CN113488656A - 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用 - Google Patents

一种3d亲锂复合多孔金属合金集流体及其制备方法和应用 Download PDF

Info

Publication number
CN113488656A
CN113488656A CN202010882620.8A CN202010882620A CN113488656A CN 113488656 A CN113488656 A CN 113488656A CN 202010882620 A CN202010882620 A CN 202010882620A CN 113488656 A CN113488656 A CN 113488656A
Authority
CN
China
Prior art keywords
lithium
metal alloy
current collector
porous metal
alloy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010882620.8A
Other languages
English (en)
Inventor
洪波
赖延清
姜怀
赖俊全
张治安
张凯
方静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010882620.8A priority Critical patent/CN113488656A/zh
Publication of CN113488656A publication Critical patent/CN113488656A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂金属电池负极材料领域,具体公开了一种高柔性3D亲锂复合多孔金属合金集流体,包括高柔性3D多孔金属合金集流体以及原位复合在3D多孔金属合金集流体上的亲锂性磷化物,具有丰富的比表面积、孔隙结构和优异的机械性能,能有效降低局部电流密度,促进电子/锂离子的扩散,抑制体积变化;多孔金属合金集流体上的磷化物层及其表面的纳米线结构,显著降低锂形核过电位,诱导锂均匀地沉积/溶解,所构筑的锂金属负极能够具有优异的电化学性能,库伦效率和循环稳定性得到极大地提升。本发明还公开了所述的高柔性3D亲锂复合多孔金属合金集流体的制备方法及应用。

Description

一种3D亲锂复合多孔金属合金集流体及其制备方法和应用
技术领域
本发明属于锂金属电池电极材料技术领域,具体涉及了一种锂金属电池的合金集流体及其制备方法和应用。
背景技术
锂金属具有极高的质量比能量,是二次高比能储能装置最重要的负极材料。然而不可控的锂枝晶致使电池库伦效率大大降低并增大潜在的安全风险,因而难以被商品化利用。锂枝晶的产生归根结底还是锂金属无骨架的本质以及表面不均匀性,导致巨大的体积变化和不均匀的锂沉积。
为了解决这些问题,目前通过3D骨架结构来缓解反复充放电过程的体积变化,例如ZhiguangPeng等[Jingyi L,Qi Z,HongyanY,et al.Snlayerdecorated copper meshwith superior lithiophilicity for stable lithium metal anode[J].ChemicalEngineering Journal,395(2020)124922.]通过在纯铜网线修饰一层亲锂锡层,诱导锂均匀形核与沉积,原位生成的锂-锡合金层能有效降低形核过电位至2.8mV,并能维持98.6%的高库伦效率和900圈的长循环寿命。Li-ZhenFan等[Shaobo H,Wenfeng Z,Hai M,etal.Chemical Energy Release Driven Lithiophilic Layer on 1m2 Commercial BrassMesh toward Highly Stable Lithium Metal Batteries[J].Nano Letters,19(2019)1832-1837.]利用黄铜网为结构骨架,通过热处理发生原位氧化,骨架原位生成大量亲锂性的氧化铜和氧化锌,进一步控制熔融锂的灌入量制备3D结构锂金属负极。该结构的3D负极能够一次性大量制备并提供非常有益的电解液浸润,降低锂离子浓度贫化;其次更大的比表面降低电流密度,并有效抑制体积效应。然而,亲锂性层容易在反复的循环过程脱落,生成的锂氧化物造成电极导电性能变差,制约锂金属负极保持高库伦效率和长循环性能的关键。基于以上情况,锂金属负极的电化学性能难以有效提升并保持稳定。
发明内容
针对现有锂金属负极在循环过程中出现体积效应大、枝晶不可控以及亲锂层结构不稳定且反应后锂产物不导电的问题,本发明提供了一种高柔性3D亲锂多孔金属合金集流体材料,旨在通过稳定的磷化物修饰层选择性诱导锂均匀沉积在多孔金属骨架中,改善大电流下锂的沉积不均匀性,降低体积效应,提升锂金属负极的循环性能。
一种3D亲锂复合多孔金属合金集流体,包括高柔性3D多孔金属合金集流体以及原位复合在3D多孔金属合金集流体上的亲锂性磷化物;所述的3D多孔金属合金集流体可以任意方向折叠和旋转,由金属合金纤维相互编织而成,金属合金纤维间含有大量间隙;所述的亲锂性磷化物为基于3D多孔金属合金集流体基底原位反应而来。
作为优选,所述的3D多孔金属合金集流体为金属合金材质,组成元素包括铜、锡、锌、镍、铝、钛、银、铁、镁、钴、金、锰中的至少两种。
作为优选,所述的3D多孔金属合金集流体结构为网格状、多孔泡沫状、树枝状、螺旋状中的至少一种,进一步优选为网格状。
作为优选,所述的3D多孔金属合金集流体比表面积为50~800m2/g,进一步优选为80~600m2/g。
作为优选,所述的金属合金纤维直径为0.5~50μm,进一步优选为1~30μm。
作为优选,所述的3D多孔金属合金集流体的厚度为0.8~300μm,进一步优选为5~200μm;更进一步优选为10~150μm。
作为优选,所述的3D多孔金属合金集流体的孔间距为0.1~300μm,进一步优选为1~200μm,更进一步优选为5~100μm。
作为优选,所述的3D多孔金属合金集流体的孔隙率为20~80%,进一步优选为30~70%,更进一步优选为40~60%。
作为优选,所述的亲锂性磷化物形态为纳米线、纳米矩阵、纳米颗粒、薄层中的至少一种,优选为纳米线。
作为优选,所述的亲锂性磷化物的厚度为5~200nm,优选为6~100nm,更进一步优选为8~60nm。
作为优选,3D亲锂复合多孔金属合金集流体中,亲锂性磷化物占总集流体的含量为20~85wt.%,优选为30~80wt.%,更进一步优选为35~75wt.%。
本发明研究发现,金属合金纤维表面原位生长一层磷化物层以及纳米线对锂金属具有明显的亲和性,进一步研究发现,金属合金纤维优异的导电性能有效均匀电子/锂离子分布;亲锂性磷化物层及其表面的纳米线结构,有效增加骨架的比表面积,降低电流密度和锂形核过电位,选择性诱导锂均匀形核在整个多孔金属合金集流体上。多孔金属合金集流体大量的孔隙结构,能够有效缓冲锂沉积/溶解的体积变化。更进一步研究发现,磷化物层始终能够维持与金属合金纤维的复合,得益于锂沉积过程中生成亲锂性能更优异的Li3P并提供优异的亲锂界面和锂离子/电子传导性,从而保证磷化物层及其表面的纳米线结构的稳定性。
基于同样的发明构思,本发明提供前述的3D亲锂复合多孔金属合金集流体的制备方法,首先利用液相反应,将金属合金集流体原位转化为氢氧化物纳米线层的多孔金属合金复合集流体,进一步磷化后制得高柔性3D亲锂复合多孔金属合金集流体。具体步骤为:
步骤(1),液相反应:
将多孔金属合金集流体清洗并烘干,放入强碱和氧化剂的混合溶液中浸泡,强碱原位修饰,制得氢氧化物包覆的多孔金属合金集流体,清洗烘干。
步骤(2),磷化处理:
将氢氧化物包覆的多孔金属合金集流体置于管式炉中氩气流的下风处,进行磷源热解磷化,最终获得磷化物包覆的3D亲锂复合多孔金属合金集流体。
进一步地,步骤(1)中:
作为优选,所述的氢氧化物包覆层表面呈纳米线状、尖刺状、平面状、颗粒状中的至少一种;
作为优选,所述的氧化剂为重铬酸钠、重铬酸钾、高锰酸钾、硝酸、过硫酸铵、双氧水中的至少一种;
作为优选,所述的强碱的浓度为0.5~8mol/L,进一步优选为3~5mol/L;
作为优选,所述的氧化剂的浓度为0.01~80mmol/L,进一步优选为0.05~40mmol/L;
作为优选,所述的液相反应时间为5~90min,进一步优选为10~60min;
作为优选,所述的液相反应温度为5~80℃,进一步优选为25~60℃;
进一步地,步骤(2)中:
作为优选,所述的磷源为偏磷酸盐、次亚磷酸盐中的至少一种;
作为优选,所述的磷源与氢氧化物包覆的多孔金属合金集流体的质量比0.9:1~30:1,进一步优选为1.2:1~15:1;
作为优选,所述的磷化处理的温度为280~600℃,进一步优选为300~500℃;
作为优选,所述的磷化处理的升温速率为0.5~10℃/min,进一步优选为1~5℃/min;
作为优选,所述的氩气流通气速率为100~400ml/min,进一步优选为150~250ml/min;
作为优选,所述的磷化处理的时间为0.5~6h,优选为1~5h。
基于同样的发明构思,本发明还公布了一种所述的高柔性3D亲锂复合多孔金属合金集流体的应用,具体为:将高柔性3D亲锂复合多孔金属合金集流体材料冲压成极片,向其中填充金属锂作为活性电极,制得所述的高性能3D柔性锂金属阳极。
作为优选,所述的活性电极厚度为10~800μm,进一步优选为30~100μm;
作为优选,填充金属锂的方法为电沉积和/或熔融灌锂,进一步优选为熔融灌锂;
作为优选,填充的金属锂量为3~200mAh/cm2,进一步优选为5~150mAh/cm2,更进一步优选为8~100mAh/cm2
本发明还提供了所述制得的高性能3D柔性锂金属阳极的应用,将其作为电极材料,用于组装成金属锂电池。所述的金属锂电池可以为锂硫电池、锂碘电池、锂硒电池、锂碲电池、锂氧气电池或锂二氧化碳电池。
与现有技术相比,本发明具有以下有益效果:
1、本发明提出的高柔性3D亲锂复合多孔金属合金集流体材料,具有丰富的比表面积、孔隙结构和优异的机械性能,能有效降低局部电流密度,促进电子/锂离子的扩散,抑制体积变化。
2、本发明提出的高柔性3D亲锂复合多孔金属合金集流体具有非常优异的亲锂特性,多孔金属合金集流体上的磷化物层及其表面的纳米线结构,显著降低锂形核过电位,诱导锂均匀地沉积/溶解,所构筑的锂金属负极能够具有优异的电化学性能,库伦效率和循环稳定性得到极大地提升。
3、本发明所述的高性能3D柔性锂金属阳极具有非常稳定的结构,特别是骨架上的磷化物层及其表面的纳米线结跟锂反应后生成亲锂性更优的Li3P并提供亲锂界面和锂离子/电子传导性,保持结构稳定和发挥锂金属负极的高性能。
具体实施方式
以下是本发明的较佳实施例的具体说明,并不对本发明构成任何限制,即本发明并不意味着仅限于下述实施例,本技术领域中常见的变型或替代化合物均包含在本申请权利要求所限定的范围内。
实施例1:
将金属合金纤维直径为5μm、孔隙率为50%、厚度为60μm、质量为0.6g的磷铜网(Cu-Sn合金)加入3M的NaOH溶液和0.5mmol/L的过硫酸铵溶液组成的混合溶液中常温反应45min,清洗烘干,置于氩气流下风向的管式炉中,将3g次亚磷酸钠置于上风向,以2℃/min的速率升温至300℃,在气流量为150ml/min氩气流下磷化2h。
实验结果发现,制备得到的材料的金属纤维上均匀包覆着一层Cu3P-Sn3P2纳米层及其表面纳米线,Cu3P-Sn3P2纳米层的厚度为100nm,Cu3P-Sn3P2纳米线的长度为8μm,Cu3P-Sn3P2的含量为40wt.%。
实施例2:
将金属合金纤维直径为10μm、孔隙率为60%、厚度为120μm、质量为1.0g的黄铜网(Cu-Zn合金)加入4M的NaOH溶液和1.0mmol/L的双氧水溶液组成的混合溶液中常温反应90min,清洗烘干,置于氩气流下风向的管式炉中,将4g次亚磷酸钠置于上风向,以2℃/min的速率升温至400℃,在250ml/min氩气流下磷化3h。
实验结果发现,制备得到的材料的金属纤维上均匀包覆着一层Cu3P-Zn3P2纳米层及其表面纳米线,Cu3P-Ti3P2纳米层的厚度为150nm,Cu3P-Ti3P2纳米线的长度为8μm,Cu3P-Ti3P2的含量为60wt.%。
实施例3:
将金属合金纤维直径为30μm、孔隙率为50%、厚度为200μm、质量为2.5g的银铜网(Cu-Ag合金)加入5M的NaOH溶液和3.0mmol/L的高锰酸钾溶液组成的混合溶液中常温反应90min,清洗烘干,置于氩气流下风向的管式炉中,将10g次亚磷酸钠置于上风向,以5℃/min的速率升温至500℃,在300ml/min氩气流下磷化4h。
实验结果发现,制备得到的材料的金属纤维上均匀包覆着一层Cu3P-Ag3P纳米层及其表面纳米线,Cu3P-Ag3P2纳米层的厚度为180nm,Cu3P-Ag3P2纳米线的长度为12μm,Cu3P-Ag3P2的含量为80wt.%。
实施例4:
将金属合金纤维直径为5μm、孔隙率为50%、厚度为60μm、质量为0.6g的磷铜网(Cu-Sn合金)加入3M的NaOH溶液和0.5mmol/L的过硫酸铵溶液的混合溶液中常温反应90min,清洗烘干,置于氩气流下风向的管式炉中,将10g次亚磷酸钠置于上风向,以2℃/min的速率升温至300℃,在150ml/min氩气流下磷化5h。
实验结果发现,制备得到的材料的金属纤维上均匀包覆着一层Cu3P-Sn3P2纳米层及其表面纳米线,Cu3P-Sn3P2纳米层的厚度为200nm,Cu3P-Sn3P2纳米线的长度为14μm,Cu3P-Sn3P2的含量为85wt.%。
对比例4-1:
和实施例4相比,区别仅在于,无液相反应和磷化处理,具体为:
将金属纤维直径为5μm、孔隙率为60%、厚度为60μm、质量为0.6g的碳毡(2×3cm)用酒精清洗烘干,置于氩气流下的管式炉中,以2℃/min的速率升温至300℃,在150ml/min的氩气流下焙烧2h。
实验结果发现,制备得到的材料的金属纤维上主要是Cu和Sn,没有P元素。
对比例4-2:
和实施例4相比,区别仅在于,无磷化处理,具体为:
将金属合金纤维直径为5μm、孔隙率为50%、厚度为60μm、质量为0.6g的磷铜网(Cu-Sn合金)加入3M的NaOH溶液和0.5mmol/L的过硫酸铵溶液的混合溶液中常温反应45min,清洗烘干,置于氩气流的管式炉中,以2℃/min的速率升温至300℃,在150ml/min氩气流下焙烧2h。
实验结果发现,制备得到的材料的金属纤维上均匀包覆着一层CuO-SnO2纳米层及其表面纳米线,CuO-SnO2纳米层的厚度为108nm,CuO-SnO2纳米线的长度为12μm,CuO-SnO2的含量为38wt.%。
对比例4-3:
和实施例4相比,区别仅在于,只磷化处理,具体为:
将金属纤维直径为5μm、孔隙率为60%、厚度为60μm、质量为0.6g的碳毡(2×3cm)置于氩气流下风向的管式炉中,将10g次亚磷酸钠置于上风向,以2℃/min的速率升温至300℃,在150ml/min氩气流下磷化2h。
实验结果发现,制备得到的材料的金属纤维无Cu3P-Sn3P2纳米层,P含量为0.1at.%。
将实施例4与对比例4-1、4-2和4-3所制备的材料作为工作电极,以金属锂片作为对电极,以1M LiTFSI/DOL:DME(体积比=1:1)含2wt.%LiNO3为电解液进行扣式电池组装和充放电循环测试。在2mA/cm2的电流密度选进行充放电循环测试,测试结果如下表1所示:
表1充放电循环测试结果
Figure BDA0002657930580000081
结果表明,高柔性3D亲锂多孔金属合金集流体电极电化学性能最优,Cu3P-Sn3P2纳米层及其表面纳米线对锂均匀的沉积/溶解有积极的影响,有利于电池库伦效率的提高和电池循环稳定性的提升。
将实施例4和对比例4-1、4-3所制备的材料作为工作电极,以金属锂片作为对电极,以1M LiTFSI/DOL:DME(体积比=1:1)含1%wt LiNO3为电解液进行扣式半电池组装,沉积3mAh/cm2容量锂,拆开电池后用DME清洗,重新组装锂硫全电池。1C下进行充放电循环测试,测试结果如下表2所示:
表2充放电循环测试结果
Figure BDA0002657930580000082
Figure BDA0002657930580000091
结果表明,Cu3P-Sn3P2纳米层及其表面纳米线包覆的高柔性3D亲锂多孔金属合金集流体材料,其电极电化学性能最优。一方面Cu3P-Sn3P2纳米薄层诱导锂金属均匀沉积,抑制锂枝晶,另一方面高柔性3D亲锂多孔金属合金集流体材料又能对多硫化物起到催化转化功能,抑制多硫化锂的穿梭效应,这将有利于锂硫全电池循环性能的稳定和提升。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种3D亲锂复合多孔金属合金集流体,包括高柔性3D多孔金属合金集流体以及原位复合在3D多孔金属合金集流体上的亲锂性磷化物;所述的3D多孔金属合金集流体可以任意方向折叠和旋转,由金属合金纤维相互编织而成,金属合金纤维间含有大量间隙;所述的亲锂性磷化物为基于3D多孔金属合金集流体基底原位反应而来。
2.如权利要求1所述的3D亲锂复合多孔金属合金集流体,其特征在于,所述的3D多孔金属合金集流体为金属合金材质,组成元素包括铜、锡、锌、镍、铝、钛、银、铁、镁、钴、金、锰中的至少两种。
3.如权利要求1所述的3D亲锂复合多孔金属合金集流体,其特征在于,所述的3D多孔金属合金集流体结构为网格状、多孔泡沫状、树枝状、螺旋状中的至少一种;所述的3D多孔金属合金集流体的比表面积为50~800m2/g,厚度为0.8~300μm,孔间距为0.1~300μm,孔隙率为20~80%。
4.如权利要求1所述的3D亲锂复合多孔金属合金集流体,其特征在于,所述的金属合金纤维直径为0.5~50μm。
5.如权利要求1所述的3D亲锂复合多孔金属合金集流体,其特征在于,所述的亲锂性磷化物形态为纳米线、纳米矩阵、纳米颗粒、薄层中的至少一种;所述的亲锂性磷化物的厚度为5~200nm,占总集流体的含量为20~85wt.%。
6.一种制备如权利要求1-5中任一项所述的3D亲锂复合多孔金属合金集流体的方法,其特征在于,首先利用液相反应,将金属合金集流体原位转化为氢氧化物纳米线层的多孔金属合金复合集流体,进一步磷化后制得高柔性3D亲锂复合多孔金属合金集流体。
7.如权利要求6所述的方法,其特征在于,包括以下具体步骤:
步骤(1),液相反应:
将多孔金属合金集流体清洗并烘干,放入强碱和氧化剂的混合溶液中浸泡,强碱原位修饰,制得氢氧化物包覆的多孔金属合金集流体,清洗烘干;
步骤(2),磷化处理:
将氢氧化物包覆的多孔金属合金集流体置于管式炉中氩气流的下风处,进行磷源热解磷化,最终获得磷化物包覆的3D亲锂复合多孔金属合金集流体。
8.如权利要求7所述的方法,其特征在于,
步骤(1)中:
所述的氢氧化物包覆层表面呈纳米线状、尖刺状、平面状、颗粒状中的至少一种;
所述的氧化剂为重铬酸钠、重铬酸钾、高锰酸钾、硝酸、过硫酸铵、双氧水中的至少一种;
所述的强碱的浓度为0.5~8 mol/L;
所述的氧化剂的浓度为0.01~80 mmol/L;
所述的液相反应时间为5~90 min;
所述的液相反应温度为5~80℃;
步骤(2)中:
所述的磷源为偏磷酸盐、次亚磷酸盐中的至少一种;
所述的磷源与氢氧化物包覆的多孔金属合金集流体的质量比0.9:1~30:1;
所述的磷化处理的温度为280~600 ℃;
所述的磷化处理的升温速率为0.5~10 ℃/min;
所述的氩气流通气速率为100~400ml/min;
所述的磷化处理的时间为0.5~6h。
9.如权利要求1-5中任一项所述的3D亲锂复合多孔金属合金集流体在锂金属阳极中的应用。
10.一种金属锂电池,其特征在于,采用权利要求1-5任一项所述的3D亲锂复合碳纤维骨架制备的锂金属阳极作为电极材料。
CN202010882620.8A 2020-08-31 2020-08-31 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用 Pending CN113488656A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010882620.8A CN113488656A (zh) 2020-08-31 2020-08-31 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010882620.8A CN113488656A (zh) 2020-08-31 2020-08-31 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113488656A true CN113488656A (zh) 2021-10-08

Family

ID=77932649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010882620.8A Pending CN113488656A (zh) 2020-08-31 2020-08-31 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113488656A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843439A (zh) * 2022-06-21 2022-08-02 合肥国轩高科动力能源有限公司 一种复合镁锂合金负极片及其制备方法和应用
CN115020646A (zh) * 2022-08-04 2022-09-06 中南大学 一种含锌复合锂负极及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286156A1 (en) * 2005-05-18 2009-11-19 Frederic Gillot Method for production of an anode for a lithium-ion battery
CN104630822A (zh) * 2015-01-14 2015-05-20 太原理工大学 一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法
CN104868098A (zh) * 2015-05-15 2015-08-26 三峡大学 一种碳复合Cu3P-Cu锂离子电池负极及其制备方法
CN105845932A (zh) * 2016-05-05 2016-08-10 苏州大学 Cu3P纳米线负极的制备方法、用该方法制得的Cu3P纳米线负极及其应用
CN105895886A (zh) * 2016-06-21 2016-08-24 中南大学 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法
CN109395752A (zh) * 2018-06-20 2019-03-01 长沙理工大学 一种自支撑双金属磷化物Ni2P-Cu3P复合材料及其制备方法
CN109746007A (zh) * 2018-12-25 2019-05-14 中山大学 一种功能化过渡金属磷化物-氧化物复合纳米材料及其制备方法与应用
CN109904464A (zh) * 2018-12-28 2019-06-18 中国矿业大学 锂空气电池三维自支撑正极材料及其制备方法和应用
CN109950504A (zh) * 2019-04-02 2019-06-28 江西理工大学 锂离子电池用复合负极材料的制备方法
CN110518254A (zh) * 2019-09-09 2019-11-29 厦门大学 一种锂金属电池用负极集流体及其制备方法和应用
CN110660969A (zh) * 2019-09-20 2020-01-07 清华大学深圳国际研究生院 一种金属锂负极及其制备方法
CN110880595A (zh) * 2019-11-08 2020-03-13 重庆佳宝成能源科技有限公司 一种Cu3P-CuO复合柔性锂离子电池负极材料的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286156A1 (en) * 2005-05-18 2009-11-19 Frederic Gillot Method for production of an anode for a lithium-ion battery
CN104630822A (zh) * 2015-01-14 2015-05-20 太原理工大学 一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法
CN104868098A (zh) * 2015-05-15 2015-08-26 三峡大学 一种碳复合Cu3P-Cu锂离子电池负极及其制备方法
CN105845932A (zh) * 2016-05-05 2016-08-10 苏州大学 Cu3P纳米线负极的制备方法、用该方法制得的Cu3P纳米线负极及其应用
CN105895886A (zh) * 2016-06-21 2016-08-24 中南大学 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法
CN109395752A (zh) * 2018-06-20 2019-03-01 长沙理工大学 一种自支撑双金属磷化物Ni2P-Cu3P复合材料及其制备方法
CN109746007A (zh) * 2018-12-25 2019-05-14 中山大学 一种功能化过渡金属磷化物-氧化物复合纳米材料及其制备方法与应用
CN109904464A (zh) * 2018-12-28 2019-06-18 中国矿业大学 锂空气电池三维自支撑正极材料及其制备方法和应用
CN109950504A (zh) * 2019-04-02 2019-06-28 江西理工大学 锂离子电池用复合负极材料的制备方法
CN110518254A (zh) * 2019-09-09 2019-11-29 厦门大学 一种锂金属电池用负极集流体及其制备方法和应用
CN110660969A (zh) * 2019-09-20 2020-01-07 清华大学深圳国际研究生院 一种金属锂负极及其制备方法
CN110880595A (zh) * 2019-11-08 2020-03-13 重庆佳宝成能源科技有限公司 一种Cu3P-CuO复合柔性锂离子电池负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANGZHI SUN ETAL.: ""In Situ Conversion of Cu3P Nanowires to Mixed Ion/Electron-Conducting Skeleton for Homogeneous Lithium Deposition"", 《ADVANCED ENERGY MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843439A (zh) * 2022-06-21 2022-08-02 合肥国轩高科动力能源有限公司 一种复合镁锂合金负极片及其制备方法和应用
CN115020646A (zh) * 2022-08-04 2022-09-06 中南大学 一种含锌复合锂负极及其制备方法和应用
CN115020646B (zh) * 2022-08-04 2022-11-01 中南大学 一种含锌复合锂负极及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111916720B (zh) 水系可充锌离子电池合金型负极材料及其制备方法与应用
Bazin et al. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries
US9774033B2 (en) Process for producing silicon nanowires directly from silicon particles
Liu et al. Recent development in lithium metal anodes of liquid-state rechargeable batteries
Zhao et al. Ni3N nanocrystals decorated reduced graphene oxide with high ionic conductivity for stable lithium metal anode
CN111224115A (zh) 一种锌基电池负极及其制备和应用
CN107634206B (zh) 一种锂离子电池柔性负极材料及其制备方法
CN112928238B (zh) 超薄金属锂电极及其制备以及作为二次锂电池负极的用途
CN112176771A (zh) 亲锂碳纳米管纸的制备方法和复合金属锂负极的制备方法
CN113921762B (zh) 一种纳米铋复合材料及其制备方法与应用
CN112176772A (zh) 亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法
CN113073496B (zh) 一种制备具有亲疏锂梯度结构的导电纤维纸的方法及导电纤维纸
CN111755690A (zh) 一种碱金属复合负极材料及其制备方法
CN113488656A (zh) 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用
CN115832217A (zh) 一种可用于二次电池的金属锂复合负极及其制备方法
CN111403678B (zh) 一种三维柔性金属负极及其制备方法
CN110474023B (zh) 一种纤维状镍铋电池及其制备方法
CN115863660B (zh) 一种无负极锂电池负极集流体及其制备方法与应用
CN115050920B (zh) 一种锑基一体化电极及其制备方法和应用
CN105990566B (zh) 氧化镍复合负极材料及其制备方法
KR101858933B1 (ko) 이종 금속 나노와이어 전극 및 이의 제조방법
Xiang et al. Advances in research on the inhibitory effect of 3D current collector structures for lithium dendrites
US10777822B2 (en) Fuel cell electrode and fuel cell using the same
CN113540454A (zh) 一种3d锂金属负极的亲锂性多孔复合碳骨架及其制备方法和应用
CN113644267B (zh) 一种多元合金诱导柔性钠金属电池基底及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211008

RJ01 Rejection of invention patent application after publication