CN115020646B - 一种含锌复合锂负极及其制备方法和应用 - Google Patents

一种含锌复合锂负极及其制备方法和应用 Download PDF

Info

Publication number
CN115020646B
CN115020646B CN202210931143.9A CN202210931143A CN115020646B CN 115020646 B CN115020646 B CN 115020646B CN 202210931143 A CN202210931143 A CN 202210931143A CN 115020646 B CN115020646 B CN 115020646B
Authority
CN
China
Prior art keywords
lithium
zinc
negative electrode
containing composite
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210931143.9A
Other languages
English (en)
Other versions
CN115020646A (zh
Inventor
黄绍祯
陈立宝
吴志彬
贺盼
娜仁托雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Lipeng New Energy Co ltd
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210931143.9A priority Critical patent/CN115020646B/zh
Publication of CN115020646A publication Critical patent/CN115020646A/zh
Application granted granted Critical
Publication of CN115020646B publication Critical patent/CN115020646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种含锌复合锂负极及其制备方法和应用,该含锌复合锂负极包括基体和电解质层,所述基体为表面含零价锂的材料,所述电解质层包括具有式I结构的聚合物A、硫化锂和磷化锂:
Figure 254628DEST_PATH_IMAGE001
;其中,R1、R2分别为C1~C14的烷基中的一种,n为1~10000000,m为1~10000000。该含锌复合锂负极应用于电化学储能装置中,可实现负极大电流密度高倍率应用,有效解决负极在大电流密度高倍率应用条件下枝晶生长的问题。

Description

一种含锌复合锂负极及其制备方法和应用
技术领域
本发明涉及锂负极技术领域,更具体地,涉及一种含锌复合锂负极及其制备方法和应用。
背景技术
近年来,随着3C电子产品以及电动汽车等对电池储能的需求越来越高,而传统锂离子电池材料比容量以及接近理论值,这对锂离子电池而言是一种挑战。就负极而言,锂金属负极极高的理论比容量(3860mAh/g)为提升电池能量密度带来新的方向。目前,国内外开展锂硫电池、全固态锂金属电池以及锂-空气电池等都存在超薄锂带的需求。由于锂金属本身熔点低、自焊性强、强度低,自支撑超薄锂带得加工制备成为行业难点。同时锂枝晶和极大的体积变化使得金属锂在面对大电流密度条件下快速失效,对电池的高倍率应用带来极大阻碍。
发明内容
基于现有技术中存在的上述技术问题,本发明的目的之一在于提供含锌复合锂负极,该含锌复合锂负极包括基体和基体表面的人工固态电解质层。本发明提供的含锌复合锂负极具有高的离子导通率和强的亲锂性,可诱导锂离子均匀沉积的同时组织电解质与基体发生反应,不仅稳定了基体界面,而且减少了电解液的消耗。
为了实现上述目的,本发明的技术方案如下:
一种含锌复合锂负极,包括基体和电解质层,所述基体表面含锂,所述电解质层包括具有式I结构的聚合物A、硫化锂和磷化锂:
Figure 983319DEST_PATH_IMAGE001
(式I);
其中,R1、R2分别为C1~C14的烷基中的一种,n为1~10000000,m为1~10000000;所述电解质层附着在基体上。
在一些实施方式中,所述聚合物A的结构式为:
Figure 63270DEST_PATH_IMAGE002
在一些实施方式中,所述聚合物A由具有式II结构的化合物B与所述基体上的零价锂进行反应制得,
Figure 918356DEST_PATH_IMAGE003
(式II);
其中,R3、R4分别为C1~C14的烷基。
同时硫化锂和磷化锂也是由具有式II结构的化合物B与所述基体上的零价锂进行反应制得,即整个电解质层由具有式II结构的化合物B与所述基体上的零价锂进行反应制得。
在一些实施方式中,所述化合物B的结构式为:
Figure 716548DEST_PATH_IMAGE004
在一些实施方式中,所述基体的材质包括锂单质、锂合金、锂硼复合材料中的至少一种。或所述基体的材质包括含锂单质、锂合金、锂硼复合材料中至少一种的复合材料中的至少一种。
优选地,所述锂合金化学式为LixMy,M选自钠、碳、硅、镁、铝、铟、银、金、钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锗、锡、钇、锆、铌、钼、锝、钌、铑、钯、镉、锑、铪、钽、钨、铼、铱、铂、汞、铊、铅、铋、钋中的至少一种;x为0.65~0.95,y为0.05~0.35。所述锂硼复合材料包括锂元素和硼元素的质量含量为70%以上的材料,具体地,按质量百分数计,所述锂硼复合材料由65%~95%Li、5%~35%B和0~30%N组成,所述N选自钠、碳、硅、镁、铝、铟、银、金、钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锗、锡、钇、锆、铌、钼、锝、钌、铑、钯、镉、锑、铪、钽、钨、铼、铱、铂、汞、铊、铅、铋、钋的至少一种。
所述含锂单质、锂合金、锂硼复合材料中至少一种的复合材料,包括但不限于由锂单质、锂合金或锂硼复合材料中至少一种与多孔骨架或其他支撑骨架通过物理或化学方法组合形成的复合材料;所述多孔骨架包括但不限于泡沫铜、泡沫镍、铜网、镍网、碳布、碳纸、粉末冶金多孔铜、粉末冶金多孔镍、多孔不锈钢、多孔聚合物纤维、多孔聚合物导电材料如芳纶网、涤纶网、腈纶网、尼龙网、聚酰亚胺网、聚丙烯网、聚四氟乙烯网、聚偏氟乙烯网等;所述其他支撑骨架包括但不限于铜、碳布、导电聚合物等导电基体。所述物理或化学方法包括但不限于轧制、冲压、挤压、气相沉积等工艺。
上述任一实施方式中,所述C1~C14的烷基是指碳数量为1~14的烷基。
在一些实施方式中,所述电解质层的厚度为5~100nm;所述基体的厚度为5μm~1.5mm。
本发明的目的之二在于提供上述任一实施方式的含锌复合锂负极的制备方法,该方法包括以下方案一和/或方案二:
方案一、将具有式II结构的化合物B涂覆于所述基体表面,通过加热和/或机械化学反应,得到所述含锌复合锂负极;
方案二、将具有式II结构的化合物B溶于第一有机溶剂中形成溶液,然后将所述基体浸泡到所述溶液中,加热,得到含锌复合锂负极;
Figure 446606DEST_PATH_IMAGE003
(式II);
其中,R3、R4分别为C1~C14的烷基。
也即,本申请的含锌复合锂负极的制备方法,可以选用下述两种方法中的至少一种进行制备,方法之一为:将具有式II结构的化合物B涂覆于所述基体表面,在高载荷工艺条件下发生机械化学反应和/或在加热条件下反应,得到所述含锌复合锂负极。方法之二为:将具有式II结构的化合物B溶于第一有机溶剂中形成溶液,然后将所述基体浸泡到所述溶液中,加热,得到含锌复合锂负极。所述化合物B的结构式如式II:
Figure 443381DEST_PATH_IMAGE003
(式II);
其中,R3、R4分别为C1~C14的烷基。
所述C1~C14的烷基为碳原子数为1~14的烷基。
在一些实施方式中,方案一中,所述高载荷工艺条件为轧制、冲压、挤压工艺中的至少一种。即方案一中,所述机械化学反应实施的工艺选自轧制、冲压、挤压工艺中的至少一种。
方案一中,轧制、冲压、挤压时,基体的总变形量大于等0小于100%。当基体总变形量为0时,可对接方案二;也可用高于室温的热风或热气去加热涂层。加热的方式不受限定。但最好是不要加热时,气氛或者传热介质(除涂层外)不要和基体反应。
在本发明中,出现变形量则一定包含方案一中的机械加工工步。值得注意的是,当化合物B的用量一定时,在成品中,基体厚度越大,电化学循环更稳定。尤其是高倍率电化学循环性能凸显的尤为卓越。作为优选,方案一中,基体的变形量优选为小于等于50%。作为进一步的优选,基体的变形量优选为小于等于35%。
在一些实施方式中,方案一中;按质量比,具有式II结构的化合物B:基体=0.08-1:1、优选为0.03-0.15:1、更进一步优选为0.05-0.1:1的比例;将具有式II结构的化合物B涂覆于所述基体表面。在实际工程上应用时,含化合物B的浓度优选为3%-100%。
在一些实施方式中,方案二中,溶液中溶质的质量分数≥5%。优选的,为5%~15%。
在一些实施方式中,方案二中,所述第一有机溶剂为矿物油和/或PAO合成油。
在一些实施方式中,方案一和/或方案二中,分别还包括:将得到的所述含锌复合锂负极浸泡于第二有机溶剂中,干燥,以去除所述复合电极材料表面未反应的化合物B或杂质;所述第二有机溶剂为四氢呋喃和/或丙酮溶液和/或汽油和/或正戊烷液体。
在一些实施方式中,所述含锌复合锂负极在所述第二有机溶剂浸泡时间为1~120min。
在一些实施方式中,在第二有机溶剂中浸泡后,取出,气流吹干,吹干时间为0.5~30 h。
本发明的目的之三在于提供一种电化学储能装置,该电化学储能装置包括上述任一实施方式的含锌复合锂负极或上述任一实施方式的制备方法得到的含锌复合锂负极。
在一些实施方式中,所述电化学储能装置包括但不限于锂离子电池、锂硫电池、锂-空气电池、电容器等;所述含锌复合锂负极作为负极应用于所述电化学储能装置中。
在发明中,聚合物A阴离子基团形成机理:
Figure 702324DEST_PATH_IMAGE005
ZDDP阴离子基团经过两次自烷基化后形成O/S交换的异构体;
在受热或者高活性的表界面处,各个分子间也可以发生烷基交换
Figure 784550DEST_PATH_IMAGE006
由于巯烷基(RS-)容易收到邻近分子的磷酰基的进攻,形成烷基磷酸盐,即聚合物A。同时在受热或者高活性的表界面处,也会同时生成硫化锂和磷化锂。
相较于现有技术,本发明的有益效果如下:
(1)本发明通过在电极基体表面包覆含有纳米级链式聚磷酸锌-锂盐层材料作为人工固态电解质界面保护含锂基体,该有有机链式聚磷酸锌-锂盐层具有高的锂离子导通率和强的亲锂性,可以诱导锂离子均匀沉积,使负极表面保持动态稳定;同时阻止了电解质与含锂电极反应,稳定了极片界面。
(2)通过本发明的方法得到的含锌复合锂负极,应用于锂电池中,可以实现锂负极大电流密度高倍率应用,有效解决锂负极在该条件下的枝晶生长问题。
(3)本发明提供的制备方法,工艺简单,制备方便,可配套于工业化生产。
除此之外,该层固态电解质层具有超高的表面模量和表面硬度,与未经处理的基体相比,复合电极材料的表面模量可提升350%,表面硬度可提高1400%。
另外,可通过施加载荷的方式,实现在原位反应的过程中直接减薄复合电极材料,超薄电极材料的制备,使得到的复合电极材料的厚度可达5-100μm。
附图说明
图1中(A)、(B)、(C)图分别为本发明实施例1、实施例2和对比例1制成的复合电极材料表面SEM图;图1(A)为锂金属复合ZDDP产物表面;图1(B)为84Li-B合金复合ZDDP产物表面;图1(C)为原始锂表面。
图2为本发明实施例1制成的复合电极材料的表面冷冻透射电镜图;
图3中,a图为本发明实施例1制成的复合电极材料的飞行时间质谱图,b图为对复合电极材料进行三维元素分布重构的结果图;
图4中,A图为对实施例1的复合电极材料进行表面XPS刻蚀得到的P元素深度分析图;B图为Li峰刻蚀变化图;
图5为实施例1的复合电极材料的XPS中C、O、S的分峰谱;图5(a)为0 nm下表面C元素1s轨道元素分峰拟合图,图5(b)为0 nm下表面O元素1s轨道元素分峰拟合图, 图5(c)为0nm下表面S元素2p轨道元素分峰拟合图, 图5(d)为100 nm下表面C元素1s轨道元素分峰拟合图,图5(e)为100 nm下表面O元素1s轨道元素分峰拟合图, 图5(f)为100 nm下表面S元素2p轨道元素分峰拟合图, 图5(g)为200 nm下表面C元素1s轨道元素分峰拟合图,图5(h)为200 nm下表面O元素1s轨道元素分峰拟合图, 图5(i)为200 nm下表面S元素2p轨道元素分峰拟合图;
图6为本发明实施例1和对比例1制备的复合电极材料表面杨氏模量和表面硬度的纳米压痕测试结果;其中,A图为复合电极材料表面杨氏模量测试图;B图为复合电极表面硬度的压痕测试图;
图7为本发明实施例1和对比例1制备的电极材料分别在0.5 mAh、1 mAh、2.0 mAh、5.0 mAh的不同脱锂量的SEM形貌图;图7A为2000倍下实施例1在0.5 mAh下脱锂形貌图,图7B为2000倍下实施例1在1 mAh下脱锂形貌图,图7C为2000倍下实施例1在2 mAh下脱锂形貌图,图7D为2000倍下实施例1在5 mAh下脱锂形貌图,图7E为20000倍下实施例1在0.5 mAh下脱锂形貌图,图7F为20000倍下实施例1在1 mAh下脱锂形貌图,图7G为20000倍下实施例1在2 mAh下脱锂形貌图,图7H为20000倍下实施例1在5 mAh下脱锂形貌图,图7I为2000倍下对比例1在0.5 mAh下脱锂形貌图,图7J为2000倍下对比例1在1 mAh下脱锂形貌图,图7K为2000倍下对比例1在2 mAh下脱锂形貌图,图7L为2000倍下对比例1在5 mAh下脱锂形貌图,图7M为10000倍下对比例1在0.5 mAh下脱锂形貌图,图7N为10000倍下对比例1在1 mAh下脱锂形貌图,图7O为10000倍下对比例1在2 mAh下脱锂形貌图,图7P为10000倍下对比例1在5mAh下脱锂形貌图;
图8为本发明实施例1和对比例1制备的电极材料在18 mA/cm2、1.5 mAh/cm2测试条件下所测试的对称循环性能;
图9为本发明的实施例1和对比例1的复合电极材料分别与磷酸铁锂组装的全电池在5C倍率下的循环效率图;
图10为本发明实施例1和对比例1的电极材料分别与磷酸铁锂组装的全电池的倍率性能图;
图11为本发明实施例1、对比例1的复合电极材料组装的对称电池在18 mA/cm2、1.5mA h/cm2测试条件下循环100圈的表面形貌;其中,A图为锂离子在对比例1的电极材料沉积的原理图,B图为锂离子在实施例1的复合电极材料表面沉积的原理图;C图是对比例1的电极材料测试100圈后的表面的形貌图,D图是实施例1的电极材料测试100圈后的表面形貌图;
图12为本发明实施例2、对比例2的复合电极材料与磷酸铁锂组装的全电池的循环性能测试图;
图13为本发明实施例3、对比例3的复合电极材料对称电池测试性能图。
图14为对比例4在1 mA/cm2、1 mAh/cm2测试条件下所测试的对称循环性能图。
图15为实施系列4中测试编号5所对应试样在1 mA/cm2、1 mAh/cm2测试条件下所测试的对称循环性能图。
图16为对比例4中测试编号6所对应试样在1 mA/cm2、1 mAh/cm2测试条件下所测试的对称循环性能图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下述实施例和对比例中,关于表面改性处理液的制备方法为:
按溶质质量浓度为10%在矿物油中添加二硫代磷酸-O,O-二-C1-14-烷基酯锌盐,然后加热至30℃-45℃并搅拌均匀,得到均一溶液,然后对锂及锂合金表面涂敷并进行高负载施加压力以及后处理。
实施例1
(1)复合电极材料的制备
将二硫代磷酸-O,O-二-C1-14-烷基酯锌盐溶液(浓度为5wt%)涂敷于锂金属片材表面,添加剂(二硫代磷酸-O,O-二-C1-14-烷基酯锌盐)的质量为金属锂片(厚度为120微米)的质量的5%;采用室温轧制的方法,压下量16.67%,得到基于锂金属的复合片材,将得到的复合片材浸泡于四氢呋喃中30 min,然后气流吹干,得到复合电极极片,冲片得到直径为16 mm的极片(厚度为100微米)。
经检测,其表面SEM图如图1中(A)图所示;表面成膜状态如图2和图3所示,表面成分如图4和图5所示。对得到的复合极片进行机械性能测试,测试结果如图6所示,与原锂片材相比,表面模量提升了350%,表面硬度提升了1400%。
(2) 在手套箱内,将极片与锂片组装扣式电池,采用Celgard2400作为隔膜,电解液为1M LiTFSI/DME:DOL=1:1(体积比),含2% LiNO3添加剂,对极片进行不同容量脱锂测试,测试结果如图7所示。图7所示,对其进行不同容量脱锂可以发现,改性后的锂带表面由于高硬度高模量带来脱锂均匀性,极大抑制大电流以及超薄尺度循环体积变化造成的衰减。在18 mA/cm2、1.5 mAh/cm2测试条件下进行对称电池循环测试,测试结果如图8所示,在大电流下能够实现稳定循环1700圈以上;极化电压仍未超过1V;循环后表面形貌如图11所示。
(3)以直径为16 mm的复合极片与LiFePO4正极组装全电池,采用Celgard2400作为隔膜,电解液为1.0M LiPF6 EC:EMC:FEC=1:1:1(体积比)。在5C测试条件下进行全电池循环测试,图9所示可以得到350圈循环容量保持率达到81.9%。
(4)以直径为16 mm的复合极片与LiFePO4正极组装全电池,采用Celgard2400作为隔膜,电解液为1.0M LiPF6 EC:EMC:FEC=1:1:1(体积比)。在0.2C、1C、2C、5C、10C、0.2C不同测试条件下进行全电池倍率测试,测试结果如图10所示,到10C测试时该实施例中电池依旧可以保持接近100 mAh/g的放电比容量。
实施例2
本实施例与实施例1进行相类似的平行试验,区别在于,锂金属片材改为84Li-B合金片材,所述84Li-B合金由锂金属和硼按质量比为90:10进行制备而成,其他制备方法与实施例1完全相同,获得含有人工固态电解质层的改性锂硼合金极片,冲片得到直径为16 mm的极片(厚度为100微米)。经检测,其表面SEM图如图1中的(B)图所示。
在手套箱内,将改性锂硼合金极片与锂片组装扣氏电池,采用Celgard2400作为隔膜,电解液为1M LiTFSI/DME:DOL=1:1(体积比),含2% LiNO3添加剂。在2 mA/cm2、1 mAh/cm2测试条件下进行对称电池循环测试,能够稳定循环185圈,如图12所示,同样可以实现相同效果。
实施例3
本实施例与实施例1进行相类似的平行试验,区别在于,锂金属片材改为Li-In合金片材,其他制备方法与实施例1完全相同,获得含有人工固态电解质层的改性锂铟合金极片,冲片得到直径为16 mm的极片(厚度为50微米)。
将改性Li-In合金极片与裸Li-In合金负极在电解液(1M LiTFSI/DME:DOL=1:1(体积比),含2% LiNO3添加剂)中进行电化学测试,在24 mA/cm2的电流密度,1.5 mAh/cm2的面积比容量条件下对称电池可以达到80个小时的长时间循环且仍能保持低的极化电压。测试结果如图13所示。
对比例1
(1)原始商业锂带表面如图1中(C)图所示。以两片商业用锂带(中能锂业)为正负极组装扣式对称电池,采用Celgard2400作为隔膜,电解液为1M LiTFSI/DME:DOL=1:1(体积比),含2% LiNO3添加剂。在不同测试条件下进行对称电池循环测试,测试结果如图8,仅能稳定循环100圈,极而且化电压激增至4V。
(2)以商业用锂片为负极与LiFePO4正极组装全电池,采用Celgard2400作为隔膜,电解液为1.0M LiPF6 EC:EMC:FEC=1:1:1(体积比)。在不同测试条件下进行全电池循环以及倍率测试,测试结果如图9和图10所示。在5C倍率下,350圈循环后容量衰减至58.6%。随着倍率增大,放电比容量始终低于实施例1。
对比例2
对比例2与实施例2的区别在于使用的锂硼合金是未经改性的,测试结果如图12所示,仅能稳定循环120圈。
对比例3
对比例3与实施例3的区别在于使用的Li-In合金是未经改性的,测试结果如图13所示,仅能稳定循环18小时。
综上,由图1可知,在使用表面改性后的复合极片能够实现宏观表面状态与市场上生产锂带粗糙度近乎无差。
如图2和图3中显示,实施例1中所获得的表面膜层兼具有机-无机结构,且厚度控制可达纳米级别。
根据图4和图5,进一步佐证其膜成分,主要物质含有硫化锂、磷化锂、有机聚磷酸盐;图4中,A图和B图分别为使用X射线光电子能谱(XPS)对实施例1得到的复合电极材料测试,P元素和Li元素深度分析结果,结合其峰强度变化可以清楚发现,P元素反应曾主要在表面100nm以内,同时,Li的分布也展示出了随深度增加而增加的趋势,对P的2p光谱的详细分析表明,双层界面的表面主要由有机聚磷酸盐组成,随着溅射时间增加,在133.8ev出现的有机磷成分的信号(-C-O-PO3)逐渐消失。图5为XPS中C、O、S的分峰谱图,从O1s光谱可以看出,在顶层存在531.5 eV和532.9 eV的两个峰值,分别对应于-O=P-和-O-C-两种化学结合。随着溅射过程的进行,有机多聚磷酸盐的特征峰消失,并出现一个全新的峰值≈534.0 eV,分配给无机Li2CO3。这意味着随着反应深度的增加,有机多聚磷酸盐的有机C源发生无机化反应。为了进一步阐明这一可能,对C1s谱图进行分析。初始表面存在大量有机C链, 284.8eV对 应的-C-C-峰随占比很大。随着深度增加,这一比重显著降低,并于100nm和200nm深度出现显著的C=O峰值为288.3 eV。基于此,可以推测,Li2CO3为无机层的主要成分之一。对关键元素S进行分析,存在有162.1 eV的S-M(M=Zn, Li)和163.3 eV的S-C两种信号。这表明ZDDP在加工过程中发生分解,S以无机金属硫化物(Li2S)的形式存在。
如图6,佐证了这种化合物B能够实现锂金属表面硬度显著提升,并将机械高载荷能量转换为化学能储存,实现重载荷活化表面的效果。
图7可以看出,高载荷化学活化后的锂金属负极脱锂后能有别于一般锂带进行脱锂,不存在脱锂坑洞,有效抑制锂金属负极的体积变化。
图8显示,在大电流密度下,处理后的锂金属性能显著提升,并具备了一般纯锂无法实现的大电流应用。
图9为Li@ZDDP和纯Li为负极与LiFePO4组装的全电池在5C倍率下的循环性能。在350循环后Li@ZDDP容量保持率超过80%,远优于纯锂。
图10为Li@ZDDP和纯Li为负极与LiFePO4组装的全电池在为不同倍率下放电容量对比。Li@ZDDP放电容量保持率远优于纯锂。
图11为超大电流密度下循环100圈后的极片表面SEM图。高硬度表面实现锂沉积平行于极片表面,直接抑制锂的枝晶生长。
图12、图13分别为LiB的对称循环和LiIn的对称循环,结果显示,添加ZDDP的实验组同样能够实现优越性能。
综上所述,所制得的复合锂负极能够实现表面高模量、高硬度,同时实现锂金属大电流密度应用。通过实现高载荷瞬时活化的有限度的化学反应构造高机械强度表面是获得复合锂金属负极表面固态电解质层的核心方法。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
对比例4
将其他条件和实施例1一致,不同之处在于不进行轧制,即将二硫代磷酸-O,O-二-C1-14-烷基酯锌盐溶液涂敷于锂金属片材表面,添加剂(二硫代磷酸-O,O-二-C1-14-烷基酯锌盐)的质量分数为5%,金属锂片厚度为50微米;得到基于锂金属的复合片材,将得到的复合片材浸泡于四氢呋喃中30min,然后在室温条件下气流吹干,得到复合电极极片,冲片得到直径为16mm的极片(厚度为50微米)。测试条件为1 mA/cm2,1mAh/cm2,能够稳定循环400小时,稳定循环200次(如图14所示)。
实施例系列4
在实施例1的基础上,还尝试了以下方案,其他条件和实施例1一致,不同之处在于:成品厚度(即目标厚度)做了调整;化合物B的浓度做了一些调整;具体见下表:
Figure 291535DEST_PATH_IMAGE007
上表中对称循环测试条件:新威电池测试系统,电流密度1mA/cm2,面容量密度1mAh/cm2,反映改进负极的稳定充放电循环时长)在手套箱内,将改性锂硼合金极片与锂片组装扣氏电池,采用Celgard2400作为隔膜,电解液为1M LiTFSI/DME:DOL=1:1(体积比),含2% LiNO3添加剂。
由于厚度减少,锂的活性物质减少,性能发生正常衰退。
上表中5号序列试样的性能检测图见图15;从图15中可以看出在编号5的测试条件下,能够稳定循环700h,循环350次。
上表中6号序列试样的性能检测图见图16;从图16中可以看出在编号5的测试条件下,能够稳定循环200h,循环100次。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

1.一种含锌复合锂负极,其特征在于:包括基体和电解质层,所述基体表面含锂,所述电解质层包括具有式I结构的聚合物A、硫化锂和磷化锂:
Figure DEST_PATH_IMAGE002
(式I);
其中,R1、R2分别为C1~C14的烷基中的一种,n为1~10000000,m为1~10000000;所述电解质层附着在基体上。
2.根据权利要求1所述的一种含锌复合锂负极,其特征在于:所述电解质层由具有式II结构的化合物B与所述基体中的零价锂进行反应制得,
Figure DEST_PATH_IMAGE004
(式II);
其中,R3、R4分别为C1~C14的烷基。
3.根据权利要求1所述的一种含锌复合锂负极,其特征在于:所述基体的材质包括锂单质、锂合金、锂硼复合材料中的至少一种;或所述基体的材质包括含锂单质、锂合金、锂硼复合材料中至少一种的复合材料。
4.根据权利要求1所述的一种含锌复合锂负极,其特征在于:含锌复合锂负极中,电解质层的厚度为5~100nm;基体的厚度为5μm~1.5mm。
5.一种如权利要求1-4任一项所述的含锌复合锂负极的制备方法,其特征在于:包括以下方案一和/或方案二;
方案一、将具有式II结构的化合物B涂覆于所述基体表面,通过加热和/或机械化学反应,得到所述含锌复合锂负极;
方案二、将具有式II结构的化合物B溶于第一有机溶剂中形成溶液,然后将所述基体浸泡到所述溶液中,加热,得到复合电极材料;
Figure DEST_PATH_IMAGE004A
(式II);
其中,R3、R4分别为C1~C14的烷基。
6.根据权利要求5所述的一种含锌复合锂负极的制备方法,其特征在于:方案一中,所述机械化学反应实施的工艺选自轧制、冲压、挤压工艺中的至少一种。
7.根据权利要求6所述的一种含锌复合锂负极的制备方法,其特征在于:方案一中,轧制、冲压、挤压时,基体的总变形量大于等于0小于100%。
8.根据权利要求5所述的一种含锌复合锂负极的制备方法,其特征在于:方案二中,溶液中溶质的质量分数≥5%。
9.根据权利要求5所述的一种含锌复合锂负极的制备方法,其特征在于:方案二中,所述第一有机溶剂为矿物油和/或PAO合成油。
10.根据权利要求5所述的一种含锌复合锂负极的制备方法,其特征在于:方案二中,加热的温度为40-80摄氏度。
11.一种如权利要求1-4任一项所述的含锌复合锂负极的应用,其特征在于:含锌复合锂负极作为电化学储能装置中负极使用。
CN202210931143.9A 2022-08-04 2022-08-04 一种含锌复合锂负极及其制备方法和应用 Active CN115020646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210931143.9A CN115020646B (zh) 2022-08-04 2022-08-04 一种含锌复合锂负极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210931143.9A CN115020646B (zh) 2022-08-04 2022-08-04 一种含锌复合锂负极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115020646A CN115020646A (zh) 2022-09-06
CN115020646B true CN115020646B (zh) 2022-11-01

Family

ID=83065771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210931143.9A Active CN115020646B (zh) 2022-08-04 2022-08-04 一种含锌复合锂负极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115020646B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159200A (zh) * 2016-07-29 2016-11-23 中国科学院青岛生物能源与过程研究所 一种具有保护涂层的金属锂负极及其制备和应用
CN110660969A (zh) * 2019-09-20 2020-01-07 清华大学深圳国际研究生院 一种金属锂负极及其制备方法
CN113140812A (zh) * 2021-03-04 2021-07-20 恒大新能源技术(深圳)有限公司 锂金属负极及其制备方法、锂二次电池
CN113488656A (zh) * 2020-08-31 2021-10-08 中南大学 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用
CN114242989A (zh) * 2022-02-23 2022-03-25 中南大学 一种复合电极材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190346A1 (en) * 2020-12-14 2022-06-16 Global Graphene Group, Inc. Lithium-protecting polymer composite layer for a lithium metal secondary battery and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159200A (zh) * 2016-07-29 2016-11-23 中国科学院青岛生物能源与过程研究所 一种具有保护涂层的金属锂负极及其制备和应用
CN110660969A (zh) * 2019-09-20 2020-01-07 清华大学深圳国际研究生院 一种金属锂负极及其制备方法
CN113488656A (zh) * 2020-08-31 2021-10-08 中南大学 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用
CN113140812A (zh) * 2021-03-04 2021-07-20 恒大新能源技术(深圳)有限公司 锂金属负极及其制备方法、锂二次电池
CN114242989A (zh) * 2022-02-23 2022-03-25 中南大学 一种复合电极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115020646A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN109643792B (zh) 硫碳复合物、其制备方法和包含其的锂硫电池
US20160351910A1 (en) Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
CN117154031A (zh) 预锂化储能装置
US9437863B2 (en) Surface coating method and a method for reducing irreversible capacity loss of a lithium rich transitional oxide electrode
CN115224253A (zh) 用于储能设备的单质金属和碳混合物
Xu et al. Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries
Choi et al. Highly stable SnO 2–Fe 2 O 3–C hollow spheres for reversible lithium storage with extremely long cycle life
EP3673527A1 (en) Lithium tetraborate glass coating on cathode materials for improving safety and cycling stability
WO2010080547A1 (en) Lithium nanoparticle compositions for use in electrochemical applications
Yu et al. Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode
US20120025147A1 (en) Method for preparing unique composition high performance anode materials for lithium ion batteries
Pham et al. A self-encapsulated porous Sb–C nanocomposite anode with excellent Na-ion storage performance
Guan et al. Carbon nanotube-assisted growth of single-/multi-layer SnS 2 and SnO 2 nanoflakes for high-performance lithium storage
DE102020129418A1 (de) Verfahren zur herstellung von vorlithiierten elektroaktiven materialien aus einer siliciumlegierung
CN111916716A (zh) 一种PVDF-TiO2复合膜的制备方法及其抑制锂枝晶生长的用途
CN112204766A (zh) 高性能电池阳极材料的硅密封
JP7520988B2 (ja) 負極片、当該極片を採用した電池及び電子装置
Li et al. Study on fabrication and electrochemical performances of Fe7S8@ c composite materials
KR20160027929A (ko) 이차 전지용 전극 합제 첨가제, 이의 제조 방법, 이를 포함하는 이차 전지용 전극 및 이차 전지
CN112751008B (zh) 多酚改性锌铁基异质结氧化物碳纳米锂离子电池负极复合材料及其制备方法
CN107275567A (zh) 正极、包含该正极的水系储能装置以及正极制备方法
CN115020646B (zh) 一种含锌复合锂负极及其制备方法和应用
EP2586086B1 (en) An electrode material for a lithium-ion battery and a method of manufacturing the same
Venugopal et al. Microstructural intra-granular cracking in Cu 2 ZnSnS 4@ C thin-film anode enhanced the electrochemical performance in lithium-ion battery applications
CN110875471B (zh) 金属锂@碳复合材料、锂金属阳极及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230827

Address after: 528200 Unit 2, Unit 101, Floor 1, Building 8, No. 2, Zhongjin Road, Xinlian Section, Foshan 1st Ring Auxiliary Road, Lishui Town, Nanhai District, Foshan City, Guangdong Province (residence declaration)

Patentee after: Foshan Lipeng New Energy Co.,Ltd.

Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932

Patentee before: CENTRAL SOUTH University