CN105895886A - 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法 - Google Patents

一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法 Download PDF

Info

Publication number
CN105895886A
CN105895886A CN201610452201.4A CN201610452201A CN105895886A CN 105895886 A CN105895886 A CN 105895886A CN 201610452201 A CN201610452201 A CN 201610452201A CN 105895886 A CN105895886 A CN 105895886A
Authority
CN
China
Prior art keywords
transition metal
porous carbon
sodium
ion battery
metal phosphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610452201.4A
Other languages
English (en)
Other versions
CN105895886B (zh
Inventor
张治安
史晓东
陈晓彬
尹盟
李天凡
解豪
潘迪
李天伟
于航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201610452201.4A priority Critical patent/CN105895886B/zh
Publication of CN105895886A publication Critical patent/CN105895886A/zh
Application granted granted Critical
Publication of CN105895886B publication Critical patent/CN105895886B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法;该复合材料由过渡金属磷化物纳米颗粒弥散分布在多孔碳材料内部构成,其制备过程为将过渡金属盐与有机配体通过原位生长法制备过渡金属有机框架结构;将所述过渡金属有机框架结构与磷源分别置于管式炉的两端,加热管式炉,同时从放置无机磷源的管式炉一端通入流动性惰性气体,进行热处理;热处理产物依次经过洗涤、干燥,即得;制得的过渡金属磷化物/多孔碳复合材料用作钠离子电池负极材料具有高比容量以及良好的倍率性能,且其制备方法简单,成本低廉,具有广阔的工业化应用前景。

Description

一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法
技术领域
本发明涉及一种钠离子电池负极材料及其制备方法,特别涉及一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及制备方法,属于钠离子电池领域。
背景技术
自从上世纪80年代新型化学电源锂离子电池问世以来,作为第三代可充电电池具有比能量高、循环性稳定、工作电压高、使用寿命长和环境污染小等优点而备受关注,并且广泛应用于混合动力汽车以及移动电子设备。然而,由于锂元素在地壳中的元素含量相对较少,因此有必要开发一种新型的电池体系。
钠离子电池是近些年来研究较为广泛的新型储能体系。钠元素在自然界中的储量非常丰富,约占地壳的2.74%,并且广泛分布,有效地降低了资源开发提取成本。同时,钠与锂元素同为元素周期表第I主族元素,两者具有相似的物理化学特性。因此,钠离子电池具有和锂离子电池类似的反应机制和储能优势。因此,钠离子电池被认为是下一代能量储存与转换系统的理想选择。
目前,研究结果表明过渡金属磷化物由于过渡金属矿物资源储量丰富,廉价易得,合成工艺简单,在光解水、储氢、催化剂材料等领域得到广泛的应用,引起了科学工作者的广泛关注。同时,金属磷化物作为钠离子电池负极材料具有很高的理论储钠容量,但是由于其导电性较低,降低了它作为电极材料的倍率性能;此外,由于其与钠离子的转化反应机制,在嵌入/脱出钠离子过程中会产生严重的体积变化以及电极粉化等缺陷,从而极大地降低了它作为电极材料的循环稳定性。因此,如何提高金属磷化物作为钠离子电池电极材料的倍率性能和循环稳定性能,成了限制金属磷化物作为钠离子电池负极材料大规模应用的关键问题。
发明内容
针对现有钠离子电池电极材料存在的缺陷,本发明提供了一种由过渡金属磷化物纳米颗粒均匀附着于多孔碳材料内部构成的具有空间纳米笼状复合结构的金属磷化物/多孔碳负极复合材料,其作为钠离子电池负极材料,能使钠离子电池中获得高充放电比容量、良好倍率性能和稳定循环性能。
本发明的另一个目的是在于提供一种工艺简单、重复性好、成本低廉、环境友好的制备上述复合材料的方法。
为了实现上述技术目的,本发明提供了一种钠离子电池过渡金属磷化物/多孔碳负极复合材料,该过渡金属磷化物/多孔碳负极复合材料由过渡金属磷化物纳米颗粒弥散分布在多孔碳材料内部构成。
优选的方案,过渡金属磷化物/多孔碳负极复合材料中过渡金属磷化物纳米颗粒的质量百分比含量为75~95%。
优选的方案,过渡金属磷化物纳米颗粒的尺寸为50~300nm。
优选的方案,多孔碳具有无定形的疏松多孔结构。
优选的方案,过渡金属磷化物为锌、钴、铜、铁中至少一种的磷化合物。最优选为铜的磷化物。
本发明还提供了一种制备所述的钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,该方法是将过渡金属盐与有机配体通过原位生长法制备过渡金属有机框架结构;将所述过渡金属有机框架结构与磷源分别置于管式炉的两端,加热所述管式炉至300~700℃,同时从放置无机磷源的管式炉一端通入流动性惰性气体,进行热处理;热处理产物依次经过洗涤、干燥,即得。
优选的方案,所述过渡金属盐与有机配体在有机溶剂介质中搅拌反应12~24h(一般在室温下反应即可);或者,所述过渡金属盐与有机配体在有机溶剂介质中,于150~200℃温度下进行水热反应12~24h。
较优选的方案,所述过渡金属盐与有机配体的摩尔比为1:5~1:10。
较优选的方案,所述过渡金属盐与有机溶剂的摩尔比为1:500~1:800。
进一步优选的方案,过渡金属盐为硝酸锌、硫酸锌、乙酸锌、氯化锌、硝酸钴、硫酸钴、乙酸钴、氯化钴、硝酸铜、硫酸铜、乙酸铜、氯化铜、硝酸铁、硫酸铁、乙酸铁、氯化铁中的至少一种。最优选为硝酸铜、硫酸铜、乙酸铜、氯化铜中至少一种。
进一步优选的方案,有机配体为2-甲基咪唑、1,4-对苯二甲酸、1,3,5-均苯三甲酸中的至少一种。
进一步优选的方案,有机溶剂为甲醇、二甲基甲酰胺、乙醇中的至少一种。
进一步优选的方案,所述过渡金属有机框架结构与磷源的质量比例为5:1~1:5。
优选的方案,磷源为无机磷酸盐,更优选为次磷酸二氢钠、次磷酸二氢铵、亚磷酸二氢钠、亚磷酸二氢铵中的至少一种。
优选的方案,所述热处理的时间为3~9h。
优选的方案,所述热处理反应产物采用稀酸溶液与水反复洗涤后,置于50~80℃温度条件下,真空干燥12~24h。稀酸溶液为本领域公知的稀酸溶液,采用稀酸和水反复交替洗涤,能将残留的金属氧化物及碳化过程中产生的杂质去除。
较优选的方案,所述的稀酸溶液为稀盐酸、稀硫酸、稀硝酸中的至少一种;所述稀酸溶液浓度一般在0.5mol/L左右。
本发明的技术方案中制备钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法主要是通过加热磷源使其分解挥发与过渡金属有机框架结构中过渡金属离子发生磷化反应,在生成过渡金属磷化物的同时,过渡金属有机框架材料在保持其原有的基本孔道结构形貌的条件形成下进行炭化,生成无定形多孔碳材料,形成由过渡金属磷化物纳米颗粒均匀附着于多孔碳材料内部构成的具有空间纳米笼状复合结构的金属磷化物/多孔碳负极复合材料。
本发明的金属磷化物/多孔碳负极复合材料,主要在过渡金属磷化物表面原位包覆多孔碳材料,不仅可以有效提高该复合材料的导电性,而且能够有效缓解过渡金属磷化物与钠离子反应过程中产生的体积膨胀,从而有利于改善钠离子电池的循环稳定性以及倍率性能。
本发明的过渡金属有机框架结构由过渡金属盐(优选为易溶于水的无机盐),有机配体以及有机溶剂按照一定的比例混合之后,通过原位生长法制备。
本发明的金属磷化物纳米颗粒由金属有机框架材料与热处理过程中磷源分解挥发的气体发生磷化反应生成。
本发明的制备过渡金属磷化物/多孔碳负极复合材料的方法包括以下具体步骤:
(1)将过渡金属盐充分溶解于甲醇等有机溶剂中,随后在搅拌条件下将有机配体缓慢添加到上述溶液中;
(2)将上述混合溶液搅拌反应,静置;或搅拌混合均匀后,移至聚四氟乙烯反应釜内衬中使之进行溶剂热反应,经离心,洗涤,干燥后,即可得到过渡金属有机框架结构;
(3)将所得过渡金属有机框架结构与磷源分别置于真空管式炉的下风向和上风向进行热处理;
(4)将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥,即得过渡金属磷化物/多孔碳负极复合材料。
本发明制备的过渡金属磷化物/多孔碳复合材料的钠离子电池性能测试方法:称取上述复合材料,加入10wt.%Super P作为导电剂,10wt.%海藻酸钠(SA)作为粘结剂,经研磨充分之后加入少量去离子水混合形成均匀的黑色糊状浆料,将这些浆料涂覆在铜箔集流体上作为测试电极,以金属钠片作为对比电极组装成为扣式电池,其采用电解液体系为1M NaClO4/EC:DMC(1:1)。测试循环性能所用充放电电流密度为100mA/g。
相对现有技术,本发明的技术方案带来的有益效果:
1)本发明的过渡金属磷化物/多孔碳负极复合材料具有不定形的疏松多孔的空间纳米笼状结构,该结构为钠离子的储存提供了丰富的活性位点和传输孔道。同时,通过在过渡金属磷化物表面原位包覆多孔碳材料,不仅可以有效提高该复合材料的导电性,而且能够有效缓解金属磷化物与钠离子反应过程中产生的体积膨胀,从而有利于改善钠离子电池的循环稳定性以及倍率性能。
2)本发明的过渡金属磷化物/多孔碳负极复合材料可用于制备具有高放电比容量、优异倍率性能和稳定循环性能的钠离子电池。
3)本发明的制备过渡金属磷化物/多孔碳负极复合材料方法操作简单可靠,重复性好、可操作性强、环境友好、成本低廉,具有广阔的工业化应用前景。
附图说明
【图1】为实施例1制得的磷化铜/多孔碳负极复合材料的X射线衍射图(XRD);
【图2】为实施例1制得的磷化铜/多孔碳负极复合材料的扫描电镜图(SEM);
【图3】为实施例1制得的磷化铜/多孔碳负极复合材料的透射电镜图(TEM);
【图4】为实施例1制得的磷化铜/多孔碳负极复合材料组装的钠离子电池的恒流充放电性能图;
【图5】为实施例1制得的磷化铜/多孔碳负极复合材料组装的钠离子电池的倍率性能图。
具体实施方式
以下实施例旨在对本发明内容做进一步详细说明;而本发明权利要求的保护范围不受实施例限制。
实施例1
首先称取1.71g二水合氯化铜使其充分溶解于200mL二甲基甲酰胺溶液中,然后称取12.6g 1,3,5-均苯三甲酸在磁力搅拌条件下缓慢加入到上述溶液中,搅拌均匀之后将所得混合溶液转移至不锈钢水热反应釜中,在180℃条件下进行水热反应,反应16h之后将所得沉淀物经甲醇和二甲基甲酰胺反复洗涤,干燥即可得到铜基金属有机框架材料前驱体。
称取0.5g铜基金属有机框架材料以及1g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至500℃,并充分反应6h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化铜/多孔碳复合材料,其中磷化铜的质量含量为90%。
采用本实施例制备的钠离子电池磷化铜/多孔碳负极复合材料与钠片组装成扣式电池,其材料结构表征和电化学性能如图所示:
图1中对比标准衍射图谱可知,磷化铜/多孔碳复合材料中主要的衍射峰与Cu3P(JCPDS No.02-1263)相匹配,说明复合材料中的磷化铜属于单一的Cu3P。
图2,图3中可以看出制备出来的磷化铜/多孔碳负极复合材料是由磷化铜纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中Cu3P纳米颗粒尺寸为50~100nm。
图4中表明采用磷化铜/多孔碳负极复合材料制作的电极,在100mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在300mAh/g,表现出了良好的循环稳定性能。
图5中表明采用磷化铜/多孔碳负极复合材料制作的电极在不同的放电电流密度下的倍率性能图,从图中可以看出该复合材料具有优异的倍率性能,即使在4A/g的大电流放电条件下仍可保持90mAh/g的充电比容量,当电流密度重新恢复到100mA/g后,放电比容量又可以重新达到320mAh/g。
实施例2
首先称取1.71g二水合氯化铜使其充分溶解于200mL二甲基甲酰胺溶液中,然后称取12.6g 1,3,5-均苯三甲酸在磁力搅拌条件下缓慢加入到上述溶液中,搅拌均匀之后将所得混合溶液转移至不锈钢水热反应釜中,在180℃条件下进行水热反应,反应16h之后将所得沉淀物经甲醇和二甲基甲酰胺反复洗涤,干燥即可得到铜基金属有机框架材料前驱体。
称取0.5g铜基金属有机框架材料以及0.25g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至500℃,并充分反应6h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化铜/多孔碳复合材料,其中磷化铜的质量含量为85%。
该复合材料中的磷化铜属于单一的Cu3P。磷化铜/多孔碳负极复合材料是由磷化铜纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中Cu3P纳米颗粒尺寸为50~100nm。
采用本实施例制备的钠离子电池负极复合材料与钠片组装成扣式电池,在100mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在280mAh/g。
实施例3
首先称取1.71g二水合氯化铜使其充分溶解于200mL二甲基甲酰胺溶液中,然后称取12.6g 1,3,5-均苯三甲酸在磁力搅拌条件下缓慢加入到上述溶液中,搅拌均匀之后将所得混合溶液转移至不锈钢水热反应釜中,在180℃条件下进行水热反应,反应16h之后将所得沉淀物经甲醇和二甲基甲酰胺反复洗涤,干燥即可得到铜基金属有机框架材料前驱体。
称取0.5g铜基金属有机框架材料以及2g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至500℃,并充分反应6h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化铜/多孔碳复合材料,其中磷化铜的质量含量为93%。
该复合材料中的磷化铜属于单一的Cu3P。磷化铜/多孔碳负极复合材料是由磷化铜纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中Cu3P纳米颗粒尺寸为50~100nm。
采用本实施例制备的钠离子电池负极复合材料与钠片组装成扣式电池,在100mA/g的恒流放电密度下,循环100圈放电比容量可保持在270mAh/g。
实施例4
首先称取1.71g二水合氯化铜使其充分溶解于200mL二甲基甲酰胺溶液中,然后称取12.6g 1,3,5-均苯三甲酸在磁力搅拌条件下缓慢加入到上述溶液中,搅拌均匀之后将所得混合溶液转移至不锈钢水热反应釜中,在180℃条件下进行水热反应,反应16h之后将所得沉淀物经甲醇和二甲基甲酰胺反复洗涤,干燥即可得到铜基金属有机框架材料前驱体。
称取0.5g铜基金属有机框架材料以及1g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至600℃,并充分反应6h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化铜/多孔碳复合材料,其中磷化铜的质量含量为91%。
该复合材料中的磷化铜属于单一的Cu3P。磷化铜/多孔碳负极复合材料是由磷化铜纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中Cu3P纳米颗粒尺寸为50~100nm。
采用本实施例制备的钠离子电池负极复合材料与钠片组装成扣式电池,在100mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在295mAh/g。
实施例5
首先称取1.71g二水合氯化铜使其充分溶解于200mL二甲基甲酰胺溶液中,然后称取12.6g 1,3,5-均苯三甲酸在磁力搅拌条件下缓慢加入到上述溶液中,搅拌均匀之后将所得混合溶液转移至不锈钢水热反应釜中,在180℃条件下进行水热反应,反应16h之后将所得沉淀物经甲醇和二甲基甲酰胺反复洗涤,干燥即可得到铜基金属有机框架材料前驱体。
称取0.5g铜基金属有机框架材料以及1g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至300℃,并充分反应6h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化铜/多孔碳复合材料,其中磷化铜的质量含量为80%。
该复合材料中的磷化铜属于单一的Cu3P。磷化铜/多孔碳负极复合材料是由磷化铜纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中Cu3P纳米颗粒尺寸为50~100nm。
采用本实施例制备的钠离子电池负极复合材料与钠片组装成扣式电池,在100mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在240mAh/g。
实施例6
首先称取2.6g四水合氯化钴使其充分溶解于200mL甲醇溶液中,然后称取13.2g二甲基咪唑在磁力搅拌条件下将它缓慢加入到上述溶液中,在室温条件下连续搅拌12h之后通过离心的方法将反应所得紫色沉淀物经甲醇和去离子水反复洗涤,干燥即可得到钴基金属有机框架材料前驱体。
称取0.5g钴基金属有机框架材料以及1g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至500℃,并充分反应9h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化钴/多孔碳复合材料,其中磷化钴的质量含量为90%。
该复合材料中的磷化钴属于单一的CoP2。磷化钴/多孔碳负极复合材料是由磷化钴纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中CoP2纳米颗粒尺寸为50~100nm。
采用本实施例制备的钠离子电池负极复合材料与钠片组装成扣式电池,在100mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在350mAh/g。
实施例7
首先称取2.87g七水合硫酸锌使其充分溶解于200mL甲醇溶液中,然后称取13.2g二甲基咪唑在磁力搅拌条件下将它缓慢加入到上述溶液中,在室温条件下连续搅拌12h之后通过离心的方法将反应所得白色沉淀物经甲醇和2-甲基甲酰胺反复洗涤,干燥即可得到锌基金属有机框架材料前驱体。
称取0.5g锌基金属有机框架材料以及1g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至500℃,并充分反应9h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化锌/多孔碳复合材料,其中磷化锌的质量含量为92%。
该复合材料中的磷化锌属于单一的ZnP。磷化锌/多孔碳负极复合材料是由磷化锌纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中ZnP纳米颗粒尺寸为50~100nm。
采用本实施例制备的钠离子电池负极复合材料与钠片组装成扣式电池,在100mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在320mAh/g。
实施例8
首先称取2.71g六水合三氯化铁使其充分溶解于200mL二甲基甲酰胺溶液中,然后称取12.6g 1,3,5-均苯三甲酸在磁力搅拌条件下缓慢加入到上述溶液中,搅拌均匀之后将所得混合溶液转移至不锈钢水热反应釜中,在180℃条件下进行水热反应,反应15h之后将所得沉淀物经甲醇和二甲基甲酰胺反复洗涤,干燥即可得到铁基金属有机框架材料前驱体。
称取0.5g铁基金属有机框架材料以及1g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的下风向和上风向,随后,通入氩气将管式炉升温至500℃,并充分反应9h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得磷化铁/多孔碳复合材料,其中磷化铁的质量含量为91%。
该复合材料中的磷化铜属于单一的FeP2。磷化铁/多孔碳负极复合材料是由磷化铁纳米颗粒均匀分布于疏松多孔的无定形碳材料内部构成的空间纳米笼状结构,其中FeP2纳米颗粒尺寸为75~100nm。
采用本实施例制备的钠离子电池负极复合材料与钠片组装成扣式电池,在100mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在360mAh/g。
对比例1
首先称取1.71g二水合氯化铜使其充分溶解于200mL二甲基甲酰胺溶液中,然后称取12.6g 1,3,5-均苯三甲酸在磁力搅拌条件下缓慢加入到上述溶液中,搅拌均匀之后将所得混合溶液转移至不锈钢水热反应釜中,在180℃条件下进行水热反应,反应16h之后将所得沉淀物经甲醇和二甲基甲酰胺反复洗涤,干燥即可得到铜基金属有机框架材料前驱体。
称取0.5g铜基金属有机框架材料以及1g次亚磷酸二氢钠,将二者倒入刚玉瓷舟里面,并分别将这两个瓷舟置于真空管式炉的上风向和下风向,随后,通入氩气将管式炉升温至500℃,并充分反应6h后,将所得反应产物用稀硫酸和去离子水反复进行洗涤,干燥即得。由于置换上下风向之后,次亚磷酸二氢钠受热分解挥发出来的气体无法顺利与金属有机框架材料里面的金属离子进行磷化反应,故反应所得产物中并未检测到磷化铜的存在。

Claims (10)

1.一种钠离子电池过渡金属磷化物/多孔碳负极复合材料,其特征在于:由过渡金属磷化物纳米颗粒弥散分布在多孔碳材料内部构成。
2.根据权利要求1所述的钠离子电池过渡金属磷化物/多孔碳负极复合材料,其特征在于:所述的过渡金属磷化物纳米颗粒的质量百分比含量为75~95%;所述的过渡金属磷化物纳米颗粒尺寸为50~300nm;所述的多孔碳材料具有无定形的疏松多孔结构。
3.根据权利要求1或2所述的钠离子电池过渡金属磷化物/多孔碳负极复合材料,其特征在于:所述的过渡金属磷化物为锌、钴、铜、铁中至少一种的磷化合物。
4.制备权利要求1~3任一项所述的钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,其特征在于:将过渡金属盐与有机配体通过原位生长法制备过渡金属有机框架结构;将所述过渡金属有机框架结构与磷源分别置于管式炉的两端,加热所述管式炉至300~700℃,同时从放置无机磷源的管式炉一端通入流动性惰性气体,进行热处理;热处理产物依次经过洗涤、干燥,即得。
5.根据权利要求4所述的制备钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,其特征在于:
所述过渡金属盐与有机配体在有机溶剂介质中搅拌反应12~24h;
或者,
所述过渡金属盐与有机配体在有机溶剂介质中,于150~200℃温度下进行水热反应12~24h。
6.根据权利要求5所述的制备钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,其特征在于:
所述过渡金属盐与有机配体的摩尔比为1:5~1:10;
所述过渡金属盐与有机溶剂的摩尔比为1:500~1:800。
7.根据权利要求6所述的制备钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,其特征在于:所述的过渡金属盐为硝酸锌、硫酸锌、乙酸锌、氯化锌、硝酸钴、硫酸钴、乙酸钴、氯化钴、硝酸铜、硫酸铜、乙酸铜、氯化铜、硝酸铁、硫酸铁、乙酸铁、氯化铁中的至少一种;
所述的有机配体为2-甲基咪唑、1,4-对苯二甲酸、1,3,5-均苯三甲酸中的至少一种;所述的有机溶剂为甲醇、二甲基甲酰胺、乙醇中的至少一种。
8.根据权利要求4所述的制备钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,其特征在于:所述过渡金属有机框架结构与磷源的质量比为5:1~1:5。
9.根据权利要求8所述的制备钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,其特征在于:所述的磷源为次磷酸二氢钠、次磷酸二氢铵、亚磷酸二氢钠、亚磷酸二氢铵中的至少一种。
10.根据权利要求4所述的制备钠离子电池过渡金属磷化物/多孔碳负极复合材料的方法,其特征在于:所述热处理的时间为3~9h。
CN201610452201.4A 2016-06-21 2016-06-21 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法 Expired - Fee Related CN105895886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610452201.4A CN105895886B (zh) 2016-06-21 2016-06-21 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610452201.4A CN105895886B (zh) 2016-06-21 2016-06-21 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105895886A true CN105895886A (zh) 2016-08-24
CN105895886B CN105895886B (zh) 2018-09-14

Family

ID=56730178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610452201.4A Expired - Fee Related CN105895886B (zh) 2016-06-21 2016-06-21 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105895886B (zh)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745338A (zh) * 2017-03-02 2017-05-31 欣旺达电子股份有限公司 三元正极材料及其制备方法
CN107123810A (zh) * 2017-05-17 2017-09-01 哈尔滨工业大学 一种基于磷化镍骨架结构复合材料的制备方法及其应用
CN107134572A (zh) * 2017-05-17 2017-09-05 哈尔滨工业大学 一种基于磷化镍空心结构复合材料的制备方法及应用
CN107252700A (zh) * 2017-06-26 2017-10-17 中国石油大学(华东) 一种催化中心均匀分布的多金属磷化物纳米管催化剂及低温制备方法
CN107331851A (zh) * 2017-07-25 2017-11-07 太原理工大学 钠离子电池纳米片阵列磷化镍/3d石墨烯复合材料及其制备方法
CN107910198A (zh) * 2017-11-07 2018-04-13 东莞市联洲知识产权运营管理有限公司 一种以Co9S8/C复合材料为电极的超级电容器的制备方法
CN107955950A (zh) * 2017-11-17 2018-04-24 中国科学院深圳先进技术研究院 一种催化剂材料的制备方法
CN107999133A (zh) * 2017-11-30 2018-05-08 济南大学 一种新型her电化学催化剂的制备与运用
CN108199041A (zh) * 2017-12-29 2018-06-22 桑德集团有限公司 一种改性磷酸铁锂材料、制备方法及应用
CN109731586A (zh) * 2018-12-29 2019-05-10 江苏大学 基于含铜金属有机框架衍生的分级多孔磷化铜/碳水解电催化剂的制备方法及其应用
CN109775675A (zh) * 2018-12-27 2019-05-21 西安交通大学 一种Re6P13、制备方法及其与碳材料的复合负极材料的制备方法
CN109950504A (zh) * 2019-04-02 2019-06-28 江西理工大学 锂离子电池用复合负极材料的制备方法
CN109962245A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 过渡金属磷化物多孔碳纳米片复合材料及其制备和应用
WO2019098660A3 (ko) * 2017-11-14 2019-07-11 한국전기연구원 음극 활물질, 그의 제조 방법 및 이러한 음극 활물질을 구비한 비수계 리튬이차전지 및 그의 제조 방법
CN110085860A (zh) * 2019-04-26 2019-08-02 陕西科技大学 一种磷化铜纳米管的制备方法
CN110157006A (zh) * 2019-06-03 2019-08-23 贵阳学院 双金属磷化物材料的制备及含双金属磷化物材料的电极材料的制备和应用
CN110182775A (zh) * 2019-06-17 2019-08-30 贵阳学院 以金属有机框架为模板的双金属磷化合物的制备方法和所得到的双金属磷化合物及其应用
CN110767904A (zh) * 2019-11-08 2020-02-07 中南大学 氮掺杂多孔碳内嵌磷化亚铜的电池负极材料的制备方法及其产品
CN111039268A (zh) * 2019-12-19 2020-04-21 河南省人民医院 一种CoP/C纳米复合材料、制备方法以及用途
CN111192762A (zh) * 2020-01-23 2020-05-22 上海应用技术大学 一种Cu-Co-P复合材料及其制备方法和应用
CN111261859A (zh) * 2020-01-21 2020-06-09 山东大学 一种金属磷化物/碳复合材料及其制备方法与应用
CN111250137A (zh) * 2020-02-20 2020-06-09 肇庆市华师大光电产业研究院 一种用于光催化制氢的改性g-C3N4催化剂的制备方法
CN112044459A (zh) * 2020-09-10 2020-12-08 中山大学 类石榴状多孔镍基磷化物纳米结构材料及其制备方法与应用
CN112390234A (zh) * 2020-12-07 2021-02-23 郑州轻工业大学 生物磷化反应制备磷化物的方法及制得的磷化物和应用
CN112397696A (zh) * 2020-11-12 2021-02-23 青岛大学 双金属磷化物/碳材料、负极材料、锂离子电池及方法
CN112591728A (zh) * 2020-12-15 2021-04-02 四川大学 废纸气凝胶、气凝胶衍生物及其制备方法
CN112604717A (zh) * 2020-12-29 2021-04-06 上海纳米技术及应用国家工程研究中心有限公司 一种量子点铁基金属有机框架复合材料的制备方法
CN113488656A (zh) * 2020-08-31 2021-10-08 中南大学 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用
CN113488650A (zh) * 2020-08-28 2021-10-08 中南大学 一种Cu3P@掺P介孔碳复合骨架及其制备方法和应用
CN113548650A (zh) * 2021-07-26 2021-10-26 兰州理工大学 一种气泡膜状石墨烯包覆金属磷化物电极材料的制备方法
CN113583248A (zh) * 2021-08-04 2021-11-02 北京师范大学 一种高度交联的磷掺杂一维无定形金属有机框架纳米线网络材料及其制备方法和应用
CN113782724A (zh) * 2021-09-09 2021-12-10 安徽工业大学 一种磷化镍铁-碳复合材料及其制备方法和用途
CN114300676A (zh) * 2021-11-01 2022-04-08 北京航空航天大学 柔性钠离子电池负极材料及其制备方法、电池负极
CN114597389A (zh) * 2022-01-25 2022-06-07 中南大学 NaCrO2@氟磷酸过渡金属钠/C复合材料及其制备和在钠离子电池中的应用
CN114744191A (zh) * 2022-03-24 2022-07-12 河北科技大学 一种磷化钴负极材料及其制备方法和应用
CN115445643A (zh) * 2022-08-03 2022-12-09 中山大学 一种空心球状双金属磷化物催化剂及其制备方法与应用
WO2023115503A1 (zh) * 2021-12-20 2023-06-29 超威电源集团有限公司 一种分层结构铁钴磷化物/碳复合材料的制备方法和扣式电池
US11764153B1 (en) 2022-07-28 2023-09-19 Chun-Ming Lin Interconnect structure and manufacturing method for the same
WO2024051032A1 (zh) * 2022-09-06 2024-03-14 厦门海辰储能科技股份有限公司 负极极片及其制备方法和钠离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11842958B2 (en) 2022-03-18 2023-12-12 Chun-Ming Lin Conductive structure including copper-phosphorous alloy and a method of manufacturing conductive structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123970A (zh) * 2013-02-27 2013-05-29 中山大学 纳米过渡金属磷化物-石墨化碳复合材料及其一步合成方法
CN104868102A (zh) * 2015-06-10 2015-08-26 中南大学 一种钠离子电池硫化锌基负极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123970A (zh) * 2013-02-27 2013-05-29 中山大学 纳米过渡金属磷化物-石墨化碳复合材料及其一步合成方法
CN104868102A (zh) * 2015-06-10 2015-08-26 中南大学 一种钠离子电池硫化锌基负极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LILI LI等: "MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction", 《RSC ADV.》 *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745338A (zh) * 2017-03-02 2017-05-31 欣旺达电子股份有限公司 三元正极材料及其制备方法
CN107134572B (zh) * 2017-05-17 2019-04-30 哈尔滨工业大学 一种基于磷化镍空心结构复合材料的制备方法及应用
CN107123810A (zh) * 2017-05-17 2017-09-01 哈尔滨工业大学 一种基于磷化镍骨架结构复合材料的制备方法及其应用
CN107134572A (zh) * 2017-05-17 2017-09-05 哈尔滨工业大学 一种基于磷化镍空心结构复合材料的制备方法及应用
CN107123810B (zh) * 2017-05-17 2019-04-30 哈尔滨工业大学 一种基于磷化镍骨架结构复合材料的制备方法及其应用
CN107252700A (zh) * 2017-06-26 2017-10-17 中国石油大学(华东) 一种催化中心均匀分布的多金属磷化物纳米管催化剂及低温制备方法
CN107331851A (zh) * 2017-07-25 2017-11-07 太原理工大学 钠离子电池纳米片阵列磷化镍/3d石墨烯复合材料及其制备方法
CN107910198A (zh) * 2017-11-07 2018-04-13 东莞市联洲知识产权运营管理有限公司 一种以Co9S8/C复合材料为电极的超级电容器的制备方法
WO2019098660A3 (ko) * 2017-11-14 2019-07-11 한국전기연구원 음극 활물질, 그의 제조 방법 및 이러한 음극 활물질을 구비한 비수계 리튬이차전지 및 그의 제조 방법
US11522196B2 (en) 2017-11-14 2022-12-06 Korea Electrotechnology Research Institute Anode active material, preparation method therefor, and nonaqueous lithium secondary battery comprising same anode active material, and preparation method therefor
CN107955950A (zh) * 2017-11-17 2018-04-24 中国科学院深圳先进技术研究院 一种催化剂材料的制备方法
CN107999133A (zh) * 2017-11-30 2018-05-08 济南大学 一种新型her电化学催化剂的制备与运用
CN107999133B (zh) * 2017-11-30 2020-07-24 济南大学 一种her电化学催化剂的制备与运用
CN109962245B (zh) * 2017-12-14 2022-05-10 中国科学院大连化学物理研究所 过渡金属磷化物多孔碳纳米片复合材料及其制备和应用
CN109962245A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 过渡金属磷化物多孔碳纳米片复合材料及其制备和应用
CN108199041A (zh) * 2017-12-29 2018-06-22 桑德集团有限公司 一种改性磷酸铁锂材料、制备方法及应用
CN108199041B (zh) * 2017-12-29 2020-09-08 桑德新能源技术开发有限公司 一种改性磷酸铁锂材料、制备方法及应用
CN109775675A (zh) * 2018-12-27 2019-05-21 西安交通大学 一种Re6P13、制备方法及其与碳材料的复合负极材料的制备方法
CN109775675B (zh) * 2018-12-27 2021-03-23 西安交通大学 一种Re6P13、制备方法及其与碳材料的复合负极材料的制备方法
CN109731586B (zh) * 2018-12-29 2022-01-11 江苏大学 基于含铜金属有机框架衍生的分级多孔磷化铜/碳水解电催化剂的制备方法及其应用
CN109731586A (zh) * 2018-12-29 2019-05-10 江苏大学 基于含铜金属有机框架衍生的分级多孔磷化铜/碳水解电催化剂的制备方法及其应用
CN109950504A (zh) * 2019-04-02 2019-06-28 江西理工大学 锂离子电池用复合负极材料的制备方法
CN110085860B (zh) * 2019-04-26 2020-09-22 陕西科技大学 一种磷化铜纳米管的制备方法
CN110085860A (zh) * 2019-04-26 2019-08-02 陕西科技大学 一种磷化铜纳米管的制备方法
CN110157006B (zh) * 2019-06-03 2021-07-23 贵阳学院 双金属磷化物材料的制备及含双金属磷化物材料的电极材料的制备和应用
CN110157006A (zh) * 2019-06-03 2019-08-23 贵阳学院 双金属磷化物材料的制备及含双金属磷化物材料的电极材料的制备和应用
CN110182775A (zh) * 2019-06-17 2019-08-30 贵阳学院 以金属有机框架为模板的双金属磷化合物的制备方法和所得到的双金属磷化合物及其应用
CN110767904A (zh) * 2019-11-08 2020-02-07 中南大学 氮掺杂多孔碳内嵌磷化亚铜的电池负极材料的制备方法及其产品
CN111039268A (zh) * 2019-12-19 2020-04-21 河南省人民医院 一种CoP/C纳米复合材料、制备方法以及用途
CN111261859A (zh) * 2020-01-21 2020-06-09 山东大学 一种金属磷化物/碳复合材料及其制备方法与应用
CN111261859B (zh) * 2020-01-21 2021-04-27 山东大学 一种金属磷化物/碳复合材料及其制备方法与应用
CN111192762A (zh) * 2020-01-23 2020-05-22 上海应用技术大学 一种Cu-Co-P复合材料及其制备方法和应用
CN111250137A (zh) * 2020-02-20 2020-06-09 肇庆市华师大光电产业研究院 一种用于光催化制氢的改性g-C3N4催化剂的制备方法
CN113488650A (zh) * 2020-08-28 2021-10-08 中南大学 一种Cu3P@掺P介孔碳复合骨架及其制备方法和应用
CN113488656A (zh) * 2020-08-31 2021-10-08 中南大学 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用
CN112044459A (zh) * 2020-09-10 2020-12-08 中山大学 类石榴状多孔镍基磷化物纳米结构材料及其制备方法与应用
CN112044459B (zh) * 2020-09-10 2022-02-18 中山大学 类石榴状多孔镍基磷化物纳米结构材料及其制备方法与应用
CN112397696A (zh) * 2020-11-12 2021-02-23 青岛大学 双金属磷化物/碳材料、负极材料、锂离子电池及方法
CN112390234A (zh) * 2020-12-07 2021-02-23 郑州轻工业大学 生物磷化反应制备磷化物的方法及制得的磷化物和应用
CN112591728A (zh) * 2020-12-15 2021-04-02 四川大学 废纸气凝胶、气凝胶衍生物及其制备方法
CN112604717A (zh) * 2020-12-29 2021-04-06 上海纳米技术及应用国家工程研究中心有限公司 一种量子点铁基金属有机框架复合材料的制备方法
CN113548650A (zh) * 2021-07-26 2021-10-26 兰州理工大学 一种气泡膜状石墨烯包覆金属磷化物电极材料的制备方法
CN113583248A (zh) * 2021-08-04 2021-11-02 北京师范大学 一种高度交联的磷掺杂一维无定形金属有机框架纳米线网络材料及其制备方法和应用
CN113583248B (zh) * 2021-08-04 2022-04-12 北京师范大学 一种高度交联的磷掺杂一维无定形金属有机框架纳米线网络材料及其制备方法和应用
CN113782724A (zh) * 2021-09-09 2021-12-10 安徽工业大学 一种磷化镍铁-碳复合材料及其制备方法和用途
CN114300676A (zh) * 2021-11-01 2022-04-08 北京航空航天大学 柔性钠离子电池负极材料及其制备方法、电池负极
WO2023115503A1 (zh) * 2021-12-20 2023-06-29 超威电源集团有限公司 一种分层结构铁钴磷化物/碳复合材料的制备方法和扣式电池
CN114597389A (zh) * 2022-01-25 2022-06-07 中南大学 NaCrO2@氟磷酸过渡金属钠/C复合材料及其制备和在钠离子电池中的应用
CN114744191A (zh) * 2022-03-24 2022-07-12 河北科技大学 一种磷化钴负极材料及其制备方法和应用
CN114744191B (zh) * 2022-03-24 2023-11-24 河北科技大学 一种磷化钴负极材料及其制备方法和应用
US11764153B1 (en) 2022-07-28 2023-09-19 Chun-Ming Lin Interconnect structure and manufacturing method for the same
CN115445643A (zh) * 2022-08-03 2022-12-09 中山大学 一种空心球状双金属磷化物催化剂及其制备方法与应用
CN115445643B (zh) * 2022-08-03 2023-12-22 中山大学 一种空心球状双金属磷化物催化剂及其制备方法与应用
WO2024051032A1 (zh) * 2022-09-06 2024-03-14 厦门海辰储能科技股份有限公司 负极极片及其制备方法和钠离子电池

Also Published As

Publication number Publication date
CN105895886B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN105895886B (zh) 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法
Li et al. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@ nitrogen-doped carbon electrocatalyst
Zhao et al. Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries
Yang et al. A general strategy for antimony‐based alloy nanocomposite embedded in Swiss‐cheese‐like nitrogen‐doped porous carbon for energy storage
Zhang et al. FeS2@ C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries
Niu et al. Formation of N‐Doped Carbon‐Coated ZnO/ZnCo2O4/CuCo2O4 Derived from a Polymetallic Metal–Organic Framework: Toward High‐Rate and Long‐Cycle‐Life Lithium Storage
CN108511714B (zh) 一种过渡金属磷化物-碳复合材料及其制备方法和应用
CN103779564B (zh) 高性能磷酸钒钠对称型钠离子电池材料及其制备方法和应用
CN106953076A (zh) 一种钠离子电池碳/碳复合材料及其制备方法
Zhang et al. Highly Efficient Sodium‐Ion Storage Enabled by an rGO‐Wrapped FeSe2 Composite
Zhang et al. Phosphorus-modified Fe 4 N@ N, P co-doped graphene as an efficient sulfur host for high-performance lithium–sulfur batteries
CN111710860B (zh) 一种磷化钴钼颗粒修饰的氮磷共掺杂碳复合材料及其制备方法和应用
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN110265652B (zh) 一种用于锂离子/钠离子电池负极的纳米片状Sb/C复合材料的制备方法
CN104934574A (zh) 一种用于锂离子电池的超高密度四氧化三钴/多孔石墨烯纳米复合负极材料的制备方法
Huang et al. A Facile Molten‐Salt Route for Large‐Scale Synthesis of NiFe2O4 Nanoplates with Enhanced Lithium Storage Capability
CN102104143A (zh) 一种高性能动力电池用复合材料的水热合成法
CN104752693A (zh) 锂离子电池正极材料磷酸铁锂/石墨烯复合物的制备方法
CN111180709A (zh) 碳纳米管、金属铜共掺杂草酸亚铁锂电池复合负极材料及其制备方法
CN112928388B (zh) 一种氮化铁和单原子铁共修饰氮掺杂石墨复合材料及其制备方法和应用
Duan et al. MOF-71 derived layered Co-CoP/C for advanced Li-S batteries
Zhang et al. Ultrafine Ni2P nanoparticles embedded in one-dimensional carbon skeleton derived from metal-organic frameworks template as a high-performance anode for lithium ion battery
CN105845904A (zh) 一种钠离子电池金属氧化物/聚吡咯空心纳米管负极复合材料及其制备方法
CN108899499B (zh) 基于Sb/Sn磷酸盐的负极材料及其制备方法与在钠离子电池中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180914

Termination date: 20210621

CF01 Termination of patent right due to non-payment of annual fee