CN105813975B - 碳复合物、制备方法及其用途 - Google Patents
碳复合物、制备方法及其用途 Download PDFInfo
- Publication number
- CN105813975B CN105813975B CN201480067026.6A CN201480067026A CN105813975B CN 105813975 B CN105813975 B CN 105813975B CN 201480067026 A CN201480067026 A CN 201480067026A CN 105813975 B CN105813975 B CN 105813975B
- Authority
- CN
- China
- Prior art keywords
- expanded graphite
- phase
- weight
- carbon complex
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
- C01B32/22—Intercalation
- C01B32/225—Expansion; Exfoliation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/528—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
- C04B35/532—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/536—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/405—Iron group metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
碳复合物包含多个膨胀石墨颗粒;和第二相,所述第二相包含碳化物、聚合物的碳化产物或其组合;其中第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起。还公开了制备碳复合物的方法和包含碳复合物的制品。
Description
相关申请的交叉引用
本申请要求2013年12月11日提交的美国专利申请序列号14/103,095,2014年11月6日提交的美国专利申请序列号14/534,356的优先权,所述两个美国专利申请以引用的方式全部并入本文。
技术领域
本公开涉及碳复合物,特别涉及包含膨胀石墨的碳复合物,其制备方法及由其形成的制品。
背景技术
弹性体相对柔软并且可变形,因此已经广泛用于密封件、粘合剂和模制柔性部件。弹性体还已经在井下应用中用作密封材料。然而,由于采油和采气的行动持续朝向更敌对和非常规的环境转移,弹性体的性能变得不太令人满意,因为它们在恶劣条件下易于分解,对重油勘探造成限制。
由于其高耐腐蚀性和出色的耐高压性和耐高温性,已经提出金属作为井下应用的替代性密封材料。然而,金属具有低延展性和低弹性。因此,相比于弹性体,金属在密封粗糙套管表面时的有效性较低。
由于其高的热稳定性和化学稳定性、柔性、可压缩性和可变形性,碳材料例如柔性石墨是代替弹性体或金属的一种有前途的替代性密封材料。然而。一些碳材料可能具有较弱的金属强度,影响包含这些材料的元件和工具的结构完整性。
因此,本领域仍然需要具有性质(例如稳定性、弹性和机械强度)的良好平衡的密封材料。
发明内容
在一个实施方案中,碳复合物包含多个膨胀石墨颗粒;和第二相,所述第二相包含碳化物、聚合物的碳化产物或其组合;其中第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起。
在另一个实施方案中,形成碳复合物的方法包括:压缩包含膨胀石墨颗粒和填料的组合从而提供预成型品;和将预成型品加热至比填料的熔点高20℃至100℃的温度从而形成第二相,所述第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起;其中任选地,填料具有约0.05至约250微米的平均粒度。
在仍另一个实施方案中,制备碳复合物的方法包括:提供多个膨胀石墨颗粒;通过气相沉积在膨胀石墨颗粒的基面上沉积填料从而提供经填充的膨胀石墨;压缩经填充的膨胀石墨从而提供预成型品;和加热预成型品从而形成第二相,所述第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起;其中任选地,填料具有约0.05至约250微米的平均粒度。
在又一个实施方案中,形成碳复合物的方法包括:压缩包含膨胀石墨颗粒、填料、可交联聚合物和交联剂的组合从而提供预成型品;用交联剂交联可交联聚合物从而提供包含经交联聚合物的组合物;和加热所述组合物从而形成源自经交联聚合物的碳化产物;其中碳化产物将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起;并且碳化产物进一步结合石墨颗粒的至少一个基面与不同石墨颗粒的至少一个基面;其中任选地,填料具有约0.05至约250微米的平均粒度。
还公开了包含碳复合物的制品。
附图说明
如下描述不应以任何方式视为限制性的。参考附图,相同的元件以相同的方式编号:
图1(a)-1(c)为膨胀石墨结构在压缩之前(1(a))和压缩之后(1(b)和1(c))的扫描电镜(“SEM”)照片;
图2为增强膨胀石墨的机械强度的示例性机制的示意图;
图3为显示通过热扩散方法形成碳复合物的流程图;
图4为显示通过气相沉积方法形成碳复合物的流程图;和
图5为显示通过聚合物碳化形成碳复合物的流程图。
具体实施方式
石墨由碳原子的网络或六边形排列的层面组成。这些六边形排列的碳原子的层面基本上平坦并且定向或有序从而基本上平行并且彼此等距。碳原子的基本上平坦、平行的等距片或层通常被称为基面。因此,石墨的特征可在于碳的层状结构。
石墨的基面通过弱的范德华力保持在一起。可以处理石墨(特别是天然石墨)使得叠加的碳层或层片之间的间隔可以明显打开从而在垂直于层的方向上提供显著膨胀,因此形成膨胀石墨结构,其中基本上保留了碳层的层状特征。
当考虑石墨或膨胀石墨结构时,通常注意两个轴线或方向:“c”轴线或方向和“a”轴线或方向。“c”轴线或方向可以被视为是垂直于碳层的方向。“a”轴线或方向可以被视为是平行于碳层的方向或垂直于“c”方向的方向。
膨胀石墨颗粒的外观呈蠕虫状,并且因此通常被称为蠕虫。图1(a)为膨胀石墨结构的显微镜(“SEM”)照片。如图1(a)中所示,膨胀石墨包含垂直于蠕虫轴线的平行基面。
蠕虫可以一起压缩成制品,不同于初始石墨,所述制品为柔性的并且具有良好的弹性性质。然而,在压缩的过程中,这些蠕虫状颗粒坍塌并且以一定方式定向使得膨胀石墨颗粒的基面基本上垂直于压缩方向。不希望受限于理论,据信在膨胀石墨颗粒内的基面之间仅存在弱的范德华力,并且在不同的膨胀石墨颗粒的基面之间不存在力,因此膨胀石墨疏松材料具有弱的机械强度。图(1b)和(1c)为膨胀石墨颗粒在压缩之后的SEM照片。
申请人已经发现改进膨胀石墨疏松材料的机械强度的方法。有利地,所述方法通过在膨胀石墨的蠕虫状结构中而非在结构的表面上引入第二相从而增强膨胀石墨的基面水平处的机械强度。第二相可以结合一个膨胀石墨颗粒内的基面,如图2中的机制A所示。替代性地,第二相结合相同石墨颗粒的基面以及不同石墨颗粒的基面。该机制在图2中作为机制B显示。
在基面水平处形成第二相的一种方法是压缩包含膨胀石墨颗粒和填料的组合从而提供预成型品;和将预成型品加热至比填料的熔点高20℃至100℃的温度因此形成第二相,所述第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起。
可以通过天然石墨的化学插层并且在高温下突然膨胀从而合成膨胀石墨。在一个实施方案中,通过如下步骤制备膨胀石墨:用硫酸、硝酸、铬酸、硼酸或卤化物(例如FeCl3、ZnCl2、SbCl5)处理石墨材料(例如天然石墨、凝析石墨,热解石墨等)从而形成可膨胀石墨;并且将可膨胀石墨迅速加热至高温(例如800℃或更高)从而产生热解气,使用热解气的压力膨胀石墨层之间的间隔因此形成膨胀石墨。
膨胀石墨颗粒可以具有适用于其目标用途的任何形状或尺寸。正如本文所使用的,“石墨颗粒”包括石墨粒子、石墨片或石墨晶体。
膨胀石墨颗粒与填料均匀混合从而提供组合。可以通过任何已知的混合方法完成混合从而使填料彻底贯穿石墨颗粒分散。示例性填料包括SiO2、Si、B、B2O3,或金属或合金。金属可以为铝、铜、钛、镍、钨、铬或铁。合金包括铝、铜、钛、镍、钨、铬或铁的合金。一种示例性合金为钢。这些材料可以具有不同形状,例如颗粒、纤维和线材。可以使用材料的组合。在一个实施方案中,填料具有约0.05至约250微米,约0.05至约50微米,约1微米至约40微米,特别是约0.5至约5微米,更特别是约0.1至约3微米的平均粒度。不希望受限于理论,据信当填料具有这些范围内的尺寸时,其在膨胀石墨颗粒中均匀分散。粒度可以通过测量颗粒尺寸的合适方法确定,例如使用激光光源的静态或动态光散射(SLS或DLS)。
在组合中,膨胀石墨颗粒以25重量%至95重量%或50重量%至80重量%的量存在,以组合的总重量计。填料以5重量%至75重量%或20重量%至50重量%的量存在,以组合的总重量计。
之后,压缩包含膨胀石墨颗粒和填料的组合从而提供预成型品。任选地,预成型品包括孔。填料熔化之后,填料可以填充孔并且使其与膨胀石墨颗粒的接触最大化。
可以将预成型品加热至比填料的熔点高20℃至100℃或20℃至50℃的温度达5分钟至3小时或30分钟至3小时。可以在大气压力或5,000psi至30,000psi的超大气压力下进行加热。还可以在惰性气氛中,例如在氩气或氮气中进行加热。加热的手段不特别限制。在一个实施方案中,在炉中进行加热。
不希望受限于理论,据信在过程条件下,填料穿透膨胀石墨颗粒的蠕虫状结构的壁并且与膨胀石墨的碳反应形成碳化物,因此将基面结合在一起。填料还可以存在于不同的膨胀石墨颗粒的边界处。因此第二相可以进一步结合石墨颗粒的至少一个基面与不同石墨颗粒的至少一个基面。在一个实施方案中,第二相为将不同石墨颗粒以及相同石墨颗粒的基面保持在一起的连续基质。
第二相可以包含金属碳化物,例如铝、钛、镍、钨、铬、铁、铝合金、铜合金、钛合金、镍合金、钨合金、铬合金或铁合金的碳化物。这些碳化物通过相应金属或金属合金与膨胀石墨的基面碳的反应形成。第二相还可以包含通过SiO2或Si与膨胀石墨的碳的反应形成的SiC,或通过B或B2O3与膨胀石墨的碳的反应形成的B4C。当使用填料材料的组合时,第二相可以包含这些碳化物的组合。
根据该方法制备碳复合物的示例性方案显示于图3。如图3中所示,混合膨胀石墨和金属粉末并且压缩从而形成预成型品。然后加热预成型品,造成金属通过渗透和穿透置于相同石墨颗粒的基面以及不同石墨颗粒的基面之间。热处理还造成金属与膨胀石墨的碳反应因此形成最终复合物。
在另一个实施方案中,用于制备碳复合物的方法包括:提供多个膨胀石墨颗粒;通过气相沉积在膨胀石墨颗粒的基面上沉积填料从而提供经填充的膨胀石墨;压缩经填充的膨胀石墨从而提供预成型品;和加热预成型品从而形成第二相,所述第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起。
膨胀石墨和填料已经在上文描述。可以通过气相沉积将填料沉积在膨胀石墨颗粒的基面上。“气相沉积”过程表示通过气相在基材上沉积材料的过程。气相沉积过程包括物理气相沉积、化学气相沉积、原子层沉积、激光气相沉积和等离子体辅助的气相沉积。填料前体的示例包括三乙基铝和羰基镍。可以使用物理沉积、化学沉积和等离子体辅助的气相沉积的不同的变体形式。示例性沉积过程可以包括等离子体辅助的化学气相沉积、溅射、离子束沉积、激光烧蚀或热蒸发。不希望受限于理论,据信膨胀石墨的蠕虫状结构为具有强吸收能力的高度多孔结构,因此填料前体气体可以扩散通过蠕虫壁并且形成沉积在膨胀石墨的基面上的填料。
气相沉积提供经填充的膨胀石墨,其可以为粉末形式。可以压缩经填充的膨胀石墨从而形成预成型品。然后加热预成型品从而允许填料与膨胀石墨的碳反应因此形成第二相,所述第二相将膨胀石墨颗粒的基面保持在一起。
在一个实施方案中,加热温度高于填料的熔点。在该情况下,第二相包含通过液相结合形成的碳化物。替代性地,加热温度比填料的熔点低50-100℃。第二相包含通过固相结合形成的碳化物。在一个实施方案中,加热温度为600℃至1400或600℃至1000℃。可以在大气压力或5,000psi至30,000psi的超大气压力下进行加热。还可以在惰性气氛中,例如在氩气或氮气中进行加热。
碳复合物中的填料的量可以根据沉积材料的浓度、气相沉积温度和膨胀石墨留在气相沉积反应器中的时间而变化。填料可以以2重量%至50重量%或10重量%至25重量%的量存在,以碳复合物的总重量计。膨胀石墨可以以50重量%至98重量%或75重量%至90重量%的量存在,以碳复合物的总重量计。
根据该方法制备碳复合物的示例性方案显示于图4。如图4中所示,金属通过气相沉积技术沉积在膨胀石墨的基面上。在压缩之后,加热预成型品使得金属与膨胀石墨的碳反应因此形成最终复合物。
用于制备碳复合物的方法还可以包括:压缩包含膨胀石墨颗粒、填料、可交联聚合物和交联剂的组合从而提供预成型品;用交联剂交联可交联聚合物从而提供包含经交联聚合物的组合物;加热组合物从而形成经交联聚合物的碳化产物;其中碳化产物将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起;并且碳化产物进一步结合石墨颗粒的至少一个基面与不同石墨颗粒的至少一个基面。根据该方法制备碳复合物的示例性方案显示于图5。
可交联聚合物选自多元酚、聚丙烯腈、环氧树脂、人造丝、沥青,或包含至少一种前述材料的组合。示例性交联剂包括胺、环状酸酐等。组合可以包含2重量%至50重量%的可交联聚合物,2重量%至20重量%的填料,和30重量%至96重量%的膨胀石墨颗粒。
交联条件可以根据使用的特定可交联聚合物和交联剂而变化。在一个实施方案中,在50℃至300℃,特别是100℃至200℃的温度下进行交联。
可以将包含经交联聚合物、膨胀石墨颗粒和填料的组合物加热至700℃至1,400℃或700℃至1,200℃,特别是800℃至1,000℃的温度,在所述温度下经交联聚合物形成碳化产物,所述碳化产物将膨胀石墨的基面结合在一起。
正如本文所使用的,“碳化”表示聚合物转化成碳和/或含碳残留物。“碳化产物”表示无定形碳和/或含碳残留物。通过将经交联聚合物转化成碳化产物,基面通过碳碳键结合在一起。
本公开还提供通过上述方法制备的碳复合物。复合物包含多个膨胀石墨颗粒;和第二相,所述第二相包含碳化物、聚合物的碳化产物或其组合;其中第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起。膨胀石墨颗粒的量可以为50至98重量%,以碳复合物的总重量计。
第二相可以进一步结合石墨颗粒的至少一个基面与不同石墨颗粒的至少一个基面。膨胀石墨颗粒的量为25至95重量%,以碳复合物的总重量计。
第二相包含铝、钛、镍、钨、铬、铁、铝合金、铜合金、钛合金、镍合金、钨合金、铬合金或铁合金的碳化物,SiC,B4C,或聚合物的碳化产物。除了第二相之外,复合物还可以包含填料,所述填料选自SiO2,Si,B,B2O3,选自铝、铜、钛、镍、钨、铬或铁的金属,所述金属的合金,或包含至少一种前述材料的组合。
在一个实施方案中,第二相包含经交联聚合物的碳化产物。经交联聚合物源自多元酚、聚丙烯腈、环氧树脂、人造丝、沥青,或包含至少一种前述材料的组合。复合物还可以包含填料,所述填料选自SiO2,Si,B,B2O3,选自铝、铜、钛、镍、钨、铬或铁的金属,所述金属的合金,或包含至少一种前述材料的组合。碳复合物包含2重量%至50重量%的填料,2重量%至20重量%的第二相,和30重量%至96重量%的膨胀石墨颗粒。
可以由碳复合物制备制品。因此在一个实施方案中,制品包含碳复合物。碳复合物可以用于形成制品的全部或一部分。示例性制品包括密封件、密封孔保护件、刷拭元件保护件、压裂塞的构件、桥塞、压缩包装元件(初级密封件)、膨胀包装元件(ARC密封件)、O形环、结合密封件、子弹密封件、地下安全阀(SSSV)动态密封件、SSSV挡板密封件、V形环、支承环、钻头密封件,或ESP密封件。制品可以是井下元件。在一个实施方案中,制品为包装件、密封件或O形环。
所有引用的专利、专利申请和其它参考文献通过引用的方式全部并入本文。然而,如果本申请中的术语与并入参考文献的术语矛盾或冲突,本申请的术语优先于并入参考文献的冲突术语。
本文公开的所有范围包括端点,并且端点可以彼此独立组合。本文所使用的后缀“(s)”旨在包括其所修饰的术语的单数和复数,因此包括至少一个所述术语(例如着色剂(s)包括至少一种着色剂)。“任选的”或“任选地”意指之后描述的事件或事情可能发生或可能不发生,并且所述描述包括发生所述事件的情况和不发生所述事件的情况。正如本文所使用的,“组合”包括共混物、混合物、合金、反应产物等。所有参考文献以引用的方式并入本文。
在描述本发明的语境中(特别是在权利要求的语境中),除非本文另有说明或语境明确矛盾,术语“一”、“一个”和“所述”和相似指称对象被解释为覆盖单数和复数。此外,应当进一步注意术语“第一”、“第二”等在此不表示任何顺序、质量或重要性,而是用于区分一个元件与另一个元件。关于量所使用的修饰语“约”包括所陈述的值并且具有语境指示的含义(例如,其包括与特定量的测量相关的误差度)。
虽然参考一个或多个示例性实施方案描述本申请,本领域技术人员将理解可以进行各种改变并且可以用等效形式代替其元件,而不偏离本发明的范围。此外,可以进行许多修改使特定情况或材料适应本发明的教导而不偏离本发明的实质范围。因此,本发明不旨在限制于作为用于进行本发明所设想的最佳模式公开的特定实施方案,相反本发明包括所有落入权利要求的范围内的实施方案。同样地,在附图和说明书中,已经公开了本发明的示例性实施方案,尽管可能使用了特定术语,除非另有声明,这些术语仅在一般意义上以说明性的方式使用而无限制目的,本发明的范围因此不受限制。此外,术语第一、第二等的使用不表示任何顺序或重要性,相反术语第一、第二等用于区分一个元件与另一个元件。此外,术语一、一个等的使用不表示量的限制,相反表示存在至少一个所引用的物体。
Claims (19)
1.碳复合物,其特征在于,所述碳复合物包含
多个膨胀石墨颗粒;
填料;和
第二相,所述第二相包含碳化物和将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起;
其中所述填料包括SiO2,Si,B,B2O3,选自铝、铜、钛、镍、钨、铬或铁的金属,所述金属的合金,或包含至少一种前述材料的组合。
2.根据权利要求1所述的碳复合物,其中所述第二相包含铝、钛、镍、钨、铬、铁、铝合金、铜合金、钛合金、镍合金、钨合金、铬合金、铁合金的碳化物,SiC,B4C,或包含至少一种前述碳化物的组合。
3.根据权利要求1所述的碳复合物,其中所述膨胀石墨颗粒的量为50至98重量%,以所述碳复合物的总重量计。
4.根据权利要求1所述的碳复合物,其中所述第二相进一步结合石墨颗粒的至少一个基面与不同石墨颗粒的至少一个基面。
5.根据权利要求4所述的碳复合物,其中所述第二相包含铝、钛、镍、钨、铬、铁、铝合金、铜合金、钛合金、镍合金、钨合金、铬合金、铁合金的碳化物,SiC,B4C,或包含至少一种前述碳化物的组合。
6.根据权利要求4所述的碳复合物,其中所述膨胀石墨颗粒的量为25至95重量%,以所述碳复合物的总重量计。
7.根据权利要求1所述的碳复合物,其中所述碳复合物包含2重量%至50重量%的填料,2重量%至20重量%的第二相,和30重量%至96重量%的膨胀石墨颗粒。
8.用于制备根据权利要求1所述的碳复合物的方法,其特征在于,所述方法包括:
压缩包含膨胀石墨颗粒和填料的组合从而提供预成型品;和
将预成型品加热至比填料的熔点高20℃至100℃的温度从而形成第二相,所述第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起;
其中所述第二相包含碳化物;和
所述填料包括SiO2,Si,B,B2O3,选自铝、铜、钛、镍、钨、铬或铁的金属,所述金属的合金,或包含至少一种前述材料的组合。
9.根据权利要求8所述的方法,其中所述第二相进一步结合石墨颗粒的至少一个基面与不同石墨颗粒的至少一个基面。
10.根据权利要求8所述的方法,其中进行加热30分钟至3小时。
11.根据权利要求8所述的方法,其中在5,000psi至30,000psi的压力下进行加热。
12.根据权利要求8所述的方法,其中所述组合包含20重量%至50重量%的填料和50重量%至80重量%的膨胀石墨颗粒,以所述组合的总重量计。
13.用于制备根据权利要求1所述的碳复合物的方法,其特征在于,所述方法包括:
提供多个膨胀石墨颗粒;
通过气相沉积在膨胀石墨颗粒的基面上沉积填料从而提供经填充的膨胀石墨;
压缩经填充的膨胀石墨从而提供预成型品;和
加热预成型品从而形成第二相,所述第二相将相同的膨胀石墨颗粒的至少两个相邻的基面结合在一起。
14.根据权利要求13所述的方法,其中沉积包括物理气相沉积、化学气相沉积、原子层沉积、激光气相沉积或等离子体辅助的气相沉积。
15.根据权利要求13所述的方法,其中在5,000psi至30,000psi的压力下进行加热。
16.根据权利要求13所述的方法,其中在600至1000℃的温度下进行加热。
17.根据权利要求13所述的方法,其中所述填料选自:SiO2,Si,B,B2O3,选自铝、铜、钛、镍、钨、铬、铁的金属,所述金属的合金,或包含至少一种前述材料的组合。
18.包含根据权利要求1所述的碳复合物的制品。
19.根据权利要求18所述的制品,其中所述制品包括密封件、压裂塞的构件、桥塞、包装元件、膨胀包装元件、O形环、结合密封件、子弹密封件、地下安全阀动态密封件、地下安全阀挡板密封件、V形环、支承环、钻头密封件,或ESP密封件。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/103,095 | 2013-12-11 | ||
US14/103,095 US9284229B2 (en) | 2013-12-11 | 2013-12-11 | Carbon composites, methods of manufacture, and uses thereof |
US14/534,356 | 2014-11-06 | ||
US14/534,356 US9963395B2 (en) | 2013-12-11 | 2014-11-06 | Methods of making carbon composites |
PCT/US2014/065389 WO2015088698A1 (en) | 2013-12-11 | 2014-11-13 | Carbon composites, methods of manufacture, and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105813975A CN105813975A (zh) | 2016-07-27 |
CN105813975B true CN105813975B (zh) | 2019-03-12 |
Family
ID=53270463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480067026.6A Active CN105813975B (zh) | 2013-12-11 | 2014-11-13 | 碳复合物、制备方法及其用途 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9963395B2 (zh) |
EP (1) | EP3080047B1 (zh) |
JP (1) | JP6624686B2 (zh) |
CN (1) | CN105813975B (zh) |
CA (1) | CA2930670C (zh) |
WO (1) | WO2015088698A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9325012B1 (en) * | 2014-09-17 | 2016-04-26 | Baker Hughes Incorporated | Carbon composites |
US10315922B2 (en) | 2014-09-29 | 2019-06-11 | Baker Hughes, A Ge Company, Llc | Carbon composites and methods of manufacture |
US10480288B2 (en) | 2014-10-15 | 2019-11-19 | Baker Hughes, A Ge Company, Llc | Articles containing carbon composites and methods of manufacture |
US9962903B2 (en) | 2014-11-13 | 2018-05-08 | Baker Hughes, A Ge Company, Llc | Reinforced composites, methods of manufacture, and articles therefrom |
US9745451B2 (en) | 2014-11-17 | 2017-08-29 | Baker Hughes Incorporated | Swellable compositions, articles formed therefrom, and methods of manufacture thereof |
US11097511B2 (en) | 2014-11-18 | 2021-08-24 | Baker Hughes, A Ge Company, Llc | Methods of forming polymer coatings on metallic substrates |
US10300627B2 (en) | 2014-11-25 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Method of forming a flexible carbon composite self-lubricating seal |
US9714709B2 (en) | 2014-11-25 | 2017-07-25 | Baker Hughes Incorporated | Functionally graded articles and methods of manufacture |
US9840887B2 (en) | 2015-05-13 | 2017-12-12 | Baker Hughes Incorporated | Wear-resistant and self-lubricant bore receptacle packoff tool |
US10125274B2 (en) | 2016-05-03 | 2018-11-13 | Baker Hughes, A Ge Company, Llc | Coatings containing carbon composite fillers and methods of manufacture |
US10344559B2 (en) | 2016-05-26 | 2019-07-09 | Baker Hughes, A Ge Company, Llc | High temperature high pressure seal for downhole chemical injection applications |
CN106565243B (zh) * | 2016-10-31 | 2019-09-27 | 清华大学深圳研究生院 | 压缩膨胀石墨导热复合材料及其制备方法 |
CN106479452B (zh) * | 2016-10-31 | 2019-04-30 | 清华大学深圳研究生院 | 压缩膨胀石墨导热复合材料及其制备方法 |
CN109516807B (zh) * | 2018-12-25 | 2021-08-06 | 安徽工业大学 | 一种碳化硅—膨胀石墨复合材料型坯及其制备方法 |
CN110453100A (zh) * | 2019-08-02 | 2019-11-15 | 中国科学院山西煤炭化学研究所 | 一种原位插层制备石墨/铜复合材料的方法 |
Family Cites Families (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3807996A (en) | 1972-07-10 | 1974-04-30 | Union Carbide Corp | Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide |
DE2244470C3 (de) | 1972-09-11 | 1975-03-13 | Deutsche Edelstahlwerke Ag, 4150 Krefeld | Hochkorrosionsbeständige und -verschleißfeste Sinterstahllegierung |
US3904405A (en) | 1973-02-02 | 1975-09-09 | Ametek Inc | Sliding seal parts and process of making |
US3981427A (en) | 1975-04-28 | 1976-09-21 | Brookes Ronald R | Method of laminating graphite sheets to a metal substrate |
JPS5313610A (en) | 1976-07-23 | 1978-02-07 | Nippon Carbon Co Ltd | Compound sheet materials |
US4116451A (en) | 1977-06-16 | 1978-09-26 | Maurer Engineering, Inc. | Shaft seal assembly and seal ring therefor |
JPS6048473B2 (ja) * | 1977-07-27 | 1985-10-28 | 日本カ−ボン株式会社 | 可撓性黒鉛材料およびその製造法 |
JPS54133256A (en) | 1977-12-08 | 1979-10-16 | Taiho Kogyo Co Ltd | Slider material for shaft sealing |
JPS6016385B2 (ja) * | 1977-12-28 | 1985-04-25 | 日本カ−ボン株式会社 | 可撓性黒鉛製品の製造法 |
JPS5524949A (en) | 1978-08-11 | 1980-02-22 | Hitachi Ltd | Manufacture of graphite-containing aluminium alloy |
US4270569A (en) | 1978-10-16 | 1981-06-02 | Christensen Inc. | Valve assembly for the remote control of fluid flow having an automatic time delay |
US4372393A (en) | 1981-06-16 | 1983-02-08 | Baker International Corporation | Casing bore receptacle |
FR2512154B1 (zh) | 1981-09-03 | 1984-06-15 | Elf Aquitaine | |
JPS58181713A (ja) * | 1982-04-19 | 1983-10-24 | Nippon Pillar Packing Co Ltd | 膨張黒鉛成形体 |
JPS59129142A (ja) * | 1983-01-14 | 1984-07-25 | 日本ピラ−工業株式会社 | 複合成形体およびその製造方法 |
US4567103A (en) | 1983-07-28 | 1986-01-28 | Union Carbide Corporation | Carbonaceous articles having oxidation prohibitive coatings thereon |
JPS6131355A (ja) * | 1984-07-20 | 1986-02-13 | 工業技術院長 | 黒鉛−炭化ホウ素系摺動部材 |
US4798771A (en) | 1985-08-27 | 1989-01-17 | Intercal Company | Bearings and other support members made of intercalated graphite |
DE3677302D1 (de) | 1985-08-27 | 1991-03-07 | Intercal Co | Dichtungsgegenstaende aus graphiteinlagerungsverbindungen. |
US4743033A (en) | 1985-12-16 | 1988-05-10 | Baker Oil Tools, Inc. | Dynamic seal assembly for piston and cylinder operating in subterranean wells |
JPS63135653A (ja) | 1986-11-25 | 1988-06-08 | Nippon Pillar Packing Co Ltd | パツキン材料 |
GB2201679B (en) | 1987-02-24 | 1990-11-07 | Aisin Seiki | Filter materials |
US4826181A (en) | 1988-02-09 | 1989-05-02 | Union Carbide Corporation | Seal utilizing composites of flexible graphite particles and amorphous carbon |
US5225379A (en) | 1988-02-09 | 1993-07-06 | Ucar Carbon Technology Corporation | Composites of flexible graphite particles and amorphous carbon |
US5228701A (en) | 1988-03-22 | 1993-07-20 | Ucar Carbon Technology Corporation | Flexible graphite articles with an amorphous carbon phase at the surface |
JPH0238365A (ja) * | 1988-07-27 | 1990-02-07 | Agency Of Ind Science & Technol | 耐高温高強度黒鉛系複合摺動部材 |
US5392982A (en) | 1988-11-29 | 1995-02-28 | Li; Chou H. | Ceramic bonding method |
GB2248255B (en) | 1990-09-27 | 1994-11-16 | Solinst Canada Ltd | Borehole packer |
US5117913A (en) | 1990-09-27 | 1992-06-02 | Dresser Industries Inc. | Chemical injection system for downhole treating |
DE4117074A1 (de) * | 1991-05-25 | 1992-11-26 | Bayer Ag | Verfahren zur herstellung von formkoerpern |
JP2769523B2 (ja) | 1994-01-31 | 1998-06-25 | 株式会社キッツ | パッキンリングの構造とその製造方法並びにそれを用いたシール装置 |
DE4133546C2 (de) | 1991-10-10 | 2000-12-07 | Mahle Gmbh | Kolben-Zylinderanordnung eines Verbrennungsmotors |
US5283121A (en) | 1991-11-08 | 1994-02-01 | Bordner Barry A | Corrosion and abrasion resistant industrial roll coating with non-sticking properties |
US5201532A (en) | 1991-12-12 | 1993-04-13 | Mark Controls Corporation | Flexible non-planar graphite sealing ring |
US5240766A (en) | 1992-04-01 | 1993-08-31 | Hollingsworth & Vose Company | Gasket material |
JPH0616404A (ja) * | 1992-06-26 | 1994-01-25 | Bridgestone Corp | 高純度炭素粉末、高純度炭化物粉末、高純度窒化物粉末及びこれらの成形焼結体の製造方法 |
TW201341B (en) | 1992-08-07 | 1993-03-01 | Raychem Corp | Low thermal expansion seals |
JP3028171B2 (ja) | 1993-08-31 | 2000-04-04 | 日本ピラー工業株式会社 | 複合ガスケット |
US5499827A (en) | 1993-06-30 | 1996-03-19 | Thermal Dynamics International, Inc. | Seal for shafts and valve stems |
JP2645800B2 (ja) | 1993-12-14 | 1997-08-25 | 日本ピラー工業株式会社 | 膨張黒鉛製シール素材およびその製造方法ならびにガスケット用シート |
GB2287734B (en) | 1994-03-22 | 1997-10-01 | Fmc Corp | Seals containing non-metallic springs |
CN1096043A (zh) * | 1994-03-31 | 1994-12-07 | 秦树南 | 一种高频加温复合柔性石墨填料的生产工艺及其制品 |
US5495979A (en) | 1994-06-01 | 1996-03-05 | Surmet Corporation | Metal-bonded, carbon fiber-reinforced composites |
US5509555A (en) | 1994-06-03 | 1996-04-23 | Massachusetts Institute Of Technology | Method for producing an article by pressureless reactive infiltration |
US5494753A (en) | 1994-06-20 | 1996-02-27 | General Electric Company | Articles having thermal conductors of graphite |
US5455000A (en) | 1994-07-01 | 1995-10-03 | Massachusetts Institute Of Technology | Method for preparation of a functionally gradient material |
US5467814A (en) | 1995-02-24 | 1995-11-21 | The United States Of America As Represented By The Secretary Of The Navy | Graphite/epoxy heat sink/mounting for common pressure vessel |
US5765838A (en) | 1995-06-06 | 1998-06-16 | Nippon Pillar Packing Co., Ltd. | Sealing gasket made of expanded graphite, with opened thin-leaf surface structure |
GB9600103D0 (en) | 1996-01-04 | 1996-03-06 | Nodeco Ltd | Improvements to offshore drilling apparatus |
US5968653A (en) | 1996-01-11 | 1999-10-19 | The Morgan Crucible Company, Plc | Carbon-graphite/silicon carbide composite article |
GB9604757D0 (en) | 1996-03-06 | 1996-05-08 | Flexitallic Sealing Materials | Seal material |
US5730444A (en) | 1996-03-08 | 1998-03-24 | Skf Usa Inc. | Seal with embedded garter spring |
US6182974B1 (en) | 1996-03-22 | 2001-02-06 | Garlock, Inc. | Stuffing box packing assembly |
KR100257657B1 (ko) | 1996-07-05 | 2000-06-01 | 이와나미 기요히사 | 팽창흑연제 밀봉소재 및 그 제조방법 |
GB2317929B (en) | 1996-10-01 | 2000-11-22 | Flexitallic Sealing Materials | Sealing system |
JP3812035B2 (ja) | 1997-02-10 | 2006-08-23 | オイレス工業株式会社 | 球帯状シール体ならびにその製造方法 |
US6131651A (en) | 1998-09-16 | 2000-10-17 | Advanced Ceramics Corporation | Flexible heat transfer device and method |
DE19804283B4 (de) | 1998-02-04 | 2006-10-12 | Sgl Carbon Ag | Metallverstärkter Graphitschichtstoff |
US6050572A (en) | 1998-03-09 | 2000-04-18 | Bal Seal Engineering Company, Inc. | Rotary cartridge seals with retainer |
US20010003389A1 (en) | 1999-02-16 | 2001-06-14 | C. James Bushman | High temperature static seal |
US6128874A (en) | 1999-03-26 | 2000-10-10 | Unifrax Corporation | Fire resistant barrier for dynamic expansion joints |
JP3987656B2 (ja) * | 1999-03-30 | 2007-10-10 | 財団法人鉄道総合技術研究所 | 摺動集電用チタン銅炭素複合材料、及び摺動集電用チタン銅炭素複合材料の製造方法 |
US6923631B2 (en) | 2000-04-12 | 2005-08-02 | Advanced Energy Technology Inc. | Apparatus for forming a resin impregnated flexible graphite sheet |
US6075701A (en) | 1999-05-14 | 2000-06-13 | Hughes Electronics Corporation | Electronic structure having an embedded pyrolytic graphite heat sink material |
US6506482B1 (en) | 1999-05-24 | 2003-01-14 | Carbon Ceramics Company, Llc | Vitreous carbon composite and method of making and using same |
JP3547078B2 (ja) | 1999-06-11 | 2004-07-28 | ニチアス株式会社 | シリンダブロックの製造方法 |
US6234490B1 (en) | 1999-07-09 | 2001-05-22 | George B. Champlin | Leakfree pumpback packing |
US6273431B1 (en) | 1999-11-15 | 2001-08-14 | Garlock Inc | Forged valve stem packing set |
US6933531B1 (en) * | 1999-12-24 | 2005-08-23 | Ngk Insulators, Ltd. | Heat sink material and method of manufacturing the heat sink material |
AT412302B (de) | 2000-03-28 | 2004-12-27 | Hoerbiger Ventilwerke Gmbh | Selbsttätiges ventil |
DE10060839A1 (de) | 2000-12-07 | 2002-06-13 | Sgl Carbon Ag | Imprägnierter Körper aus expandiertem Graphit |
US20030024611A1 (en) | 2001-05-15 | 2003-02-06 | Cornie James A. | Discontinuous carbon fiber reinforced metal matrix composite |
US6585053B2 (en) | 2001-09-07 | 2003-07-01 | Weatherford/Lamb, Inc. | Method for creating a polished bore receptacle |
US6641143B2 (en) | 2002-01-18 | 2003-11-04 | The Metraflex Company | Multi-linked seal assembly having material that swells when exposed to fire |
DE10212486A1 (de) * | 2002-03-21 | 2003-10-16 | Sgl Carbon Ag | Verbundwerkstoff mit Verstärkungsfasern aus Kohlenstoff |
CA2486703C (en) | 2002-05-30 | 2008-10-07 | Baker Hughes Incorporated | High pressure and temperature seal for downhole use |
US7475882B2 (en) | 2002-06-14 | 2009-01-13 | Dana Heavy Vehicle Systems Group, Llc | Silicone foam rubber sealing bead on composite gasket and method of manufacturing |
US6880639B2 (en) | 2002-08-27 | 2005-04-19 | Rw Capillary Tubing Accessories, L.L.C. | Downhole injection system |
US20040127621A1 (en) | 2002-09-12 | 2004-07-01 | Board Of Trustees Of Michigan State University | Expanded graphite and products produced therefrom |
DE10242566A1 (de) | 2002-09-13 | 2004-03-25 | Sgl Carbon Ag | Faserverstärkte Verbundkeramik und Verfahren zu deren Herstellung |
US20040155382A1 (en) | 2002-12-03 | 2004-08-12 | Dai Huang | Manufacture of carbon/carbon composites by hot pressing |
FR2849651B1 (fr) | 2003-01-08 | 2008-02-15 | Carbone Lorraine Composants | Structures isolante comprenant des couches en particules de graphite expanse comprimees a des densites differentes, elements isolants thermiques realises a partir de ces structures |
US7601425B2 (en) | 2003-03-07 | 2009-10-13 | The Curators Of The University Of Missouri | Corrosion resistant coatings containing carbon |
EP1611056B1 (en) | 2003-03-31 | 2018-04-04 | Young Woo Shin | Manufacturing method of expanded graphite products |
US6789634B1 (en) | 2003-05-28 | 2004-09-14 | Smith International, Inc | Self-lubricating elastomeric seal with polarized graphite |
US7063870B2 (en) | 2004-05-25 | 2006-06-20 | Honeywell International Inc. | Manufacture of functionally graded carbon-carbon composites |
NO325434B1 (no) | 2004-05-25 | 2008-05-05 | Easy Well Solutions As | Fremgangsmate og anordning for a ekspandere et legeme under overtrykk |
JP5133685B2 (ja) | 2004-07-15 | 2013-01-30 | スリーエム イノベイティブ プロパティズ カンパニー | 汚染制御要素取付システムおよび汚染制御装置 |
JP4224438B2 (ja) | 2004-07-16 | 2009-02-12 | 日信工業株式会社 | 炭素繊維複合金属材料の製造方法 |
GB0418736D0 (en) | 2004-08-21 | 2004-09-22 | Univ Catholique Louvain | Machinable metallic composites |
US20060042801A1 (en) | 2004-08-24 | 2006-03-02 | Hackworth Matthew R | Isolation device and method |
GEP20115214B (en) | 2005-02-25 | 2011-05-25 | Superior Graphite Co | Graphite coating of particulate materials |
US20060249917A1 (en) | 2005-04-07 | 2006-11-09 | Saint-Gobain Performance Plastics Corporation | Composite sealing device |
US7328685B2 (en) | 2005-06-01 | 2008-02-12 | Dana Corporation | Slip joint exhaust manifolds |
US20090194205A1 (en) | 2005-10-03 | 2009-08-06 | Loffler Jorg F | Bulk Metallic Glass/Graphite Composites |
DE102005059614A1 (de) | 2005-12-12 | 2007-06-14 | Nano-X Gmbh | Beschichtungsmaterial zum Schutz von Metallen, insbesondere Stahl, vor Korrosion und/oder Verzunderung, Verfahren zum Beschichten von Metallen und Metallelement |
US7604049B2 (en) | 2005-12-16 | 2009-10-20 | Schlumberger Technology Corporation | Polymeric composites, oilfield elements comprising same, and methods of using same in oilfield applications |
JP4580889B2 (ja) | 2006-04-05 | 2010-11-17 | 日本ピラー工業株式会社 | 燃料電池用セパレータ及びその製造方法 |
EP1860165A1 (en) | 2006-05-24 | 2007-11-28 | ARCELOR France | Organic coated metallic substrate with enhanced heat transfer properties and method of production thereof |
CN101528828A (zh) | 2006-08-10 | 2009-09-09 | 陶氏环球技术公司 | 填充有高倍膨胀石墨的聚合物 |
US20080128067A1 (en) | 2006-10-08 | 2008-06-05 | Momentive Performance Materials Inc. | Heat transfer composite, associated device and method |
KR20080042551A (ko) | 2006-11-10 | 2008-05-15 | 삼성에스디아이 주식회사 | 연료 전지용 전극, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템 |
US20080152577A1 (en) | 2006-12-21 | 2008-06-26 | Addiego William P | Ordered mesoporous carbons and method for manufacturing same |
WO2008077583A1 (de) | 2006-12-22 | 2008-07-03 | Sgl Carbon Ag | Dichtungsmaterial |
ES2304314B2 (es) * | 2007-03-27 | 2009-06-22 | Universidad De Alicante | Produccion de materiales compuestos con alta conductividad termica. |
US8691129B2 (en) | 2007-05-08 | 2014-04-08 | Nanotek Instruments, Inc. | Method of producing exfoliated graphite composite compositions for fuel cell flow field plates |
US7992642B2 (en) | 2007-05-23 | 2011-08-09 | Schlumberger Technology Corporation | Polished bore receptacle |
US7948739B2 (en) | 2007-08-27 | 2011-05-24 | Nanotek Instruments, Inc. | Graphite-carbon composite electrode for supercapacitors |
US8043703B2 (en) | 2007-09-13 | 2011-10-25 | Metal Matrix Cast Composites LLC | Thermally conductive graphite reinforced alloys |
US7758783B2 (en) | 2007-09-17 | 2010-07-20 | Nanotek Instruments, Inc. | Continious production of exfoliated graphite composite compositions and flow field plates |
CN101821415B (zh) | 2007-10-18 | 2012-12-05 | 岛根县 | 具有高导热性的金属-石墨复合材料和其制造方法 |
EP2056004A1 (en) | 2007-10-29 | 2009-05-06 | General Electric Company | Mechanical seals and methods of making |
US20090151847A1 (en) | 2007-12-17 | 2009-06-18 | Aruna Zhamu | Process for producing laminated exfoliated graphite composite-metal compositions for fuel cell bipolar plate applications |
US7828301B2 (en) | 2008-01-25 | 2010-11-09 | Intelliserv, Llc | Self-energized backup ring for annular seals |
US8075794B2 (en) | 2008-07-01 | 2011-12-13 | Teledyne Scientific & Imaging, Llc | Magnetic graphite nanoplatelets |
US8573314B2 (en) | 2008-11-20 | 2013-11-05 | Schlumberger Technology Corporation | Packer system with reduced friction during actuation |
MY152442A (en) | 2008-12-26 | 2014-09-30 | Sekisui Chemical Co Ltd | Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery |
TWI403576B (zh) | 2008-12-31 | 2013-08-01 | Ind Tech Res Inst | 含碳金屬複合材料及其製作方法 |
WO2010091397A2 (en) | 2009-02-09 | 2010-08-12 | Board Of Regents, The University Of Texas System | Protective carbon coatings |
US20100266790A1 (en) | 2009-04-16 | 2010-10-21 | Grzegorz Jan Kusinski | Structural Components for Oil, Gas, Exploration, Refining and Petrochemical Applications |
US8518531B2 (en) | 2009-08-07 | 2013-08-27 | Pradeep K. Rohatgi | Self healing metals and alloys—including structural alloys and self-healing solders |
US8298969B2 (en) | 2009-08-19 | 2012-10-30 | Milliken & Company | Multi-layer composite material |
GB0917098D0 (en) | 2009-09-29 | 2009-11-11 | Morganite Elect Carbon | Carbon materials |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US8315039B2 (en) | 2009-12-28 | 2012-11-20 | Nanotek Instruments, Inc. | Spacer-modified nano graphene electrodes for supercapacitors |
DE102010002989A1 (de) | 2010-03-17 | 2011-09-22 | Sgl Carbon Se | Materialzusammensetzung, deren Herstellung und Verwendung |
US9193879B2 (en) | 2010-02-17 | 2015-11-24 | Baker Hughes Incorporated | Nano-coatings for articles |
DE102011075810A1 (de) | 2011-05-13 | 2012-11-15 | Voith Patent Gmbh | Korrosionsbeständige walzenbeschichtung |
US20130045423A1 (en) | 2011-08-18 | 2013-02-21 | Hong Kong Applied Science and Technology Research Institute Company Limited | Porous conductive active composite electrode for litihium ion batteries |
KR101354712B1 (ko) | 2011-10-12 | 2014-01-24 | 광주과학기술원 | 입상화 탄소 메조 기공 구조체의 제조 방법 |
EP2586963A1 (en) | 2011-10-28 | 2013-05-01 | Welltec A/S | Sealing material for annular barriers |
EP2825878A4 (en) | 2012-03-08 | 2016-07-20 | Waters Technologies Corp | COUNTER-PRESSURE CONTROL |
EP2644819A1 (en) | 2012-03-30 | 2013-10-02 | Welltec A/S | An annular barrier having expansion tubes |
EP2644820A1 (en) | 2012-03-30 | 2013-10-02 | Welltec A/S | An annular barrier with a seal |
US20130287326A1 (en) | 2012-04-27 | 2013-10-31 | Roller Bearing Company Of America, Inc. | Spherical plain bearing with solid graphite lubricating plugs |
US20130284737A1 (en) | 2012-04-30 | 2013-10-31 | National Cheng Kung University | Graphite foil-bonded device and method for preparing same |
US9260926B2 (en) | 2012-05-03 | 2016-02-16 | Weatherford Technology Holdings, Llc | Seal stem |
US9404030B2 (en) | 2012-08-14 | 2016-08-02 | Baker Hughes Incorporated | Swellable article |
JP2014141746A (ja) | 2012-12-27 | 2014-08-07 | Shibaura Institute Of Technology | 放熱用複合材及びその製造方法並びに放熱用複合材製造用の混合粉 |
US10087073B2 (en) | 2013-02-14 | 2018-10-02 | Nanotek Instruments, Inc. | Nano graphene platelet-reinforced composite heat sinks and process for producing same |
CN105190948B (zh) | 2013-03-14 | 2019-04-26 | 14族科技公司 | 包含锂合金化的电化学改性剂的复合碳材料 |
WO2015021627A1 (en) | 2013-08-15 | 2015-02-19 | Norgren Inc. | Apparatus and method for a one-way fuse valve |
KR102263351B1 (ko) | 2014-03-21 | 2021-06-14 | 생-고뱅 퍼포먼스 플라스틱스 코포레이션 | 회전축 시일 |
US9325012B1 (en) * | 2014-09-17 | 2016-04-26 | Baker Hughes Incorporated | Carbon composites |
US10315922B2 (en) | 2014-09-29 | 2019-06-11 | Baker Hughes, A Ge Company, Llc | Carbon composites and methods of manufacture |
US10480288B2 (en) | 2014-10-15 | 2019-11-19 | Baker Hughes, A Ge Company, Llc | Articles containing carbon composites and methods of manufacture |
US20160130519A1 (en) | 2014-11-06 | 2016-05-12 | Baker Hughes Incorporated | Methods for preparing anti-friction coatings |
US9962903B2 (en) | 2014-11-13 | 2018-05-08 | Baker Hughes, A Ge Company, Llc | Reinforced composites, methods of manufacture, and articles therefrom |
US9745451B2 (en) | 2014-11-17 | 2017-08-29 | Baker Hughes Incorporated | Swellable compositions, articles formed therefrom, and methods of manufacture thereof |
US11097511B2 (en) | 2014-11-18 | 2021-08-24 | Baker Hughes, A Ge Company, Llc | Methods of forming polymer coatings on metallic substrates |
US9714709B2 (en) | 2014-11-25 | 2017-07-25 | Baker Hughes Incorporated | Functionally graded articles and methods of manufacture |
US9726300B2 (en) | 2014-11-25 | 2017-08-08 | Baker Hughes Incorporated | Self-lubricating flexible carbon composite seal |
US10300627B2 (en) | 2014-11-25 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Method of forming a flexible carbon composite self-lubricating seal |
US20160145965A1 (en) | 2014-11-25 | 2016-05-26 | Baker Hughes Incorporated | Flexible graphite packer |
US20160186031A1 (en) | 2014-12-08 | 2016-06-30 | Baker Hughes Incorporated | Carbon composites having high thermal conductivity, articles thereof, and methods of manufacture |
US9670747B2 (en) | 2014-12-08 | 2017-06-06 | Baker Hughes Incorporated | Annulus sealing arrangement and method of sealing an annulus |
US9840887B2 (en) | 2015-05-13 | 2017-12-12 | Baker Hughes Incorporated | Wear-resistant and self-lubricant bore receptacle packoff tool |
US10125274B2 (en) | 2016-05-03 | 2018-11-13 | Baker Hughes, A Ge Company, Llc | Coatings containing carbon composite fillers and methods of manufacture |
US10344559B2 (en) | 2016-05-26 | 2019-07-09 | Baker Hughes, A Ge Company, Llc | High temperature high pressure seal for downhole chemical injection applications |
-
2014
- 2014-11-06 US US14/534,356 patent/US9963395B2/en active Active
- 2014-11-13 WO PCT/US2014/065389 patent/WO2015088698A1/en active Application Filing
- 2014-11-13 JP JP2016536987A patent/JP6624686B2/ja active Active
- 2014-11-13 CN CN201480067026.6A patent/CN105813975B/zh active Active
- 2014-11-13 CA CA2930670A patent/CA2930670C/en active Active
- 2014-11-13 EP EP14870030.5A patent/EP3080047B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20150158773A1 (en) | 2015-06-11 |
EP3080047A4 (en) | 2017-08-09 |
CN105813975A (zh) | 2016-07-27 |
CA2930670C (en) | 2018-04-03 |
JP2017505274A (ja) | 2017-02-16 |
WO2015088698A1 (en) | 2015-06-18 |
EP3080047A1 (en) | 2016-10-19 |
JP6624686B2 (ja) | 2019-12-25 |
CA2930670A1 (en) | 2015-06-18 |
EP3080047B1 (en) | 2019-10-02 |
US9963395B2 (en) | 2018-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105813975B (zh) | 碳复合物、制备方法及其用途 | |
US10202310B2 (en) | Carbon composites | |
US10315922B2 (en) | Carbon composites and methods of manufacture | |
Jansen et al. | Amorphous multinary ceramics in the Si-BNC system | |
Cheng et al. | A SiCnw/PyC-toughened ZrB2-SiC coating for protecting Si-SiC coated C/C composites against oxidation | |
US9284229B2 (en) | Carbon composites, methods of manufacture, and uses thereof | |
He et al. | Excluding molten fluoride salt from nuclear graphite by SiC/glassy carbon composite coating | |
JP6410113B2 (ja) | 炭素複合材、製造方法、及びその使用 | |
WO2013098153A1 (en) | Diamond composite and a method of making a diamond composite | |
JP2010070421A (ja) | SiC繊維強化型SiC複合材料の製造方法 | |
KR20110074176A (ko) | 고순도 탄화규소 제품 제조 방법 | |
JP3605133B2 (ja) | 基材に対して傾斜機能的なダイアモンドライクカーボン膜を被覆した炭化物材料とその製造方法 | |
EP3597621B1 (en) | Method for producing silicon-carbide-based composite | |
EP2933353A1 (en) | Use of silicon and carbon precursors for producing fiber-reinforced composites | |
US11702369B2 (en) | Method of fabricating a ceramic composite | |
JP5145551B2 (ja) | 炭化物内包カーボンナノカプセルの製造方法 | |
CA1336558C (en) | Composite refractory material | |
JP7085388B2 (ja) | SiC繊維強化SiC複合材料の製造方法 | |
JP2017088418A (ja) | SiC繊維強化SiC複合材料の製造方法 | |
JP2792749B2 (ja) | 耐酸化性炭素材料及びその製造方法 | |
JPWO2014081005A1 (ja) | セラミックス炭素複合材の特性制御方法並びにセラミックス炭素複合材 | |
JP2013014493A (ja) | 炭素−炭化ケイ素複合材 | |
JP2007084395A (ja) | 焼結用セッター材 | |
Liu et al. | EFFECT OF TEMPERATURE FIELD ON DEPOSITION OF BORON CARBIDE COATING FORM BCI3-CH4-H2 SYSTEM | |
MĂRĂSCU-KLEIN | THE APPLICATION OF CARBON MATERIALS IN ADVANCED TECHNOLOGIES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |