CN106129375B - 一种复合锂盐改性电极材料的方法 - Google Patents

一种复合锂盐改性电极材料的方法 Download PDF

Info

Publication number
CN106129375B
CN106129375B CN201610748266.3A CN201610748266A CN106129375B CN 106129375 B CN106129375 B CN 106129375B CN 201610748266 A CN201610748266 A CN 201610748266A CN 106129375 B CN106129375 B CN 106129375B
Authority
CN
China
Prior art keywords
lithium salts
electrode material
compound lithium
compound
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610748266.3A
Other languages
English (en)
Other versions
CN106129375A (zh
Inventor
王贵欣
肖遥
闫康平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201610748266.3A priority Critical patent/CN106129375B/zh
Publication of CN106129375A publication Critical patent/CN106129375A/zh
Application granted granted Critical
Publication of CN106129375B publication Critical patent/CN106129375B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种复合锂盐改性电极材料的方法,属于能源材料及相关领域。本发明所要解决的问题是固固难分散和锂盐在电解液中难溶解及单一锂盐的缺陷,提供一种复合锂盐提高电极材料电化学性能的方法,能有效实现电极材料或其前驱体与复合锂盐或其前驱体的均匀混合和可控反应。用复合锂盐提高电极材料的性能,克服单一锂盐的不足,可以有效的将电极材料或其前驱体与复合锂盐或其前驱体均匀混合,将反应温度降低,复合锂盐能有效改善电极表界面特性,提高电极材料的电化学性能和安全特性,该工艺方法反应条件温和,反应容易操控,所得改性产品粒度和形貌容易控制,产品性能稳定性好。

Description

一种复合锂盐改性电极材料的方法
技术领域
本发明涉及能源材料及相关领域,具体为一种复合锂盐改性电极材料的方法。
背景技术
智能手机、笔记本电脑和(混合)电动汽车等电子产品,对锂离子电池的能量密度、倍率性能、循环寿命以及安全性的要求越来越高,而电极材料对这些性能举足轻重。电极材料包含正极材料和负极材料,种类较多,目前正极材料主要有钴酸锂、磷酸亚铁锂、镍钴铝氧锂、镍钴锰氧锂、镍钴氧锂、镍锰氧锂、锰酸锂等,负极材料主要有碳基材料、钛酸锂及硅基材料等。其中,作为商业化的锂离子电池负极材料,石墨具有充放电电压平台低、成本低、来源丰富等优点,但是石墨类负极材料循环性能差、体积变化大以及充放电过程中产生的枝晶会导致短路造成安全事故等缺点,这些问题使得碳负极材料难以满足日益发展的电子设备、电动汽车等对高性能锂离子电池的要求。
针对目前电极材料存在的容量低、循环稳定性与倍率特性差等问题,围绕高性能电极材料,人们开展了大量的研究工作,目前主要集中在以下几个方面:第一,对商业化锂离子电池广泛采用的电极材料进行改性,通过表面包覆,制备核壳结构C/C复合材料,降低首次不可逆容量,减少溶剂共嵌入、提高电极的电化学性能;第二,制备具有较高比容量和倍率性能的新型碳电极材料(如硬碳、介孔碳等), 但这类材料往往存在着首次不可逆容量大或循环稳定性差等尚需改善的问题;第三,研究开发新体系的电极材料,包括高储锂能力的合金体系(如FeFy, Si、Ge、 Sn 、Pb、 Al、 Ga、 Sb等)以及纳米金属氧化物等,它们的储锂容量高于目前常用的电极材料。其中,金属锡的理论比容量为990mhA/g,硅为4200mhA/g。但是这类材料在电池充放电过程中,往往伴随着巨大的体积变化。 导致电极循环性能极差,从而阻碍了它们的商业化应用。
硅作为地球上储量丰富的材料,具有较高的理论比容量和较低的电压平台而成为发展前景广阔的锂离子电池负极材料,但是硅负极材料具有较大的体积膨胀效应、低电导率、循环性能差等特点,不能满足实际需要。硅负极在放电过程中,硅与锂离子反应生成的偏硅酸锂等副产物可以减小锂离子的损失。而且,在偏硅酸锂中,SiO4四面体可以形成锯齿链,这种独特的结构使Li2SiO3具有三维的锂离子扩散路径,可以提高锂离子的扩散速率。同时,Li2SiO3是一种化学惰性材料,在有机电解液中结构稳定,可以抑制电解液中HF的侵蚀。另一方面,碳酸锂能够在电极表面形成稳定的固态电解质膜,改善电极的表界面行为,能够提高电极材料的可逆容量和循环性能。但是,碳酸锂很难溶解于有机溶剂。
为了提高目前电极材料的电化学性能和安全性能,本发明创造性的采用复合锂盐对电极材料进行改性,弥补单一锂盐的不足,提高电极材料的电化学性能。
发明内容
本发明所要解决的技术问题是:提供一种复合锂盐改性电极材料的方法,能有效实现电极材料或其前驱体与复合锂盐或其前驱体的均匀混合和可控反应,解决固固难分散和锂盐在电解液中难溶解的问题。
本发明解决其技术问题所采用的技术方案是:
一种复合锂盐改性电极材料的方法,其特征在于:将电极材料或其前驱体和复合锂盐或其前驱体按照活性组分与锂的物质的量比为1:(0.01~5.0)进行配料并混合均匀,混合后在100~700°C下热处理0.5~6.0h,冷却后得到复合锂盐改性产品。
进一步的,所述的复合锂盐指两种及以上锂盐复合物。
进一步的,所述的复合锂盐前驱体指制备复合锂盐的原料或中间产物。
进一步的,所述的电极材料前驱体指制备电极材料的原料或中间产物。
进一步的,所述的电极材料指正极材料和负极材料。
进一步的,所述的活性组分指LiFePO4, Li3V2(PO4)3, Li2FeP2O7, LiTi2(PO4)3,LiNixCoyMn1-x-yO2, LiNixCoyAl1-x-yO2, LiNixMnyO2, LiNixCoyO2, LiMn2O4, LiCoO2,NaxMnO2, NaFePO4, Na2FeP2O7, NaTi2(PO4)3, Na3V2(PO4)3, Na3(VO0.8)2(PO4)2F1.4, S,Li4Ti5O12, Na2Ti3O7, C, Si, Ge, Sn, Pb, Al, Ga, Sb, SiOy, FePy及其复合物。
进一步的,所述的锂盐指LixSiOy, LixPOy, Li2CO3, Li2SO4, LiNO3, CH3COOLi,LiOH, Li4Ti5O12
进一步的,所述的x、y值为0≤x≤4, 0≤y≤4。
本发明的有益效果是:用复合锂盐提高电极材料的性能,克服单一锂盐的不足,可以有效的将电极材料或其前驱体与复合锂盐或其前驱体均匀混合,将反应温度降低,解决目前电极材料锂盐改性过程中均匀混合、反应过程难以有效调控和锂盐难溶解于有机电解液的问题,改善电极表界面特性,提高电极材料的电化学性能和安全特性,该工艺方法反应条件温和,反应容易操控,所得改性产品粒度和形貌容易控制,产品性能稳定性好。
附图说明
图1由Li4SiO4制备Li2SiO3/Li2CO3复合锂盐改性电极材料的工艺流程图。
图2由实施例1制得的Li2SiO3/Li2CO3复合锂盐改性石墨样品的XRD图谱。
图3由实施例1制得的Li2SiO3/Li2CO3复合锂盐改性石墨样品的充放电曲线图。
图4由实施例1制得的Li2SiO3/Li2CO3复合锂盐改性石墨样品的应力应变图。
具体实施方式
以下结合实施例及附图对本发明作进一步说明,所述内容仅为本发明构思下的基本说明,但是本发明不局限于下面例子,依据本发明的技术方案所作的任何等效变换,均属于本发明的保护范围。
实施例1
采用原位合成法由Li4SiO4制备Li2SiO3/Li2CO3复合锂盐改性石墨,具体工艺如图1所示,首先将石墨和Li4SiO4按照物质的量比分别为1:0、1:0.02、1:0.025、1:0.03进行配料,配料后的混合物通过200rpm转速的机械球磨使二者充分混合,然后将该混合物在500~600℃的Ar气氛中热处理5.0h,冷却后得到Li2SiO3/Li2CO3复合锂盐改性石墨产品。图2为不同Li2SiO3/Li2CO3复合锂盐改性石墨样品的XRD图,图3为不同Li2SiO3/Li2CO3复合锂盐改性石墨样品的充放电曲线图,图4为石墨和Li4SiO4质量比为4:1制备的Li2SiO3/Li2CO3复合锂盐改性石墨样品在循环过程中的应力应变曲线图,不同组成的Li2SiO3/Li2CO3复合锂盐都能提高石墨的电化学性能,而且能有效降低石墨循环过程中的形变和应力。
实施例2
采用LiNO3和Li3PO4复合锂盐对硫S进行改性,将硫S粉与LiNO3和Li3PO4按照S和Li的物质的量比为1:0.1(其中LiNO3和Li3PO4的物质的量比为2:1)进行配料混合,混合均匀后上面覆盖一层比表面积为2000m2/g活性炭防止硫S升华后挥发掉,然后在200°C的N2气氛中热处理1.0h,冷却后得到LiNO3和Li3PO4复合锂盐改性的硫S产品。
实施例3
采用Li2SiO3和Li3PO4对LiFePO4进行改性,将FePO4, SiO2, Li2CO3, Li2HPO4和葡萄糖按照物质的量比为1:0.05:0.5:0.02:0.1进行配料混合,混匀后移入600°C的惰性气氛管式炉中加热5~8h,冷却后得到Li2SiO3和Li3PO4复合锂盐改性的LiFePO4产品。

Claims (2)

1.一种复合锂盐改性电极材料的方法,其特征在于:采用原位合成法由Li4SiO4制备Li2SiO3/Li2CO3复合锂盐改性石墨,首先将石墨和Li4SiO4进行配料,配料后的混合物通过200rpm转速的机械球磨使二者充分混合,然后将该混合物在500~600℃的Ar气氛中热处理5.0h,冷却后得到Li2SiO3/Li2CO3复合锂盐改性石墨材料。
2.一种复合锂盐改性电极材料的方法,其特征在于:采用LiNO3和Li3PO4复合锂盐对硫S进行改性,将硫S粉与LiNO3和Li3PO4按照S和Li的物质的量比为1:0.1进行配料混合,其中LiNO3和Li3PO4的物质的量比为2:1,混合均匀后上面覆盖一层比表面积为2000m2/g活性炭防止硫S升华后挥发掉,然后在200℃的N2气氛中热处理1.0h,冷却后得到LiNO3和Li3PO4复合锂盐改性的硫S材料。
CN201610748266.3A 2016-08-30 2016-08-30 一种复合锂盐改性电极材料的方法 Expired - Fee Related CN106129375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610748266.3A CN106129375B (zh) 2016-08-30 2016-08-30 一种复合锂盐改性电极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610748266.3A CN106129375B (zh) 2016-08-30 2016-08-30 一种复合锂盐改性电极材料的方法

Publications (2)

Publication Number Publication Date
CN106129375A CN106129375A (zh) 2016-11-16
CN106129375B true CN106129375B (zh) 2019-02-22

Family

ID=57271959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610748266.3A Expired - Fee Related CN106129375B (zh) 2016-08-30 2016-08-30 一种复合锂盐改性电极材料的方法

Country Status (1)

Country Link
CN (1) CN106129375B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229460B1 (ko) 2018-04-10 2021-03-18 주식회사 엘지화학 인화철(FeP)의 제조방법
US11349113B2 (en) 2018-04-10 2022-05-31 Lg Energy Solution, Ltd. Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
KR102183665B1 (ko) 2018-07-16 2020-11-26 주식회사 엘지화학 인화철(FeP)을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR102510292B1 (ko) 2018-06-27 2023-03-14 주식회사 엘지에너지솔루션 티타늄 질화물, 그 제조방법 및 이를 포함하는 리튬-황 전지
KR102308465B1 (ko) 2018-07-16 2021-10-01 주식회사 엘지화학 산화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
CN112467108B (zh) * 2020-11-26 2022-04-12 东莞理工学院 一种多孔硅氧复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472828A (zh) * 2002-07-30 2004-02-04 北京有色金属研究总院 一种改善锂离子电池正极材料LiMn2O4的高温性能的方法
CN101286560A (zh) * 2008-05-30 2008-10-15 成都中科来方能源科技有限公司 一种锂离子电池复合负极材料及其制备方法
CN104393235A (zh) * 2014-04-21 2015-03-04 天津锦美碳材科技发展有限公司 一种锂盐改性锂离子电池负极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472828A (zh) * 2002-07-30 2004-02-04 北京有色金属研究总院 一种改善锂离子电池正极材料LiMn2O4的高温性能的方法
CN101286560A (zh) * 2008-05-30 2008-10-15 成都中科来方能源科技有限公司 一种锂离子电池复合负极材料及其制备方法
CN104393235A (zh) * 2014-04-21 2015-03-04 天津锦美碳材科技发展有限公司 一种锂盐改性锂离子电池负极材料及其制备方法

Also Published As

Publication number Publication date
CN106129375A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106129375B (zh) 一种复合锂盐改性电极材料的方法
CN100448772C (zh) 高密度超微复合型磷酸铁锂正极材料的制备方法
CN105140492A (zh) 一种表面包覆锆酸锂的镍钴锰酸锂复合正极材料及制备方法
Lou et al. Mg-doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application
CN101308926B (zh) 正硅酸盐包覆的锂离子电池复合正极材料及其制备方法
CN101752562B (zh) 一种复合掺杂改性锂离子电池正极材料及其制备方法
CN106960954A (zh) 一种普鲁士蓝/石墨烯/硫复合材料的制备方法及应用
CN106450211A (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
CN104638242A (zh) 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
CN103594708B (zh) 一种变价铁基复合正极材料及其制备方法
CN109167050A (zh) 低成本高容量551530型三元正极材料的生产方法
CN107611374A (zh) 一种新型锂硫电池正极材料的制备方法
CN103441267A (zh) 一种二氧化钛包覆钴酸锂正极材料的制备方法
CN103996832A (zh) 一种碳-金属氧化物双组分包覆修饰的高电压正极材料及其包覆方法
CN105280910A (zh) 一种含磷锂离子电池正极材料及其制备方法
CN104505490A (zh) 采用原位碳还原法制备的锂离子电池用正极活性材料及方法
CN111029552A (zh) 一种高电压高倍率钴酸锂正极材料及其制备方法
CN102931404A (zh) 磷位硼掺杂磷酸锰锂/碳复合材料及其制备方法
CN104733714A (zh) 锂离子电池正极材料的改性方法
CN104466139A (zh) 一种聚苯胺包覆锗掺杂锰酸锂复合正极材料的制备方法
CN101284658B (zh) 一种锂离子电池复合磷酸盐型正极材料及其制备方法
CN111211302B (zh) 锂离子电池正极材料及其制备方法、锂离子电池正极、锂离子电池和用电设备
CN108735996A (zh) 一类大颗粒钠离子电池正极材料和提高材料颗粒尺寸的方法
CN102931397A (zh) 一种碳包覆改性钴酸锂正极材料的制备方法
CN103682293A (zh) 一种富锂固溶体正极材料及其制备方法、锂离子电池正极材料和锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190222

Termination date: 20190830