CN105974007A - 一种检测土壤中邻苯二甲酸酯的方法 - Google Patents

一种检测土壤中邻苯二甲酸酯的方法 Download PDF

Info

Publication number
CN105974007A
CN105974007A CN201610269952.2A CN201610269952A CN105974007A CN 105974007 A CN105974007 A CN 105974007A CN 201610269952 A CN201610269952 A CN 201610269952A CN 105974007 A CN105974007 A CN 105974007A
Authority
CN
China
Prior art keywords
extraction
soil
sample
phthalic acid
mse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610269952.2A
Other languages
English (en)
Inventor
吴微
周宜开
周峰
王月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201610269952.2A priority Critical patent/CN105974007A/zh
Publication of CN105974007A publication Critical patent/CN105974007A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明属于环境监测领域,提供了一种气流吹扫式微注射萃取器联合气相色谱检测土壤中的邻苯二甲酸酯的方法。本发明使用气流吹扫式微注射器直接萃取土壤中邻苯二甲酸酯,优化了该仪器的萃取溶剂、氮气流速、萃取温度、萃取时间等各项参数,确定了土壤中邻苯二甲酸酯的最佳萃取条件:萃取溶剂为正己烷/丙酮(1:1,V:V),氮气流速2mL/min,加热温度280℃,冷凝温度‑4℃,萃取时间4min。同时结合气相色谱对方法的检出限、标准曲线、回收率、精密度、准确度等效能指标进行评价,并对实际样本进行检测。该方法萃取时间短、所需样品少,具有快速、简便、自动化的特点,能满足土壤中邻苯二甲酸酯的批量检测。

Description

一种检测土壤中邻苯二甲酸酯的方法
技术领域
本发明属于环境监测领域,涉及到环境中有机污染物的检测,具体涉及到气流吹扫式微注射萃取器联合气相色谱检测土壤中的邻苯二甲酸酯。
背景技术
邻苯二甲酸酯类(PAEs)也称酞酸酯,是一种重要的增塑剂。由于其具有性质稳定、极性适中以及生产工艺简单、原料易得、成本低廉等特点,因而在塑料行业和日用化工行业得以广泛应用。PAEs在塑料制品中并没有与高聚物分子形成共价键,而是通过范德华力和氢键与高聚物分子连接。随着时间推移,PAEs可从塑料制品中慢慢泄露出来,通过生物富集作用进入食物链,干扰血液中正常激素,影响机体的生长、发育甚至生殖。美国国家环保署将邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-乙基)己基酯(DEHP)、邻苯二甲酸二正辛酯(DnOP)六种PAEs列为优先控制污染物。伴随着工业的发展,土壤中PAEs污染问题日益突出,如何从土壤中萃取PAEs并快速检测尤为重要。
传统的前处理方法为索氏提取、超声萃取以及层析柱萃取,由于其操作复杂,萃取时间长,所需样品量大,很难进行大规模、实时监测。气流吹扫微注射器萃取器(GP-MSE)是一种新型的样品前处理方法,其原理与色谱的工作原理相似,置于样品管中的待测物质,在加热器的作用下加热挥发,在惰性气体的驱使下,通过微量注射器针头进入针筒内,最终,通过冷凝器的冷凝,目标物被注射器里的萃取溶剂定量捕集,而惰性气体则进入大气环境,实现目标物在萃取相和气相中的分离。该萃取方法在中药真伪鉴别、土壤中有机物的鉴定都有小范围应用。鉴于此,本发明依托气流吹扫式微注射萃取器联合气相色谱(GC),对土壤中邻苯二甲酸酯进行萃取、分析和鉴定,实现土壤中PAEs的快速、高效、大批量检测。
发明内容
本发明的任务是提供一种检测土壤中邻苯二甲酸酯的方法,具体是建立一种气流吹扫式微注射萃取器联合气相色谱(GP-MSE/GC)测定土壤中邻苯二甲酸酯的方法,使其具有萃取时间短、所需样品少、快速、简便、自动化的特点,能满足土壤中PAEs的批量检测等特点。
实现本发明的技术方案是:本发明提供的检测土壤中邻苯二甲酸酯的方法,包括以下步骤:
步骤一、制备空白土壤样品:本发明中空白土壤指的是空白无污染土壤。取地下深层土壤,自然风干后研磨过0.45mm筛,在600℃下灼烧6h,冷却后转移至广口瓶中储存备用,上机分析后在待测组分出峰处无干扰峰,即作为空白土壤样品;
步骤二:优化GP-MSE条件:精密称取加标浓度为10mg/kg的空白土壤样品10mg,放入GP-MSE的样品管中,塞上PTFE垫,将100μL气密性注射器通过微萃取仪冷凝器刺透PTFE垫,针尖刚好穿过PTFE垫,依次优化GP-MSE的萃取溶剂、氮气流速、萃取温度、萃取时间等各项参数;优化的GP-MSE萃取条件为:萃取溶剂为正己烷/丙酮(1:1,V:V),氮气流速2mL/min,加热温度280℃,冷凝温度-4℃,萃取时间4min。
步骤三:绘制邻苯二甲酸酯校准曲线:将邻苯二甲酸酯标准溶液及内标液(苯甲酸苄酯),添加到空白土壤样品中,制成一系列浓度为0.1,0.2,0.5,2.5,20,50,100mg/kg的空白土壤加标样本,用GP-MSE进行萃取,依据步骤二优化的条件设置仪器参数,待萃取过程结束后,将含有萃取溶剂的微量注射器,直接插入气相色谱仪的手动进样口,以峰面积Y对浓度C进行线性回归并绘制标准曲线;
步骤四:实际土壤中PAEs含量的检测:以梅花状布点,采集地表下15~20cm土壤,去除杂物,置于棕色玻璃瓶中,土壤样品经过自然风干后,研磨并过60目筛,分析时称取10mg样品填装入样品槽中,封上进样垫,将100μL微注射器经冷凝装置垂直插入样品槽中,至隔垫下适当位置,萃取结束后进入气相色谱检测,得到待测物峰面积,依据步骤三所绘制的标准曲线,获取实际样品中PAEs的含量。
本发明方法土壤中六种邻苯二甲酸酯的加标回收率范围为84.52%~94.47%,相对标准偏差均小于15%。该方法操作简单、省时、回收率高,可用于土壤中邻苯二甲酸酯的检测分析。
本发明使用GP-MSE直接萃取土壤中六种邻苯二甲酸酯,优化GP-MSE的萃取溶剂、氮气流速、萃取温度、萃取时间等各项参数,同时结合气相色谱对方法的检出限、标准曲线、回收率、精密度、准确度等效能指标进行评价,并对实际样本进行检测。
本发明提供的GP-MSE联合GC测定土壤中邻苯二甲酸酯的方法,主要包括以下两部分内容:
内容一:优化GP-MSE的萃取条件。
内容二:对GP-MSE结合GC测定土壤中的PAEs进行方法学评价。
内容一中所述的对GP-MSE萃取条件的优化主要包括(萃取溶剂、氮气流速、萃取温度、萃取时间)四方面。
1.萃取溶剂对回收率的影响
六种邻苯二甲酸酯的极性范围广,相互间有很大差别。其中DMP、DEP最强,BBP、DBP为中等极性,DEHP极性最弱。为使六种物质都达到最佳的萃取效果,选择合适的萃取溶剂致关重要。本文根据PAEs的特性以及参考文献推荐,以甲醇,丙酮,正己烷/丙酮(1:1,V:V)和正己烷作为备选萃取溶剂,进行回收率比较。
根据实验精密称取加标浓度为10mg/kg的空白土壤样品10mg,放入样品管中,塞上PTFE垫。将100μL气密性注射器通过微萃取仪冷凝器刺透PTFE垫,针尖刚好穿过PTFE垫即可。加入10μL不同组合的萃取剂,通入氮气,设定冷凝和加热温度后进行萃取。不同萃取溶剂对回收率的比较见图1。结果表明,以正己烷/丙酮(1:1,V:V)作为萃取溶剂,得到的回收率最高。
2.氮气流速对萃取回收率的影响
氮气流速也是影响萃取时间和萃取效率的一个重要因素。在萃取系统中通入惰性气体推动挥发性目标物的运动,加快了流动速度,减少了目标物向萃取溶剂转移的运动时间,也可以保护不稳定的目标物。GP-MSE萃取系统通入氮气后,氮气在高温下吹扫样品中的挥发性、半挥发性目标物进入液相微萃取系统溶剂相,从而缩短萃取时间,提高萃取效率,实现目标物的富集。为了研究气体流量对萃取效率的影响,本实验考察了氮气流速在1mL/min,1.5mL/min,2mL/min,2.5mL/min和3mL/min对萃取效率的影响。结果见图2。
结果发现随着气流变化,目标物的回收率并没随着气流值的增大而增大。表明微富集系统通入气体后,从样品中挥发的大部分目标物几乎彻底进入了萃取溶剂相,增大气流量并不能使目标回收率产生显著变化。气流过大反而会使萃取液会迸溅,分析物损失且实验精密度差。最终,本实验选择2mL/min作为最佳的氮气流速条件。
3.不同萃取温度对回收率的影响
样品温度也是影响萃取效率的重要因素,改变样品的加热温度也会改变样品中目标物的萃取效率。样品温度升高,样品中分子运动加剧,目标分析物的扩散速度增大,进入液相微萃取相的速度加快,可以缩短萃取时间。但如果温度过高会使部分PAEs挥发,也会加剧萃取剂的溶解损失。提高样品的加热温度,可以显著的提高目标物的富集效率,目标物的回收率随着样品温度的升高而增加。而且沸点越高的化合物,富集效果越明显,结果见图3(A)。本实验同时考察了制冷温度对萃取效率的影响,结果见图3(B)。最终选择280℃为加热温度,-4℃为制冷温度。
4.不同萃取时间对回收率的影响
萃取时间是影响萃取效率的另一个重要因素。合适的萃取时间会使目标分析物达到最高的萃取效率,再延长萃取时间则会导致有机溶剂的损失。本实验考察了萃取时间为2~6min时对萃取效率的影响。结果显如图4所示,在2~4分钟时,萃取效率随着萃取时间的增加而明显增加,当萃取时间大于4min时萃取效率基本不变,甚至略有降低。可能由于时间过长,部分PAEs挥发,萃取回收率下降。
通过对相关条件的优化,最终确定仪器的最佳参数为:萃取溶剂正己烷/丙酮(1:1,V:V),氮气流速2mL/min,加热温度280℃,冷凝温度-4℃,萃取时间4min。
内容二中所述的GP-MSE/GC测定土壤中PAEs的方法学评价主要包括检测限、标准曲线、回收率、准确度、精密度等各项指标。本发明以苯甲酸苄酯(BB)为加标样品,制成一系列浓度为0.1,0.2,0.5,2.5,20,50,100mg/kg的空白土壤加标样本,测得六种PAEs的相关系数(R2)在0.965~0.985之间,LOD为0.02~0.04mg/kg。采用平行加标回收率同时测量实验方法的准确度和精密度,证实六种邻苯二甲酸酯在土壤中回收率的范围为84.52%~94.47%,相对标准偏差(RSD)为6.15%~11.31%。通过与超声萃取、索氏提取传统方法进行比较,证实GP-MSE操作简单,耗时短,溶剂用量少。
本发明的优点在于:缩短了样品的萃取时间(4min),减少了溶剂使用量(10μL),减轻对操作人员健康和环境的危害,可以减少由于不同人员操作及样品多次转移带来的误差,具有快速、简便、自动化的特点。
附图说明
图1.为不同萃取溶剂对萃取回收率的影响。实验精密称取加标浓度为10mg/kg的空白土壤样品10mg,放入样品管中,以甲醇、丙酮、正己烷和正己烷/丙酮(1:1,V:V)作为备选萃取溶剂,进行回收率比较,结果表明,以正己烷/丙酮(1:1,V:V)作为萃取溶剂,得到的回收率最高。
图2.为不同氮气流速对萃取回收率的影响。本发明考察了氮气流速在1mL/min,1.5mL/min,2mL/min,2.5mL/min和3mL/min对萃取效率的影响。结果发现气流增加,萃取效率逐渐升高,但气流过大反而会使萃取液会迸溅,分析物损失且实验精密度差,最终选择2mL/min作为最佳的氮气流速条件。
图3为不同萃取温度对萃取回收率的影响。其中A图为加热温度对萃取回收率的影响,B图为冷凝温度对萃取回收率的影响。最终选择280℃为加热温度,-4℃为制冷温度。
图4为不同萃取时间对萃取回收率的影响。本研究考察了萃取时间为2~6min时对萃取效率的影响,在2~4min时,萃取效率随着萃取时间的增加而明显增加,当萃取时间大于4min时萃取效率基本不变,最终萃取时间定为4min。
具体实施方式:
下面结合实际土壤样品对GP-MSE/GC测定PAEs的方法作出详细说明。
实施例1.GP-MSE/GC测定土壤中PAEs标准曲线的绘制。
具体实施步骤:将六种PAEs的混标溶液及内标液添加到空白土壤样品中。制成一系列浓度为0.1,0.2,0.5,2.5,20,50,100mg/kg的空白土壤加标样本。采取上述方法,用GP-MSE进行萃取,并结合GC进行检测,以峰面积Y对浓度C进行线性回归并绘制标准曲线。六种邻苯二甲酸酯所得线性范围、回归方程、相关系数、最低检出限如下表1。
表1.GP-MSE/GC测定土壤中PAEs标准系列分析
实施例2.GP-MSE/GC测定土壤中PAEs准确度和精密度的评价
具体实施步骤:本发明采用平行加标回收率衡量实验方法的准确度和精密度。取空白土壤10g,加入100μg邻苯二甲酸酯混标,则样品的加标浓度为10mg/g。采用GP-MSE/GC方法对邻苯二甲酸酯的含量进行测定。萃取条件为:萃取时间4min,氮气流速2.0mL/min,萃取溶剂正己烷/丙酮(1:1,V:V)10μL。平行6次测定其回收率的平均值,结果见表2。六种邻苯二甲酸酯在土壤中回收率的范围为84.52%~94.47%,相对标准偏差(RSD)为6.15%~11.31%。
表2.GP-MSE/GC测定土壤中邻苯二甲酸酯的准确度和精密度
实施例3.GP-MSE/GC测定实际土壤中PAEs的含量
3.1.样本采集
土壤样品采集于2013年8月份,采集点位于湖北省中部某地,地势平坦。采集地表下15~20cm土壤4份,去除杂物后,置于棕色玻璃瓶中,4℃保存至前处理时使用。
为避免样品污染,在整个采样过程中未使用任何塑料设备。所有的玻璃器皿使用前先用重铬酸钾和硫酸的混合液浸泡12h,去离子水洗净后400℃烘干8h,玻璃塞盖紧,再用铝箔包裹严实。层析硅胶和脱脂棉等均用二氯甲烷进行索氏抽提12h后,烘干备用。
3.2.样品萃取
土壤样品经过自然风干后,研磨并过60目筛,分析时称取10mg样品填装入样品槽中,封上进样垫,将100μL微注射器经冷凝装置垂直插入样品槽中,至隔垫下适当位置,向注射器中加入10μL正己烷/丙酮(1:1,V:V)溶剂,设置仪器的参数:氮气流速2mL/min,加热温度280℃,冷凝温度-4℃,萃取时间4min。
3.3气相色谱条件
气象色谱仪为安捷伦7890,色谱柱为DB-5石英毛细管色谱柱(30m×0.25mm×0.25μm),载气为氢气,流速为30mL/min,空气流量400mL/min,尾吹气流量(N2)25mL/min。进样口温度280℃,检测器温度280℃。色谱柱升温程序为初始温度100℃,以10℃/min升至310℃。
3.4测定结果及分析
根据实施例1绘制的标准曲线,四份土壤样本的测定结果见表3。样品中都检测到了DEP,DBP,BBP和DEHP,样品1及样品4中未检测出DnOP。土壤6种PAEs的平均浓度DnOP<DMP<DBP<DEP<BBP<DEHP,这种趋势与台州地区[1]及贵州地区[2]的土壤分布趋势类似。该结果除了与土壤的理化性质和环境条件相关外,还与邻苯二甲酸酯化合物的性质有关。DnOP和DMP等短链的PAEs水溶性较高,辛醇-水分配系数小,易被生物降解或通过挥发、淋溶、植物吸收等途径消失;DEHP等长链PAEs水溶性低,辛醇-水分配系数大,易被土壤吸附、累积,在土壤中的含量较高[3],另外还可能因为DEHP是应用最广泛的塑料添加剂。
本发明以GP-MSE为前处理方法,优化了仪器各项参数。最终确定仪器的最佳参数为:萃取溶剂正己烷/丙酮(1:1,V:V),氮气流速2mL/min,加热温度280℃,冷凝温度-4℃,萃取时间4min。最后结合GC对土壤样本中6种邻苯二甲酸酯进行了分析。测得土壤中六种PAEs的加标回收率范围为84.52%~94.47%,相对标准偏差均小于15%。结果证明该方法操作简单、省时、回收率高,可用于土壤中PAEs的检测分析。下一阶段,将对此方法进一步推广,使其运用到土壤样本的批量监测中。
表3.GP-MSE/GC测定实际土壤中的邻苯二甲酸酯(加入内标,10mg/kg)
参考文献:
1.张中华,金士威,段晶明et al.台州电子废物拆解地区表层土壤中酞酸酯的污染水平.武汉工程大学学报,2010,32(7):28-32.
2.李存雄,方志青,张明时et al.贵州省部分地区土壤中酞酸酯类污染现状调查.环境监测管理与技术,2010(1):33-36.
3.蔡全英,莫测辉,李云辉et al.广州,深圳地区蔬菜生产基地土壤中邻苯二甲酸酯(PAEs)研究.生态学报,2005,25(2):283-288.

Claims (2)

1.一种检测土壤中邻苯二甲酸酯的方法,包括以下步骤:
步骤一、制备空白土壤样品:取地下深层土壤,自然风干后研磨过0.45mm筛,在600℃下灼烧6h,冷却后转移至广口瓶中储存备用,上机分析后在待测组分出峰处无干扰峰,即作为空白土壤样品;
步骤二:优化GP-MSE条件:精密称取加标浓度为10mg/kg的空白土壤样品10mg,放入GP-MSE的样品管中,塞上PTFE垫,将100μL气密性注射器通过微萃取仪冷凝器刺透PTFE垫,针尖刚好穿过PTFE垫,依次优化GP-MSE的萃取溶剂、氮气流速、萃取温度、萃取时间等各项参数;
步骤三:绘制邻苯二甲酸酯校准曲线:将邻苯二甲酸酯标准溶液及内标液(苯甲酸苄酯),添加到空白土壤样品中,制成一系列浓度为0.1,0.2,0.5,2.5,20,50,100mg/kg的空白土壤加标样本,用GP-MSE进行萃取,依据步骤二优化的条件设置仪器参数,待萃取过程结束后,将含有萃取溶剂的微量注射器,直接插入气相色谱仪的手动进样口,以峰面积Y对浓度C进行线性回归并绘制标准曲线;
步骤四:实际土壤中PAEs含量的检测:以梅花状布点,采集地表下15~20cm土壤,去除杂物,置于棕色玻璃瓶中,土壤样品经过自然风干后,研磨并过60目筛,分析时称取10mg样品填装入样品槽中,封上进样垫,将100μL微注射器经冷凝装置垂直插入样品槽中,至隔垫下适当位置,萃取结束后进入气相色谱检测,得到待测物峰面积,依据步骤三所绘制的标准曲线,获取实际样品中PAEs的含量。
2.根据权利要求1所述的方法,其特征在于,优化的GP-MSE萃取条件为:萃取溶剂为正己烷/丙酮(1:1,V:V),氮气流速2mL/min,加热温度280℃,冷凝温度-4℃,萃取时间4min。
CN201610269952.2A 2016-04-27 2016-04-27 一种检测土壤中邻苯二甲酸酯的方法 Pending CN105974007A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610269952.2A CN105974007A (zh) 2016-04-27 2016-04-27 一种检测土壤中邻苯二甲酸酯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610269952.2A CN105974007A (zh) 2016-04-27 2016-04-27 一种检测土壤中邻苯二甲酸酯的方法

Publications (1)

Publication Number Publication Date
CN105974007A true CN105974007A (zh) 2016-09-28

Family

ID=56994841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610269952.2A Pending CN105974007A (zh) 2016-04-27 2016-04-27 一种检测土壤中邻苯二甲酸酯的方法

Country Status (1)

Country Link
CN (1) CN105974007A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526054A (zh) * 2016-11-24 2017-03-22 复旦大学 一种快速分析尿中邻苯二甲酸酯代谢产物、双酚a和雌激素的方法
CN107607648A (zh) * 2017-09-14 2018-01-19 浙江省海洋水产研究所 一种沉积物中邻苯二甲酸酯类化合物的固相萃取‑气相色谱质谱检测方法
CN107655991A (zh) * 2017-09-21 2018-02-02 国家烟草质量监督检验中心 土壤中6种邻苯二甲酸酯的测定方法
CN107703236A (zh) * 2017-09-26 2018-02-16 广东工业大学 一种土壤中邻苯二甲酸酯的提取检测方法
CN107991405A (zh) * 2017-11-23 2018-05-04 湖北文理学院 土壤中酞酸酯的测定方法
CN110398544A (zh) * 2019-05-15 2019-11-01 上海大学 环境土壤中邻苯二甲酸酯类物质的检测分析方法
CN110806442A (zh) * 2019-11-29 2020-02-18 大连大学 一种检测塑料中邻苯二甲酸酯类最优提取试剂的选择方法
CN111413437A (zh) * 2020-04-27 2020-07-14 广东建研环境监测股份有限公司 一种土壤中醇类和酯类的检测方法
CN111650021A (zh) * 2020-07-15 2020-09-11 艾吉析科技(南京)有限公司 一种邻苯二甲酸酯类土壤基质标准样品的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692476A (zh) * 2012-06-19 2012-09-26 延边大学 气流吹扫微注射器萃取技术与gc-ms联用检测北细辛药材的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692476A (zh) * 2012-06-19 2012-09-26 延边大学 气流吹扫微注射器萃取技术与gc-ms联用检测北细辛药材的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MIAO HE ET AL.: "Monitoring of phthalates in foodstuffs using gas purge microsyringe extraction coupled with GC–MS", 《ANALYTICA CHIMICA ACTA》 *
WEI WU ET AL.: "Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography", 《SCIENCE OF THE TOTAL ENVIRONMENT》 *
XINGHUI XIA ET AL.: "Levels, Distribution, and Health Risk of Phthalate Esters in Urban Soils of Beijing, China", 《JOURNAL OF ENVIRONMENTAL QUALITY》 *
張丽珍 等: "高雄港河口及航道沉积物內分泌干扰物质邻苯二甲酸酯之分布", 《嘉南学报》 *
马军 等: "基于四通道色谱分离仪净化-GC-MS法测定土壤中邻苯二甲酸酯类残留", 《分析试验室》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526054A (zh) * 2016-11-24 2017-03-22 复旦大学 一种快速分析尿中邻苯二甲酸酯代谢产物、双酚a和雌激素的方法
CN106526054B (zh) * 2016-11-24 2018-05-25 复旦大学 一种快速分析尿中邻苯二甲酸酯代谢产物、双酚a和雌激素的方法
CN107607648A (zh) * 2017-09-14 2018-01-19 浙江省海洋水产研究所 一种沉积物中邻苯二甲酸酯类化合物的固相萃取‑气相色谱质谱检测方法
CN107607648B (zh) * 2017-09-14 2020-04-07 浙江省海洋水产研究所 一种沉积物中邻苯二甲酸酯类化合物的固相萃取-气相色谱质谱检测方法
CN107655991A (zh) * 2017-09-21 2018-02-02 国家烟草质量监督检验中心 土壤中6种邻苯二甲酸酯的测定方法
CN107703236A (zh) * 2017-09-26 2018-02-16 广东工业大学 一种土壤中邻苯二甲酸酯的提取检测方法
CN107991405A (zh) * 2017-11-23 2018-05-04 湖北文理学院 土壤中酞酸酯的测定方法
CN110398544A (zh) * 2019-05-15 2019-11-01 上海大学 环境土壤中邻苯二甲酸酯类物质的检测分析方法
CN110806442A (zh) * 2019-11-29 2020-02-18 大连大学 一种检测塑料中邻苯二甲酸酯类最优提取试剂的选择方法
CN111413437A (zh) * 2020-04-27 2020-07-14 广东建研环境监测股份有限公司 一种土壤中醇类和酯类的检测方法
CN111650021A (zh) * 2020-07-15 2020-09-11 艾吉析科技(南京)有限公司 一种邻苯二甲酸酯类土壤基质标准样品的制备方法
CN111650021B (zh) * 2020-07-15 2021-02-19 艾吉析科技(南京)有限公司 一种邻苯二甲酸酯类土壤基质标准样品的制备方法

Similar Documents

Publication Publication Date Title
CN105974007A (zh) 一种检测土壤中邻苯二甲酸酯的方法
CN102128906A (zh) 一种卷烟滤嘴中挥发性有机化合物的测定方法
CN106053619A (zh) 一种高通量测定卷烟主流烟气粒相物中挥发、半挥发成分的分析方法
CN101793880B (zh) 卷烟烟气总粒相物中苯并[a]芘的测量方法
CN108872415A (zh) 一种尿液中单羟基多环芳烃的分析检测方法
CN106053635B (zh) 一种测定植物叶片中多环芳烃的方法
CN111239307A (zh) 一种测定水和土壤中乙酸丁酯和环己酮的方法
CN107561182A (zh) 卷烟主流烟气中挥发性和半挥发性有机化合物的检测方法
CN102998382B (zh) 一种烟用添加剂中甲醇、仲丁醇、芝麻酚和二甲苯麝香含量的测定方法
CN105259293A (zh) 基于同位素质谱技术鉴别橄榄油产地的方法
Cui et al. The influence of memory, sample size effects, and filter paper material on online laser‐based plant and soil water isotope measurements
CN114200049B (zh) 一种退役地块土壤中正己烷和环己酮的检测方法
CN106645368A (zh) 一种血液中丙泊酚在线检测仪及其应用
Torn et al. Automated analysis of 13C/12C ratios in CO2 and dissolved inorganic carbon for ecological and environmental applications
CN108535395A (zh) 一种使用UPLC-QTof同时快速测定保健酒中32种游离脂肪酸的方法
CN101592632B (zh) 电力变压器油中丙酮含量测定分析方法
CN103149270A (zh) 利用离子迁移率谱仪检测油脂的方法
CN103983729B (zh) 一种气相色谱-质谱检测土壤溶液中酰基高丝氨酸内酯的方法
CN101858902A (zh) 一种结合碳同位素比值的土壤蚀变碳酸盐的测量方法
CN111983062B (zh) 一种空气中微量dmaea的检测方法
CN110658265A (zh) 同时测定煤气中苯、甲苯、二甲苯和萘含量的方法
CN102081038B (zh) 一种水中挥发性物质的检测装置及其用于检测的方法
Li et al. Application of hollow fiber liquid-phase microextraction in identification of oil spill sources
CN102095809A (zh) 检测啤酒中吡嗪类化合物的分析方法
CN102721777B (zh) 一种粘稠状烟用香精香料的检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160928