CN106565243B - 压缩膨胀石墨导热复合材料及其制备方法 - Google Patents

压缩膨胀石墨导热复合材料及其制备方法 Download PDF

Info

Publication number
CN106565243B
CN106565243B CN201610978082.6A CN201610978082A CN106565243B CN 106565243 B CN106565243 B CN 106565243B CN 201610978082 A CN201610978082 A CN 201610978082A CN 106565243 B CN106565243 B CN 106565243B
Authority
CN
China
Prior art keywords
compression
graphite
expansion
expansion graphite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610978082.6A
Other languages
English (en)
Other versions
CN106565243A (zh
Inventor
杜鸿达
陈威
祝家祺
干林
李佳
徐成俊
褚晓东
姚有为
李宝华
杨全红
贺艳兵
康飞宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201610978082.6A priority Critical patent/CN106565243B/zh
Publication of CN106565243A publication Critical patent/CN106565243A/zh
Application granted granted Critical
Publication of CN106565243B publication Critical patent/CN106565243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/47Oils, fats or waxes natural resins
    • C04B41/478Bitumen, asphalt, e.g. paraffin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4823Phenol-formaldehyde condensation products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/84Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种压缩膨胀石墨导热复合材料的制备方法,所述制备方法包括如下步骤:一种压缩膨胀石墨导热复合材料的制备方法,包括如下步骤:S1、制备压缩膨胀石墨;S2、将所述压缩膨胀石墨采用化学气相渗透法沉积热解碳;S3、将所述沉积热解碳的压缩膨胀石墨置于真空高温炉中,在真空环境中于2400‑3000℃的温度下保温1‑3小时,得到沉积石墨化热解碳的压缩膨胀石墨;S4、将有机填充物填充于沉积石墨化热解碳的压缩膨胀石墨内,得到压缩膨胀和石墨导热复合材料。本发明还提供一种由所述制备方法制得的压缩膨胀石墨导热复合材料,及应用所述压缩膨胀石墨导热复合材料的封装材料。

Description

压缩膨胀石墨导热复合材料及其制备方法
技术领域
本发明涉及石墨复合材料制备领域,具体涉及一种压缩膨胀石墨导热复合材料及其制备方法。
背景技术
随着科技的进步和工业的发展,特别是电子领域的崛起以及大批大功率器件的涌现,散热传热问题已成为限制这些产品进一步改良优化的一个瓶颈。在诸多领域中,金属由于其较高的传热效率历来被用作热管理的主要材料,但对于金属而言,高分子材料具有更加优异的性能,如低密度,更强的抗氧化性、抗腐蚀性以及更高的加工性能。但大部分高分子材料都是热的不良导体,因此开发高导热的高分子材料在工业领域具有重大价值。
膨胀石墨由插层石墨化合物高温膨胀制得,具有和天然石墨相当的优越的导热性能,常被作为导热填充剂制备复合材料,用于提高导热材料,主要是高分子有机物的导热性能。
膨胀石墨导热复合材料的制备方法通常有机械干混法,溶液共混法,浸渍法。机械干混法是将膨胀石墨与粉末状物质(如沥青)直接搅拌干混,使两者尽可能分布均匀。溶液共混法是将膨胀石墨与粉末状高分子材料在溶剂(如酒精)中超声混合或直接与液相的高分子材料(树脂)混合,固化。浸渍法是先将膨胀石墨压缩成一定密度的块状物体,然后将液相的高分子通过浸渍的方法浸入压缩膨胀石墨块的间隙中。其中机械干混法和溶液共混法容易破坏膨胀石墨的蠕虫状结构,影响性能。而浸渍法不仅保留了膨胀石墨的蠕虫状结构,形成了石墨片之间的直接接触,而且在压缩的过程中有效增加了膨胀石墨的取向程度,明显提高膨胀石墨的导热效率。
但在浸渍过程中,由于液体的流动性,特别是分子量较大的高分子,会冲开石墨片与石墨片之间的搭接处,因此对压缩膨胀石墨的导热网络会造成一定的破坏,影响导热性能。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种结构稳定、性能优良的压缩膨胀石墨导热复合材料的制备方法。
另,还有必要提供由上述制备方法制得的压缩膨胀石墨导热复合材料。
一种压缩膨胀石墨导热复合材料的制备方法,包括如下步骤:
S1、制备压缩膨胀石墨;
S2、将所述压缩膨胀石墨采用化学气相渗透法沉积热解碳,其中所述化学气相沉积法采用的气体为氩气和甲烷的混合气体;
S3、将所述沉积热解碳的压缩膨胀石墨置于真空高温炉中,在真空环境中于2400-3000℃的温度下保温1-3小时,得到沉积石墨化热解碳的压缩膨胀石墨;
S4、将有机填充物填充于沉积石墨化热解碳的压缩膨胀石墨内,得到压缩膨胀和石墨导热复合材料。
进一步地,将石墨经过强酸插层氧化处理后得到可膨胀石墨,再经过高温膨胀获得膨胀石墨,将膨胀石墨进行压缩得到压缩膨胀石墨。
进一步地,在步骤S1中通过高温炉或者微波炉对可膨胀石墨进行处理得到膨胀石墨。
进一步地,所述高温炉的温度为800-1000℃。
进一步地,所述化学气相渗透法中通入的气体为氩气和甲烷的混合气体,并且氩气和甲烷的体积比介于1:1-3:1之间。
进一步地,所述化学气相渗透法中采用的温度为900-1200℃。
进一步地,在步骤S3中先将沉积石墨化热解碳的压缩膨胀石墨进行抽真空,排除沉积热解碳的压缩膨胀石墨内的空气,再向真空区域注入有机填充物,再采用准静态加压的方式将所述有机填充物填充至沉积热解碳的压缩膨胀石墨内。
进一步地,所述有机物为石蜡、酚醛树脂和环氧树脂中的任意一种。
一种压缩膨胀石墨导热复合材料,其中所述压缩膨胀石墨导热复合材料包括压缩膨胀石墨、石墨化热解碳和有机填充物,所述压缩膨胀石墨包括多个石墨片层,并由所述石墨片层堆积形成,所述石墨化热解碳沉积沉积于所述石墨片层的连接处,所述有机填充物填充在沉积石墨化热解碳的压缩膨胀石墨的空隙内,所述压缩膨胀石墨导热复合材料由如上任意一项所述的缩膨胀石墨导热复合材料的制备方法制得。
进一步地,所述石墨化热解碳和所述压缩膨胀石墨的质量比介于0.05-1之间。
进一步地,所述有机填充物为石蜡、石蜡、酚醛树脂和环氧树脂中的任意一种。
一种封装材料,所述封装材料包括如上所述的压缩膨胀石墨导热复合材料。
附图说明
图1为本发明提供的压缩膨胀石墨导热复合材料的制备方法流程图。
图2为本发明提供的不同密度下的压缩膨胀石墨导热复合材料和沉积石墨化热解碳的压缩膨胀石墨的热导率测试图。
主要元件符号说明
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
请参阅图1,是本发明提供压缩膨胀石墨导热复合材料的制备方法流程图,包括如下步骤:
S1,制备压缩膨胀石墨;
要制备压缩膨胀石墨需要经过以下两个步骤:
首先,将石墨经过该强酸插层氧化处理后得到可膨胀石墨,再经过高温膨胀获得膨胀石墨;
在本发明中,采用可膨胀石墨制备膨胀石墨采用高温膨胀法或微波膨胀法。其中高温膨胀法一般采用高温炉进行加热,在800-1000℃条件下,反应10-30s,从而得到膨胀石墨。微波膨胀法采用将可膨胀石墨放置于微波设备内进行加热,可以快速地将可膨胀石墨膨胀从而制得膨胀石墨,从而具有更节能、高效的特点。
其次,将制备的膨胀石墨进行压缩,从而得到压缩膨胀石墨。
具体地,所述压缩膨胀石墨可以根据需要制得不同密度的压缩膨胀石墨。在本申请中,所述压缩膨胀石墨的密度介于0.1-0.4g/cm3
S2,将在步骤S1中制备的压缩膨胀石墨在高温下采用化学气相渗透法沉积热解碳;
具体地,将在步骤S1中制备得到的压缩膨胀石墨放置于管式炉中,并且向其中通入氩气作为保护气体并升温到1000-1100℃,然后向其中通入氩气和甲烷气体的混合气体。其中氩气与甲烷气体的体积比介于1:1-3:1之间。甲烷气体在1000-1100℃的温度范围内裂解形成热解碳,所述热解碳会进入到压缩膨胀石墨内,得到沉积有热解碳的压缩膨胀石墨。压缩膨胀石墨由石墨片堆积组成,所述热解碳填充于石墨片与石墨片的连接处。
S3,将在步骤S2中制备得到的沉积热解碳的压缩膨胀石墨置于真空高温炉中,在真空环境中于2400-3000℃的温度下保温1-3小时,得到沉积石墨化热解碳的压缩膨胀石墨。
S4,将有机物填充至在步骤S3中制备得到的沉积石墨化热解碳的压缩膨胀石墨内,得到压缩膨胀石墨导热复合材料。
在本申请中主要采用先真空渗透再采用准静态加压的方式将有机填充物填充至所述沉积石墨化热解碳的压缩膨胀石墨内。具体地,将沉积石墨化热解碳的压缩膨胀石墨放入高压反应釜中,加入有机溶剂并将高温反应釜抽真空处理,待高分子溶液淹没沉积石墨化热解碳的压缩膨胀石墨,然后再采用准静态加压形式,向高压反应釜中通入惰性气体,并以0.01Mpa/min的速率加压,直至反应釜中气压达到0.8Mpa,并保持0.5h。然后将浸渍石蜡溶液后的压缩膨胀石墨置于100-120℃的烘箱中处理3小时,然后得到固化后的压缩膨胀石墨导热复合材料。所述惰性气体可以为氮气或氩气。所述有机物可以为硅橡胶、石蜡、酚醛树脂和环氧树脂中的任意一种。可以理解,本技术方案中所涉及的大分子有机物并不仅限于上述有机物及其溶液,只要是通过固化方式聚合的大分子有机物材料或者通过溶解或熔化方式形成的大分子有机物材料均可。
下面通过具体实施例来对本发明做进一步说明。
实施例1
本实施例涉及一种沉积石墨化热解碳的压缩膨胀石墨的制备方法,包括如下步骤:
(1)、制备压缩膨胀石墨;
称取膨胀石墨,然后对膨胀石墨进行压缩制得压缩膨胀石墨。本实施例中所述压缩膨胀石墨的密度为0.1g/cm3。所述压缩膨胀石墨包括多个石墨片层,所述多个石墨片层相互堆叠形成压缩膨胀石墨。为了便于计算,在本实施例中,所述压缩膨胀石墨为边长1cm的正方体压缩膨胀石墨块,当然,所述压缩膨胀石墨还可以为其他的形状,本实施例对此不做限定。
(2)、对压缩膨胀石墨块采用化学气相渗透法沉积热解碳;
将上述步骤中制备得到的压缩膨胀石墨置于管式炉中,并且对管式炉进行抽真空处理,然后再向其中通入氩气。为了确保排除空气中的氧气,可对抽真空以及通入氩气的步骤进行多次重复。
在氩气气氛保护下,将管式炉升温至1100摄氏度,然后同时通入甲烷和氩气,并且甲烷和氩气的流量均为50mL/min,通过调节管式炉端头阀门保持炉压在0.02Mpa,反应时间为30min。然后在氩气气氛下进行自然冷却,得到沉积热解碳的压缩膨胀石墨。在本实施例中,所述热解碳的密度为0.01g/cm3。具体地,所述热解碳沉积于所述压缩膨胀石墨的石墨片层的交界处。最终得到沉积热解碳的压缩膨胀石墨。
(3)、将在上一步骤中制得的沉积热解碳的压缩膨胀石墨置于真空高温炉中,在本实施例中,石墨化温度为2400℃,具体地,在真空环境中于2400℃温度下保温1小时,得到沉积石墨化热解碳的压缩膨胀石墨。
实施例2
本实施中沉积石墨化热解碳的压缩膨胀石墨的制备方法,与实施例1的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.15g/cm3
实施例3
本实施中沉积石墨化热解碳的压缩膨胀石墨的制备方法,与实施例1的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.2g/cm3
实施例4
本实施中沉积石墨化热解碳的压缩膨胀石墨的制备方法,与实施例1的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.25g/cm3
实施例5
本实施中沉积石墨化热解碳的压缩膨胀石墨的制备方法,与实施例1的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.3g/cm3
实施例6
本实施中沉积石墨化热解碳的压缩膨胀石墨的制备方法,与实施例1的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.35g/cm3
实施例7
本实施中沉积石墨化热解碳的压缩膨胀石墨的制备方法,与实施例1的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.4g/cm3
实施例8
本实施例涉及一种压缩膨胀石墨的导热复合材料的制备方法,包括如下步骤:
(1)、制备压缩膨胀石墨;
称取膨胀石墨,然后对膨胀石墨进行压缩制得压缩膨胀石墨。本实施例中所述压缩膨胀石墨的密度为0.1g/cm3。所述压缩膨胀石墨包括多个石墨片层,所述多个石墨片层相互堆叠形成压缩膨胀石墨。为了便于计算,在本实施例中,所述压缩膨胀石墨为边长1cm的正方体压缩膨胀石墨块,当然,所述压缩膨胀石墨还可以为其他的形状,本实施例对此不做限定。
(2)、对压缩膨胀石墨块采用化学气相渗透法沉积热解碳;
将上述步骤中制备得到的压缩膨胀石墨置于管式炉中,并且对管式炉进行抽真空处理,然后再向其中通入氩气。为了确保排除空气中的氧气,可对抽真空以及通入氩气的步骤进行多次重复。
在氩气气氛保护下,将管式炉升温至1100摄氏度,然后同时通入甲烷和氩气,并且甲烷和氩气的流量均为50mL/min,通过调节管式炉端头阀门保持炉压在0.02Mpa,反应时间为30min。然后在氩气气氛下进行自然冷却,得到沉积热解碳的压缩膨胀石墨。在本实施例中,所述热解碳的密度为0.01g/cm3。具体地,所述热解碳沉积于所述压缩膨胀石墨的石墨片层的交界处。最终得到沉积热解碳的压缩膨胀石墨。
(3)、将在上一步骤中制得的沉积热解碳的压缩膨胀石墨置于真空高温炉中,在本实施例中,石墨化温度为2400℃,具体地,在真空环境中于2400℃温度下保温1小时,得到沉积石墨化热解碳的压缩膨胀石墨。
(4)、浸渍石蜡;
将在上述步骤中得到的沉积石墨化热解碳的压缩膨胀石墨放置于100mL的烧杯中,并放置于高压反应釜中,并用铜网将所述沉积石墨化热解碳的压缩膨胀石墨进行固定,防止其在浸渍的过程中浮出液面。将放置有沉积石墨化热解碳的压缩膨胀石墨的烧杯进行抽真空处理,从而将沉积石墨化热解碳的压缩膨胀石墨内部空隙中的空气全部抽出,然后向其中加入石蜡溶液,石蜡溶液淹没沉积热解碳的压缩膨胀石墨,其中在加入石蜡溶液的过程中所述烧杯内保持真空状态。
然后将加入石蜡溶液后的烧杯放入到高压反应釜中,首先对高压反应釜进行抽真空处理,然后通过流量计以50mL/min的速率通入氮气,最终使的高压反应釜中的气压达到0.8MPa,将气压保持在0.8MPa持续0.5小时。
然后将浸渍石蜡溶液后的压缩膨胀石墨置于120℃的烘箱中处理3小时,从而得到固化后的压缩膨胀石墨导热复合材料。
实施例9
本实施中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.15g/cm3;此外,所述石墨化温度为2500℃,保温2小时。
实施例10
本实施中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.2g/cm3;此外,所述石墨化温度为2600℃,保温2小时。
实施例11
本实施中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.25g/cm3;此外,所述石墨化温度为2700℃,保温2小时。
实施例12
本实施中压缩膨胀石墨导热复合材料的制备方法与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.3g/cm3;此外,所述石墨化温度为2800℃,保温3小时。
实施例13
本实施中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.35g/cm3;此外,所述石墨化温度为2900℃,保温2小时。
实施例14
本实施中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所采用的压缩膨胀石墨的密度为0.4g/cm3;此外,所述石墨化温度为3000℃,保温2小时。
实施例15
本实施例中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所浸渍的有机物为硅橡胶,采用的压缩膨胀石墨的密度为0.3g/cm3;此外,所述石墨化温度为3000℃,保温2小时。
实施例15
本实施例中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所浸渍的有机物为酚醛树脂,采用的压缩膨胀石墨的密度为0.1g/cm3;此外,所述石墨化温度为2700℃,保温2小时。
实施例16
本实施例中压缩膨胀石墨导热复合材料的制备方法,与实施例8的压缩膨胀石墨导热复合材料的制备方法基本相同,其不同之处在于,在本实施中所浸渍的有机物为环氧树脂,采用的压缩膨胀石墨的密度为0.2g/cm3;此外,所述石墨化温度为2900℃,保温3小时。
请参阅图2,图2为本发明提供的不同密度下的压缩膨胀石墨导热复合材料和沉积石墨化热解碳的压缩膨胀石墨的热导率结果图。
其中,line1为实施例1-7提供的压缩膨胀石墨导热复合材料的热导率,line2为实施例8-14提供的沉积石墨化热解碳的压缩膨胀石墨的热导率结果图。从图中可以看出:在低的压缩膨胀石墨密度下,所述压缩膨胀石墨导热复合材料比沉积石墨化热解碳的压缩膨胀石墨具有更高的热导率。当压缩膨胀石墨的密度增加时,导热网络更加完善,导致了石蜡浸渍困难,浸渍石蜡会导致网络结果破坏加剧,此时会导致所述压缩膨胀石墨导热复合材料比沉积石墨化热解碳的压缩膨胀石墨的热导率低。
本发明通过沉积石墨化热解碳的方法来实现固定焊接压缩膨胀石墨的导热网络,可以架构更为完整的网络骨架,降低浸渍剂对导热网络的破坏,显著提升压缩膨胀石墨的热导率。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (12)

1.一种压缩膨胀石墨导热复合材料的制备方法,包括如下步骤:
S1、制备压缩膨胀石墨;
S2、将所述压缩膨胀石墨采用化学气相渗透法沉积热解碳,其中所述化学气相沉积法采用的气体为氩气和甲烷的混合气体;所述热解碳进入到压缩膨胀石墨内,所述压缩膨胀石墨由石墨片堆积组成,所述热解碳填充于石墨片与石墨片的连接处;
S3、将所述沉积热解碳的压缩膨胀石墨置于真空高温炉中,在真空环境中于2400-3000℃的温度下保温1-3小时,得到沉积石墨化热解碳的压缩膨胀石墨;
S4、将有机填充物填充于沉积石墨化热解碳的压缩膨胀石墨内,得到压缩膨胀和石墨导热复合材料。
2.根据权利要求1所述的压缩膨胀石墨导热复合材料的制备方法,其特征在于,将石墨经过强酸插层氧化处理后得到可膨胀石墨,再经过高温膨胀获得膨胀石墨,将膨胀石墨进行压缩得到压缩膨胀石墨。
3.根据权利要求2所述的压缩膨胀石墨导热复合材料的制备方法,其特征在于,在步骤S1中通过高温炉或者微波炉对可膨胀石墨进行处理得到膨胀石墨。
4.根据权利要求3所述的压缩膨胀石墨导热复合材料的制备方法,其特征在于,所述高温炉的温度为800-1000℃。
5.根据权利要求3所述的压缩膨胀石墨导热复合材料的制备方法,其特征在于,所述化学气相渗透法中通入的气体为氩气和甲烷的混合气体,并且氩气和甲烷的体积比介于1:1-3:1之间。
6.根据权利要求5所述的压缩膨胀石墨导热复合材料的制备方法,其特征在于,所述化学气相渗透法中采用的温度为900-1200℃。
7.根据权利要求1所述的压缩膨胀石墨导热复合材料的制备方法,其特征在于,在步骤S3中先将沉积石墨化热解碳的压缩膨胀石墨进行抽真空,排除沉积热解碳的压缩膨胀石墨内的空气,再向真空区域注入有机填充物,再采用准静态加压的方式将所述有机填充物填充至沉积热解碳的压缩膨胀石墨内。
8.根据权利要求7所述的压缩膨胀石墨导热复合材料的制备方法,其特征在于,所述有机填充物为石蜡、酚醛树脂和环氧树脂中的任意一种。
9.一种压缩膨胀石墨导热复合材料,其中所述压缩膨胀石墨导热复合材料包括压缩膨胀石墨、石墨化热解碳和有机填充物,所述压缩膨胀石墨包括多个石墨片层,并由所述石墨片层堆积形成,所述石墨化热解碳沉积于所述石墨片层的连接处,所述有机填充物填充在沉积石墨化热解碳的压缩膨胀石墨的空隙内,所述压缩膨胀石墨导热复合材料由权利要求1-8任意一项所述的缩膨胀石墨导热复合材料的制备方法制得。
10.根据权利要求9所述的压缩膨胀石墨导热复合材料,其特征在于,所述石墨化热解碳和所述压缩膨胀石墨的质量比介于0.05-1之间。
11.根据权利要求10所述的压缩膨胀石墨导热复合材料,其特征在于,所述有机填充物为石蜡、酚醛树脂和环氧树脂中的任意一种。
12.一种封装材料,所述封装材料包括如权利要求9所述的压缩膨胀石墨导热复合材料。
CN201610978082.6A 2016-10-31 2016-10-31 压缩膨胀石墨导热复合材料及其制备方法 Active CN106565243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610978082.6A CN106565243B (zh) 2016-10-31 2016-10-31 压缩膨胀石墨导热复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610978082.6A CN106565243B (zh) 2016-10-31 2016-10-31 压缩膨胀石墨导热复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106565243A CN106565243A (zh) 2017-04-19
CN106565243B true CN106565243B (zh) 2019-09-27

Family

ID=58540172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610978082.6A Active CN106565243B (zh) 2016-10-31 2016-10-31 压缩膨胀石墨导热复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106565243B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329893A (zh) * 2018-03-11 2018-07-27 深圳市驭晟新能源科技有限公司 一种柔性热界面相变复合薄片材料及其制备方法
CN113082657B (zh) * 2021-03-29 2022-07-05 西北工业大学 含有具备表面微观涂层的纤维夹层的乒乓球拍底板及制作方法
CN114621734A (zh) * 2022-04-24 2022-06-14 桂林电子科技大学 一种膨胀石墨-碳纤维热界面材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101134675A (zh) * 2007-08-07 2008-03-05 哈尔滨工程大学 一种石墨基复合材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053652A1 (de) * 2007-11-08 2009-05-14 BAM Bundesanstalt für Materialforschung und -prüfung Expandierter Graphit und Verfahren zu seiner Herstellung
US9963395B2 (en) * 2013-12-11 2018-05-08 Baker Hughes, A Ge Company, Llc Methods of making carbon composites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101134675A (zh) * 2007-08-07 2008-03-05 哈尔滨工程大学 一种石墨基复合材料的制备方法

Also Published As

Publication number Publication date
CN106565243A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106565243B (zh) 压缩膨胀石墨导热复合材料及其制备方法
CN105694427B (zh) 一种石墨烯复合材料作为电磁屏蔽材料的应用
CN106519690B (zh) 压缩膨胀石墨导热复合材料及其制备方法
CN106957451B (zh) 一种从废弃碳纤维树脂基复合材料中回收碳纤维的方法
CN104592950A (zh) 高导热石墨烯基聚合物导热膜及其制备方法
CN109437956A (zh) 适用于热压法快速制备的碳碳复合材料平板及其制备方法
CN110078058A (zh) 一种三维多孔石墨烯-聚合物前驱体转化陶瓷复合材料及其制备方法
CN107434905A (zh) 导热聚合物复合材料及其制备方法与应用
US9493377B2 (en) Ceramic material
CN108862234A (zh) 一种碳纤维增强碳气凝胶复合材料的制备方法
CN105695783B (zh) 一种石墨烯/铜基复合材料及其制备方法
CN107324835A (zh) 一种含石墨烯的石墨骨架的制备方法
CN111410546B (zh) 一种多维度高导热石墨烯复合板的制备方法
CN104446656A (zh) 一种多孔碳材料抗氧化涂层的制备方法
CN106543978B (zh) 压缩膨胀石墨导热复合材料及其制备方法
CN109850870A (zh) 一种高强度炭气凝胶及其制备方法和应用
CN109574670A (zh) 一种低孔隙不透性石墨的制备工艺
CN109732943A (zh) 燃料电池用双极板及其制备方法
CN108455995A (zh) 一种碳化硅纤维增强磷酸铝陶瓷基复合材料及其制备方法
CN110289409A (zh) 一种电池正极材料和锂硫电池
CN106519693B (zh) 压缩膨胀石墨导热复合材料及其制备方法
CN102531658A (zh) 一种硬质复合碳纤维保温材料的制作方法
CN109950556B (zh) 一种具有三维多孔结构的碳纤维双极板的制备方法
CN111943721B (zh) 一种耐高温吸波复合材料的制备方法及应用
CN114940829A (zh) 一种二维石墨烯/液态金属/pdms复合膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant