエ−ブ用第1液 |
JPS6061513A (ja) | 1983-09-14 | 1985-04-09 | Sansho Seiyaku Kk | 化粧料 |
US4547622A (en) | 1984-04-27 | 1985-10-15 | Massachusetts Institute Of Technology | Solar cells and photodetectors |
US4881979A (en) | 1984-08-29 | 1989-11-21 | Varian Associates, Inc. | Junctions for monolithic cascade solar cells and methods |
JPS63100781A (ja) | 1986-10-17 | 1988-05-02 | Nippon Telegr & Teleph Corp <Ntt> | 半導体素子 |
US5016562A (en) | 1988-04-27 | 1991-05-21 | Glasstech Solar, Inc. | Modular continuous vapor deposition system |
US4935384A (en) | 1988-12-14 | 1990-06-19 | The United States Of America As Represented By The United States Department Of Energy | Method of passivating semiconductor surfaces |
JPH02218174A (ja) | 1989-02-17 | 1990-08-30 | Mitsubishi Electric Corp | 光電変換半導体装置 |
US5223043A (en) | 1991-02-11 | 1993-06-29 | The United States Of America As Represented By The United States Department Of Energy | Current-matched high-efficiency, multijunction monolithic solar cells |
US5166761A (en) | 1991-04-01 | 1992-11-24 | Midwest Research Institute | Tunnel junction multiple wavelength light-emitting diodes |
US5330585A (en) | 1992-10-30 | 1994-07-19 | Spectrolab, Inc. | Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell |
US5342453A (en) | 1992-11-13 | 1994-08-30 | Midwest Research Institute | Heterojunction solar cell |
US5316593A (en) | 1992-11-16 | 1994-05-31 | Midwest Research Institute | Heterojunction solar cell with passivated emitter surface |
US5800630A (en) | 1993-04-08 | 1998-09-01 | University Of Houston | Tandem solar cell with indium phosphide tunnel junction |
US5376185A (en) | 1993-05-12 | 1994-12-27 | Midwest Research Institute | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications |
US5405453A (en) | 1993-11-08 | 1995-04-11 | Applied Solar Energy Corporation | High efficiency multi-junction solar cell |
US5689123A (en) | 1994-04-07 | 1997-11-18 | Sdl, Inc. | III-V aresenide-nitride semiconductor materials and devices |
FR2722612B1 (fr) | 1994-07-13 | 1997-01-03 | Centre Nat Rech Scient | Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif |
JPH1012905A (ja) | 1996-06-27 | 1998-01-16 | Hitachi Ltd | 太陽電池及びその製造方法 |
KR19980046586A (ko) | 1996-12-12 | 1998-09-15 | 양승택 | 공진파장 제어 기능을 구비한 고분자 광검출기 |
US5911839A (en) | 1996-12-16 | 1999-06-15 | National Science Council Of Republic Of China | High efficiency GaInP NIP solar cells |
JP3683669B2 (ja) | 1997-03-21 | 2005-08-17 | 株式会社リコー | 半導体発光素子 |
US6281426B1 (en) | 1997-10-01 | 2001-08-28 | Midwest Research Institute | Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge |
US5944913A (en) | 1997-11-26 | 1999-08-31 | Sandia Corporation | High-efficiency solar cell and method for fabrication |
US6150603A (en) | 1999-04-23 | 2000-11-21 | Hughes Electronics Corporation | Bilayer passivation structure for photovoltaic cells |
US6252287B1 (en) | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
US6340788B1 (en) | 1999-12-02 | 2002-01-22 | Hughes Electronics Corporation | Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications |
JP4064592B2 (ja) | 2000-02-14 | 2008-03-19 | シャープ株式会社 | 光電変換装置 |
WO2002027805A2 (en) | 2000-09-29 | 2002-04-04 | Board Of Regents, The University Of Texas System | A theory of the charge multiplication process in avalanche photodiodes |
US7345327B2 (en) | 2000-11-27 | 2008-03-18 | Kopin Corporation | Bipolar transistor |
US6815736B2 (en) | 2001-02-09 | 2004-11-09 | Midwest Research Institute | Isoelectronic co-doping |
US7233028B2 (en) | 2001-02-23 | 2007-06-19 | Nitronex Corporation | Gallium nitride material devices and methods of forming the same |
US6787385B2 (en) | 2001-05-31 | 2004-09-07 | Midwest Research Institute | Method of preparing nitrogen containing semiconductor material |
US6586669B2 (en) | 2001-06-06 | 2003-07-01 | The Boeing Company | Lattice-matched semiconductor materials for use in electronic or optoelectronic devices |
US7119271B2 (en) | 2001-10-12 | 2006-10-10 | The Boeing Company | Wide-bandgap, lattice-mismatched window layer for a solar conversion device |
US20030070707A1 (en) | 2001-10-12 | 2003-04-17 | King Richard Roland | Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device |
US6764926B2 (en) | 2002-03-25 | 2004-07-20 | Agilent Technologies, Inc. | Method for obtaining high quality InGaAsN semiconductor devices |
US6660928B1 (en) | 2002-04-02 | 2003-12-09 | Essential Research, Inc. | Multi-junction photovoltaic cell |
US6756325B2 (en) | 2002-05-07 | 2004-06-29 | Agilent Technologies, Inc. | Method for producing a long wavelength indium gallium arsenide nitride(InGaAsN) active region |
US20060162768A1 (en) | 2002-05-21 | 2006-07-27 | Wanlass Mark W | Low bandgap, monolithic, multi-bandgap, optoelectronic devices |
US8173891B2 (en) | 2002-05-21 | 2012-05-08 | Alliance For Sustainable Energy, Llc | Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps |
US8067687B2 (en) | 2002-05-21 | 2011-11-29 | Alliance For Sustainable Energy, Llc | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
US6967154B2 (en) | 2002-08-26 | 2005-11-22 | Micron Technology, Inc. | Enhanced atomic layer deposition |
US7255746B2 (en) | 2002-09-04 | 2007-08-14 | Finisar Corporation | Nitrogen sources for molecular beam epitaxy |
US7122733B2 (en) | 2002-09-06 | 2006-10-17 | The Boeing Company | Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds |
US6765238B2 (en) | 2002-09-12 | 2004-07-20 | Agilent Technologies, Inc. | Material systems for semiconductor tunnel-junction structures |
US7126052B2 (en) | 2002-10-02 | 2006-10-24 | The Boeing Company | Isoelectronic surfactant induced sublattice disordering in optoelectronic devices |
US7122734B2 (en) | 2002-10-23 | 2006-10-17 | The Boeing Company | Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers |
US7071407B2 (en) | 2002-10-31 | 2006-07-04 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
AU2003297649A1 (en) | 2002-12-05 | 2004-06-30 | Blue Photonics, Inc. | High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same |
US7161170B1 (en) | 2002-12-12 | 2007-01-09 | Triquint Technology Holding Co. | Doped-absorber graded transition enhanced multiplication avalanche photodetector |
JP2004296658A (ja) | 2003-03-26 | 2004-10-21 | Sharp Corp | 多接合太陽電池およびその電流整合方法 |
US7812249B2 (en) | 2003-04-14 | 2010-10-12 | The Boeing Company | Multijunction photovoltaic cell grown on high-miscut-angle substrate |
US7123638B2 (en) | 2003-10-17 | 2006-10-17 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Tunnel-junction structure incorporating N-type layer comprising nitrogen and a group VI dopant |
GB2409572B (en) | 2003-12-24 | 2006-02-15 | Intense Photonics Ltd | Generating multiple bandgaps using multiple epitaxial layers |
CA2551123A1 (en) | 2004-01-20 | 2005-07-28 | Cyrium Technologies Incorporated | Solar cell with epitaxially grown quantum dot material |
US7807921B2 (en) | 2004-06-15 | 2010-10-05 | The Boeing Company | Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer |
US20060048811A1 (en) * | 2004-09-09 | 2006-03-09 | Krut Dimitri D | Multijunction laser power converter |
DE102005000767A1 (de) | 2005-01-04 | 2006-07-20 | Rwe Space Solar Power Gmbh | Monolithische Mehrfach-Solarzelle |
JP5008874B2 (ja) | 2005-02-23 | 2012-08-22 | 住友電気工業株式会社 | 受光素子と受光素子を用いた光通信用受信モジュールおよび受光素子を用いた計測器 |
EP1856721A2 (en) | 2005-03-11 | 2007-11-21 | The Arizona Board of Regents, A Body Corporate Acting on Behalf of Arizona State University | NOVEL GeSiSn-BASED COMPOUNDS, TEMPLATES, AND SEMICONDUCTOR STRUCTURES |
US7473941B2 (en) | 2005-08-15 | 2009-01-06 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Structures for reducing operating voltage in a semiconductor device |
US20070113887A1 (en) * | 2005-11-18 | 2007-05-24 | Lih-Hong Laih | Material system of photovoltaic cell with micro-cavity |
US11211510B2 (en) | 2005-12-13 | 2021-12-28 | The Boeing Company | Multijunction solar cell with bonded transparent conductive interlayer |
US20070227588A1 (en) | 2006-02-15 | 2007-10-04 | The Regents Of The University Of California | Enhanced tunnel junction for improved performance in cascaded solar cells |
EP1997126A2 (en) | 2006-03-13 | 2008-12-03 | Nanogram Corporation | Thin silicon or germanium sheets and photovoltaics formed from thin sheets |
US20100229926A1 (en) | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US20090078310A1 (en) | 2007-09-24 | 2009-03-26 | Emcore Corporation | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
US7872252B2 (en) | 2006-08-11 | 2011-01-18 | Cyrium Technologies Incorporated | Method of fabricating semiconductor devices on a group IV substrate with controlled interface properties and diffusion tails |
US7842881B2 (en) | 2006-10-19 | 2010-11-30 | Emcore Solar Power, Inc. | Solar cell structure with localized doping in cap layer |
US20080149173A1 (en) | 2006-12-21 | 2008-06-26 | Sharps Paul R | Inverted metamorphic solar cell with bypass diode |
US20100116318A1 (en) * | 2007-03-08 | 2010-05-13 | Hrl Laboratories, Llc | Pixelated photovoltaic array method and apparatus |
JP5515162B2 (ja) | 2007-03-23 | 2014-06-11 | 住友電気工業株式会社 | 半導体ウエハの製造方法 |
US7825328B2 (en) | 2007-04-09 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride-based multi-junction solar cell modules and methods for making the same |
US20080257405A1 (en) | 2007-04-18 | 2008-10-23 | Emcore Corp. | Multijunction solar cell with strained-balanced quantum well middle cell |
JP2009010175A (ja) | 2007-06-28 | 2009-01-15 | Sumitomo Electric Ind Ltd | 受光素子およびその製造方法 |
WO2009009111A2 (en) * | 2007-07-10 | 2009-01-15 | The Board Of Trustees Of The Leland Stanford Junior University | GaInNAsSB SOLAR CELLS GROWN BY MOLECULAR BEAM EPITAXY |
JP5260909B2 (ja) | 2007-07-23 | 2013-08-14 | 住友電気工業株式会社 | 受光デバイス |
JP5417694B2 (ja) | 2007-09-03 | 2014-02-19 | 住友電気工業株式会社 | 半導体素子およびエピタキシャルウエハの製造方法 |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
GB0719554D0 (en) | 2007-10-05 | 2007-11-14 | Univ Glasgow | semiconductor optoelectronic devices and methods for making semiconductor optoelectronic devices |
TW200924214A (en) | 2007-11-16 | 2009-06-01 | Univ Nat Chunghsing | Solar cell |
US20090155952A1 (en) | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090188561A1 (en) | 2008-01-25 | 2009-07-30 | Emcore Corporation | High concentration terrestrial solar array with III-V compound semiconductor cell |
JP5303962B2 (ja) * | 2008-02-28 | 2013-10-02 | 三菱電機株式会社 | 半導体受光素子 |
US20090255576A1 (en) | 2008-04-04 | 2009-10-15 | Michael Tischler | Window solar cell |
US20090255575A1 (en) | 2008-04-04 | 2009-10-15 | Michael Tischler | Lightweight solar cell |
US20090272438A1 (en) | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20090288703A1 (en) | 2008-05-20 | 2009-11-26 | Emcore Corporation | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells |
WO2009157870A1 (en) | 2008-06-26 | 2009-12-30 | Nanyang Technological University | Method for fabricating ganassb semiconductor |
US9080425B2 (en) * | 2008-10-17 | 2015-07-14 | Foro Energy, Inc. | High power laser photo-conversion assemblies, apparatuses and methods of use |
TW201027784A (en) | 2008-10-07 | 2010-07-16 | Applied Materials Inc | Advanced platform for processing crystalline silicon solar cells |
WO2010044978A1 (en) | 2008-10-15 | 2010-04-22 | Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University | Hybrid group iv/iii-v semiconductor structures |
US7915639B2 (en) | 2008-10-20 | 2011-03-29 | Aerius Photonics Llc | InGaAsSbN photodiode arrays |
US8912428B2 (en) | 2008-10-22 | 2014-12-16 | Epir Technologies, Inc. | High efficiency multijunction II-VI photovoltaic solar cells |
US8093559B1 (en) | 2008-12-02 | 2012-01-10 | Hrl Laboratories, Llc | Methods and apparatus for three-color infrared sensors |
US20100147366A1 (en) * | 2008-12-17 | 2010-06-17 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector |
US9018521B1 (en) | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US20150357501A1 (en) | 2008-12-17 | 2015-12-10 | Solaero Technologies Corp. | Four junction inverted metamorphic solar cell |
KR20100084843A (ko) | 2009-01-19 | 2010-07-28 | 삼성전자주식회사 | 다중접합 태양전지 |
US9105783B2 (en) | 2009-01-26 | 2015-08-11 | The Aerospace Corporation | Holographic solar concentrator |
US20100282306A1 (en) | 2009-05-08 | 2010-11-11 | Emcore Solar Power, Inc. | Multijunction Solar Cells with Group IV/III-V Hybrid Alloys |
US20100282305A1 (en) | 2009-05-08 | 2010-11-11 | Emcore Solar Power, Inc. | Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys |
EP2251912A1 (de) | 2009-05-11 | 2010-11-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Tunneldioden aus spannungskompensierten Verbindungshalbleiterschichten |
US20100319764A1 (en) | 2009-06-23 | 2010-12-23 | Solar Junction Corp. | Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells |
IT1394853B1 (it) | 2009-07-21 | 2012-07-20 | Cesi Ct Elettrotecnico Sperimentale Italiano Giacinto Motta S P A | Cella fotovoltaica ad elevata efficienza di conversione |
EP2460189A1 (en) | 2009-07-29 | 2012-06-06 | Cyrium Technologies Incorporated | Solar cell and method of fabrication thereof |
JP5649157B2 (ja) | 2009-08-01 | 2015-01-07 | 住友電気工業株式会社 | 半導体素子およびその製造方法 |
JP5444994B2 (ja) * | 2009-09-25 | 2014-03-19 | 三菱電機株式会社 | 半導体受光素子 |
US20110114163A1 (en) | 2009-11-18 | 2011-05-19 | Solar Junction Corporation | Multijunction solar cells formed on n-doped substrates |
US8895838B1 (en) | 2010-01-08 | 2014-11-25 | Magnolia Solar, Inc. | Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same |
TWI436488B (zh) | 2010-03-12 | 2014-05-01 | Epistar Corp | 一種具有漸變緩衝層太陽能電池 |
US20110232730A1 (en) | 2010-03-29 | 2011-09-29 | Solar Junction Corp. | Lattice matchable alloy for solar cells |
US8269223B2 (en) | 2010-05-27 | 2012-09-18 | The United States Of America As Represented By The Secretary Of The Army | Polarization enhanced avalanche photodetector and method thereof |
US20110303268A1 (en) | 2010-06-15 | 2011-12-15 | Tan Wei-Sin | HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING |
US8642883B2 (en) | 2010-08-09 | 2014-02-04 | The Boeing Company | Heterojunction solar cell |
US20170338357A1 (en) | 2016-05-23 | 2017-11-23 | Solar Junction Corporation | Exponential doping in lattice-matched dilute nitride photovoltaic cells |
US20190013430A1 (en) | 2010-10-28 | 2019-01-10 | Solar Junction Corporation | Optoelectronic devices including dilute nitride |
US9214580B2 (en) | 2010-10-28 | 2015-12-15 | Solar Junction Corporation | Multi-junction solar cell with dilute nitride sub-cell having graded doping |
TWI412149B (zh) * | 2010-12-16 | 2013-10-11 | Univ Nat Central | Laser energy conversion device |
TWI430491B (zh) * | 2010-12-31 | 2014-03-11 | Au Optronics Corp | 堆疊式太陽能電池模組 |
US8962991B2 (en) | 2011-02-25 | 2015-02-24 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
US8927857B2 (en) | 2011-02-28 | 2015-01-06 | International Business Machines Corporation | Silicon: hydrogen photovoltaic devices, such as solar cells, having reduced light induced degradation and method of making such devices |
US20120255600A1 (en) | 2011-04-06 | 2012-10-11 | International Business Machines Corporation | Method of bonding and formation of back surface field (bsf) for multi-junction iii-v solar cells |
US20130112239A1 (en) * | 2011-04-14 | 2013-05-09 | Cool Earh Solar | Solar energy receiver |
US8766087B2 (en) | 2011-05-10 | 2014-07-01 | Solar Junction Corporation | Window structure for solar cell |
US20130074901A1 (en) | 2011-09-22 | 2013-03-28 | Rosestreet Labs Energy, Inc. | Compositionally graded dilute group iii-v nitride cell with blocking layers for multijunction solar cell |
FR2981195B1 (fr) | 2011-10-11 | 2024-08-23 | Soitec Silicon On Insulator | Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot |
WO2013074530A2 (en) | 2011-11-15 | 2013-05-23 | Solar Junction Corporation | High efficiency multijunction solar cells |
EP2618385A1 (de) | 2012-01-20 | 2013-07-24 | AZUR SPACE Solar Power GmbH | Halbzeug einer Mehrfachsolarzelle und Verfahren zur Herstellung einer Mehrfachsolarzelle |
US9153724B2 (en) | 2012-04-09 | 2015-10-06 | Solar Junction Corporation | Reverse heterojunctions for solar cells |
AU2013277994A1 (en) | 2012-06-22 | 2015-01-22 | Epiworks, Inc. | Manufacturing semiconductor-based multi-junction photovoltaic devices |
US8636844B1 (en) | 2012-07-06 | 2014-01-28 | Translucent, Inc. | Oxygen engineered single-crystal REO template |
GB2504977B (en) | 2012-08-16 | 2017-10-04 | Airbus Defence & Space Gmbh | Laser power converter |
CN102829884B (zh) * | 2012-09-10 | 2014-10-08 | 清华大学 | 具有强吸收结构的高速snspd及其制备方法 |
US20140182667A1 (en) | 2013-01-03 | 2014-07-03 | Benjamin C. Richards | Multijunction solar cell with low band gap absorbing layer in the middle cell |
TWI602315B (zh) | 2013-03-08 | 2017-10-11 | 索泰克公司 | 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法 |
US20140290737A1 (en) | 2013-04-02 | 2014-10-02 | The Regents Of The University Of California | Thin film vls semiconductor growth process |
US20160300973A1 (en) | 2013-05-24 | 2016-10-13 | U.S. Army Research Laboratory Attn: Rdrl-Loc-I | Variable range photodetector with enhanced high photon energy response and method thereof |
ITMI20131297A1 (it) | 2013-08-01 | 2015-02-02 | Cesi Ct Elettrotecnico Sperim Entale Italian | Cella fotovoltaica con banda proibita variabile |
US8957376B1 (en) | 2013-08-07 | 2015-02-17 | Bah Holdings, Llc | Optopairs with temperature compensable electroluminescence for use in optical gas absorption analyzers |
CN103426965B (zh) * | 2013-08-16 | 2016-12-28 | 中国科学院苏州纳米技术与纳米仿生研究所 | 太阳能电池及其制作方法 |
US10388817B2 (en) | 2013-12-09 | 2019-08-20 | Avago Technologies International Sales Pte. Limited | Transducer to convert optical energy to electrical energy |
TWI656651B (zh) | 2014-02-05 | 2019-04-11 | 美商太陽光電公司 | 單片多接面換能器 |
CN104282793A (zh) | 2014-09-30 | 2015-01-14 | 中山大学 | 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法 |
JP2018518848A (ja) | 2015-06-22 | 2018-07-12 | アイキューイー ピーエルシーIQE plc | GaAsにほぼ合致する格子パラメータを有する基板上に希薄窒化物層を有する光電子検出器 |
US9669740B2 (en) | 2015-08-04 | 2017-06-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicle having interchangeably storable and mountable stowable folding seat and center console |
US20170110613A1 (en) | 2015-10-19 | 2017-04-20 | Solar Junction Corporation | High efficiency multijunction photovoltaic cells |
US9954128B2 (en) | 2016-01-12 | 2018-04-24 | The Boeing Company | Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length |
GB2555409B (en) | 2016-10-25 | 2020-07-15 | Iqe Plc | Photovoltaic Device |
CN106711253B (zh) | 2016-12-14 | 2018-07-27 | 江苏华功第三代半导体产业技术研究院有限公司 | 一种iii族氮化物半导体雪崩光电二极管探测器 |
WO2019067553A1 (en) | 2017-09-27 | 2019-04-04 | Solar Junction Corporation | SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER |
CN107644921B (zh) | 2017-10-18 | 2023-08-29 | 五邑大学 | 一种新型雪崩二极管光电探测器及其制备方法 |
WO2020247691A1 (en) | 2019-06-04 | 2020-12-10 | Solar Junction Corporation | Dilute nitride optical absorption layers having graded doping |
-
2015
- 2015-02-05 TW TW104103975A patent/TWI656651B/zh not_active IP Right Cessation
- 2015-02-05 US US14/614,601 patent/US20150221803A1/en not_active Abandoned
- 2015-02-05 EP EP15704681.4A patent/EP3103142B1/en active Active
- 2015-02-05 CN CN201810666885.7A patent/CN108807571A/zh active Pending
- 2015-02-05 EP EP20191506.3A patent/EP3761375A1/en not_active Withdrawn
- 2015-02-05 WO PCT/US2015/014650 patent/WO2015120169A1/en active Application Filing
- 2015-02-05 CN CN201580007461.4A patent/CN106133923B/zh not_active Expired - Fee Related
- 2015-02-05 SG SG11201606353TA patent/SG11201606353TA/en unknown
- 2015-02-05 ES ES15704681T patent/ES2831831T3/es active Active
-
2016
- 2016-08-03 SA SA516371606A patent/SA516371606B1/ar unknown
-
2018
- 2018-07-31 US US16/051,109 patent/US20180337301A1/en not_active Abandoned
-
2019
- 2019-07-24 US US16/521,458 patent/US11233166B2/en active Active
-
2021
- 2021-12-09 US US17/547,171 patent/US20220102569A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1979901A (zh) * | 2005-12-02 | 2007-06-13 | 中国科学院半导体研究所 | 具有双吸收区结构的高效可调谐光探测器 |
Also Published As
Publication number | Publication date |
---|---|
US11233166B2 (en) | 2022-01-25 |
TW201539772A (zh) | 2015-10-16 |
CN108807571A (zh) | 2018-11-13 |
US20180337301A1 (en) | 2018-11-22 |
CN106133923A (zh) | 2016-11-16 |
EP3103142B1 (en) | 2020-08-19 |
EP3761375A1 (en) | 2021-01-06 |
EP3103142A1 (en) | 2016-12-14 |
US20190348562A1 (en) | 2019-11-14 |
US20150221803A1 (en) | 2015-08-06 |
WO2015120169A1 (en) | 2015-08-13 |
ES2831831T3 (es) | 2021-06-09 |
TWI656651B (zh) | 2019-04-11 |
SA516371606B1 (ar) | 2020-11-26 |
US20220102569A1 (en) | 2022-03-31 |
SG11201606353TA (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106133923B (zh) | 单片式多结能量转换器 | |
US9893222B2 (en) | Solar cell having a plurality of sub-cells coupled by a metallization structure | |
US8338772B2 (en) | Devices, systems, and methods for harvesting energy and methods for forming such devices | |
US8847824B2 (en) | Apparatuses and method for converting electromagnetic radiation to direct current | |
US8736108B1 (en) | Photovoltaic system | |
US9954128B2 (en) | Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length | |
US11482633B2 (en) | Voltage matched multijunction solar cell | |
US20100068995A1 (en) | Energy Device With Integral Conductive Surface For Data Communication Via Electromagnetic Energy And Method Thereof | |
US20170033247A1 (en) | Flexible antenna integrated with an array of solar cells | |
JP2019515510A (ja) | 金属ディスク・アレイを備えた積層型太陽電池 | |
US10541345B2 (en) | Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length | |
JP6888859B2 (ja) | マルチスタック積層レーザ太陽電池及びその製造方法 | |
JP2016526304A (ja) | 太陽電池構造及びその製造方法 | |
US10658968B2 (en) | Near-field based thermoradiative device | |
WO2006025260A1 (ja) | 積層型有機無機複合高効率太陽電池 | |
Shen et al. | Resonant-cavity-enhanced p-type GaAs/AlGaAs quantum-well infrared photodetectors | |
US11901473B2 (en) | Thermophotovoltaic cells with integrated air-bridge for improved efficiency | |
US20110220173A1 (en) | Active solar concentrator with multi-junction devices | |
KR101520804B1 (ko) | 광대역 파장 흡수 및 에너지변환을 이용한 고효율 태양전지 | |
US20170200751A1 (en) | Energy Harvesting Devices and Method of Fabrication Thereof | |
TW201349545A (zh) | 多接面光伏電池及其製造方法 | |
CN107527957A (zh) | 单面受光的太阳能电池及其制造方法与太阳能电池模块 | |
US20180358480A1 (en) | Multijunction solar cells having an interdigitated back contact platform cell | |
RU2491681C1 (ru) | Фотоэлемент | |
TW201123478A (en) | Thin film solar cell and fabrication method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: California, USA Patentee after: Alei Photonics Address before: California, USA Patentee before: SOLAR JUNCTION Corp. |
|
CP01 | Change in the name or title of a patent holder | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180724 |
|
CF01 | Termination of patent right due to non-payment of annual fee |