CN105765190A - 氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器 - Google Patents

氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器 Download PDF

Info

Publication number
CN105765190A
CN105765190A CN201480063089.4A CN201480063089A CN105765190A CN 105765190 A CN105765190 A CN 105765190A CN 201480063089 A CN201480063089 A CN 201480063089A CN 105765190 A CN105765190 A CN 105765190A
Authority
CN
China
Prior art keywords
oxidation catalyst
amorphous metallic
oxidation
metallic alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480063089.4A
Other languages
English (en)
Other versions
CN105765190B (zh
Inventor
金运贵
金玟奭
金炯来
李龟洙
蒋在明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Samsung Corning Precision Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Precision Materials Co Ltd filed Critical Samsung Corning Precision Materials Co Ltd
Priority claimed from PCT/KR2014/011083 external-priority patent/WO2015072817A1/ko
Publication of CN105765190A publication Critical patent/CN105765190A/zh
Application granted granted Critical
Publication of CN105765190B publication Critical patent/CN105765190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/19
    • B01J35/56
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0081Preparation by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2027Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/40
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia

Abstract

本发明涉及一种氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器,更具体地,涉及这样一种氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器,所述氧化催化剂通过包括非晶金属合金粉末而形成,从而能够以低成本制备、当施用到用于废气净化的过滤器时能够提高对废气的净化效率并且对于具有安装在其中的用于废气净化的过滤器的废气净化器的操作来说获得可靠性改善。为此,本发明提供了一种氧化催化剂、制备其的方法和包括其的用于废气净化的过滤器,所述氧化催化剂的特性在于涂覆到用于废气净化的过滤器的载体表面上并通过包括非晶金属合金粉末而形成。

Description

氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器
技术领域
本公开涉及一种氧化催化剂、制备其的方法和包括其的废气净化过滤器。更具体地,本公开涉及一种由于其组合物包括非晶金属合金粉末而能够以低成本制备、在施用到废气净化过滤器时能够改善废气净化的效率并且能够有助于改善其中设置废气净化过滤器的废气净化器的操作的可靠性的氧化催化剂。另外,本公开涉及一种制备氧化催化剂的方法和包括氧化催化剂的废气净化过滤器。
背景技术
一般而言,通过各种类型的设备(诸如电厂、炼铁厂和焚烧炉)中的各种燃烧反应器的操作排放的废气会由于低温、湿气含量、不足量的氧等而未完全燃烧。作为通过不完全燃烧排放到空气的最常见气体的一氧化碳(CO)在被吸入人呼吸道中时对人脑的供氧具有严重的影响。因此,用于减少从热电厂、炼铁厂和用于运输的装置(例如车辆)排放的废气的CO浓度的强制法规将生效。
因此,已经开发了用于将有害组分(诸如一氧化碳和烃)转换成无害组分的氧化催化剂体系。图1示出催化转化器作为这样的氧化催化剂体系的示例的催化转化器。催化转化器具有包括基底和载体的多孔陶瓷过滤器的表面用催化剂颗粒涂覆的结构。催化转化器的催化剂允许引入到催化转化器中的一氧化碳或烃与供应到催化转化器的氧反应。通过该反应,一氧化碳或烃转化成可以随后从催化转化器排放的二氧化碳或水。
这里,具有优异的反应性和稳定性的元素(诸如铂(Pt)或铑(Rh))通常用于涂覆多孔陶瓷过滤器的表面的催化剂。然而,Pt和Rh是具有有限储量的稀土金属,而其价格最近由于其增加的需求而呈现出快速增长。这导致废气净化过滤器的制造成本的增加。另外,当长时间段地暴露于温度范围为500℃至600℃的废气时,Pt会由于颗粒的生长或脱落而不利地劣化,使得废气净化的效率降低。
[现有技术文件]
第10-1251499号韩国专利(2013.4.1.)
发明内容
技术问题
因此,考虑到本领域中发生的上述问题,已经做出本发明,并且本发明意图提出由于其组合物包括非晶金属合金粉末而能够以低成本制备、当施用到废气净化过滤器时能够改善废气净化的效率并能够有助于改善其中设置废气净化过滤器的废气净化器的操作的可靠性的氧化催化剂。本公开还提出制备氧化催化剂的方法和包括氧化催化剂的废气净化过滤器。
技术方案
根据一方面,本公开提供了涂覆废气净化过滤器的载体的表面的氧化催化剂,其中,氧化催化剂由非晶金属合金粉末形成。
这里,非晶金属合金粉末可以是包括从由Fe、Ni、Mn、Co、Zr和Pt组成的组中选择的至少一种元素和从由B、Y、Ti、P、Pd、Be、Si、C、Ag、Na、Mg、Ga和Al组成的组中选择的至少两种元素的混合物。
另外,非晶金属合金粉末的颗粒尺寸可以在0.1μm至10μm的范围。
非晶金属合金粉末的表面粗糙度值可以在1nm至10nm的范围。
本公开还提供了制备涂覆废气净化过滤器的载体的表面的氧化催化剂的方法。该方法可以包括:将金属和母合金熔融的熔融步骤;通过将包括金属和母合金的熔融金属合金快速冷却来生产非晶金属合金的快速冷却步骤;以及将非晶金属合金转换成粉末的粉末化步骤。
在熔融步骤中,可以使用从由Fe、Ni、Mn、Co、Zr和Pt组成的组中选择的至少一种元素和从由B、Y、Ti、P、Pd、Be、Si、C、Ag、Na、Mg、Ga和Al组成的组中选择的至少两种元素作为金属和母合金。
在熔融步骤中,可以使用Fe、B、Y、Ti和Pt作为金属和母合金。
在熔融步骤中,可以以至少50原子%的Fe、10原子%至30原子%的B、5原子%至20原子%的Y和0原子%至10原子%的Ti+Pt的比使用Fe、B、Y、Ti和Pt作为金属和母合金。
在快速冷却步骤中,熔融金属合金可以以100℃/s至1,000,000℃/s的范围的冷却速率冷却。
另外,粉末化步骤可以包括在真空雾化(vacuumatomization)或熔体纺丝(meltspinning)之后的粉碎。
该方法还可以包括在粉末化步骤之后增加非晶金属合金的表面粗糙度值的步骤。
另外,该方法还可以包括在氧气氛中在从300℃至600℃的范围的温度下氧化非晶金属合金粉末的氧化步骤。
这里,在氧化步骤之后,由非晶金属合金粉末形成的氧化催化剂具有在150℃下将95%或更多的CO转换成CO2的性质,氧化催化剂不会与NO反应。
在氧化步骤之后,由非晶金属合金粉末形成的氧化催化剂具有在300℃下用于75%或更多的NH3的氧化性质,氧化催化剂在NH3的氧化期间可以不产生NO2副产物。
在氧化步骤中,随着热处理温度增加,非晶金属合金的表面结构可以从FeO结构(其中,非晶金属合金中Fe的氧化程度是+2)变为Fe2O3结构(其中,非晶金属合金中Fe的氧化程度是+3)。
另外,本公开提供了一种废气净化过滤器,所述废气净化过滤器包括:如上面描述的氧化催化剂;以及载体,其表面涂覆有氧化催化剂。
有益效果
根据本公开,使用由具有优异的耐久性的非晶金属合金粉末制备的氧化催化剂代替由诸如Pt或Rh的贵金属形成的现有技术中的催化剂。由此,能够显著地降低现有技术的制造成本。当氧化催化剂施用到废气净化过滤器时,能够改善废气净化的效率,从而有助于改善废气净化器的操作的可靠性。
附图说明
图1是示意性地示出典型的催化转化器的结构视图;
图2是示出结晶金属的原子结构的概念视图;
图3是示出非晶金属的原子结构的概念视图;
图4是顺序地示出根据示例性实施例的制备氧化催化剂的方法的工艺步骤的流程图;
图5是示出通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂的表面形状的SEM显微图;
图6是示出通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂的XRD图;
图7是示出对通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂执行的CO氧化测试的结果的曲线图;
图8是示出在预处理之后对通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂执行的CO氧化测试的结果的曲线图;
图9是示出对通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂执行的NO氧化测试结果的曲线图;
图10是示出对通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂执行的NO-TPD测试结果的曲线图;
图11是示出在预处理之后对通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂执行的NH3氧化测试结果的曲线图;
图12是示出在预处理之后对通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂执行的NH3氧化测试期间的NO2浓度测量的曲线图;
图13是示出对通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂执行的基于氧化的XPS变化的曲线图;
图14是通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂的TEM照片;以及
图15是示出氧化之前和氧化之后通过根据示例性实施例的制备氧化催化剂的方法制备的氧化催化剂的XRD图。
具体实施方式
在下文中,将结合附图详细地参照根据本公开的氧化催化剂、制备其的方法和包括其的废气净化过滤器,在附图中示出了本公开的示例性实施例。
另外,在本发明的描述中,在本发明的主题因包含已知功能和组件的详细描述而被导致不清楚的情况下,将省略已知功能和组件的详细描述。
根据示例性实施例的氧化催化剂是涂覆设置在废气净化器(其设置在电厂、焚烧炉、船舶(vessel)等中)中的废气净化过滤器的载体的表面的催化剂,以参与或促进用于将废气中包含的有害组分(诸如CO或NH3)转化成无害组分的化学反应。根据本实施例的氧化催化剂包含非晶金属合金粉末。
与参照图2和图3的有结晶金属的非晶金属相比,非晶金属以具有非常高的表面能和活性为特征,因为其表面的原子结构是高度无序的并且形成原子键之间表示缺陷的多个自由键。另外,非晶金属由于物理、化学和结构因素可以比结晶金属具有更高的抗腐蚀性和更高的机械强度。
因此,根据本实施例的氧化催化剂在非晶金属的这些特性的基础上被作为用于净化废气的催化剂。当由非晶金属合金粉末形成根据本实施例的氧化催化剂用来净化废气时,与使用贵金属催化剂的现有技术工艺相比,能够改善废气净化的效率。另外,氧化催化剂可以以低成本制备,使得具有设置为废气净化催化剂的氧化催化剂的废气净化过滤器可以以显著低的成本来制备。
另外,由于非晶金属合金由于具有从500℃至600℃的范围的温度的废气既不凝缩也不结晶,因此非晶金属合金具有优异的耐久性。因此,由非晶金属合金形成的氧化催化剂在长时间段地暴露于废气时不从废气净化过滤器的载体脱落,从而有助于改善包括设置氧化催化剂的废气净化过滤器的废气净化器的操作的可靠性。
如上面描述的氧化催化剂可以由非晶金属合金粉末形成,所述非晶金属合金粉末通过混合从由Pt、Ni、Fe、Co和Zr组成的组中选择的至少一种和从由B、P、Pd、Be、Si、C、Ag、Na、Mg、Ga、Y、Ti和Al组成的组中选择的至少两种而产生。即,根据本实施例的氧化催化剂的组合物可以包括三种或更多种元素。
另外,氧化催化剂的非晶金属合金粉末的颗粒尺寸可以为0.1μm至10μm的范围。此外,优选的是,氧化催化剂的非晶金属合金粉末的表面粗糙度为1nm至10nm的范围,使得氧化催化剂具有用于催化剂的最佳比表面积。
在下文中,将参考根据示例性实施例的制备氧化催化剂的方法。
如图4中所示,根据本实施例制备氧化催化剂的方法是制备涂覆设置在废气净化器(设置在电厂、焚烧炉、船舶等中)中的废气净化过滤器的载体的表面的氧化催化剂并包括熔融步骤S1、快速冷却步骤S2和粉末化步骤S3的方法。
首先,熔融步骤S1是将金属和母合金熔融的步骤。即,在熔融步骤S1中,通过将金属和母合金插入到坩埚中并随后加热金属和母合金来制备熔融的液态金属合金。在熔融步骤S1中,可以使用从由Fe、Ni、Mn、Co、Zr和Pt组成的组中选择的至少一种元素和从由B、Y、Ti、P、Pd、Be、Si、C、Ag、Na、Mg、Ga和Al组成的组中选择的至少两种元素作为金属和母合金。例如,在熔融步骤S1中,可以选择Fe、B、Y、Ti和Pt作为金属和母合金。在此情况下,在熔融步骤S1中,金属与母合金的含量比可以控制为至少50原子%的Fe、10原子%至30原子%的B、5原子%至20原子%的Y和0原子%至10原子%的Ti+Pt。
随后的快速冷却步骤S2是将熔融的金属合金快速冷却的步骤。即,快速冷却步骤S2通过快速冷却熔融的金属合金而产生非晶金属合金。就这点而言,在快速冷却步骤S2中,熔融的金属合金可以以100℃/s至1,000,000℃/s范围的冷却速率冷却。当如上面描述快速冷却熔融的金属合金时,熔融的金属合金以像玻璃一样的无序原子布置而凝固,从而形成非晶金属合金。
最后的粉末化步骤S3是将非晶金属合金转换成粉末的步骤。粉末化步骤S3可以是真空雾化或熔体纺丝。即,粉末化步骤S3可以通过真空雾化将非晶金属合金转换成其颗粒尺寸为10μm至50μm的范围的粗粉,然后通过另外的机械研磨将粗粉转换成其颗粒尺寸为0.1μm至10μm的范围的细粉。另外,粉末化步骤S3可以通过熔体纺丝将非晶金属合金转换成非晶金属带,然后通过机械研磨将非晶金属带转换成粉末。
当完成如上面描述的粉末化步骤S3时,制备了由非晶金属合金粉末形成的氧化催化剂。
根据本实施例的制备氧化催化剂的方法还可以包括在粉末化步骤S3之后增加非晶金属合金粉末的表面粗糙度的步骤。这里,为了通过获得更大的比表面积而改善氧化催化剂的性质和通过获得较粗糙的表面增加废气净化过滤器对陶瓷载体的兼容性和结合力,增加非晶金属合金粉末的表面粗糙度。该步骤可以是通过使用流体的机械粉碎技术在非晶金属合金粉末的表面上形成纳米级结构的工艺。通过该工艺,可以制备具有最佳比表面积的金属合金粉末,其表面粗糙度水平为从1nm至10nm的范围。
在下文中,将结合图5至图15参考对通过根据本实施例的制备氧化催化剂的方法制备的氧化催化剂的特性执行的测试的结果。
图5是示出通过根据本实施例的制备氧化催化剂的方法制备的氧化催化剂的表面形状的扫描电子显微镜(SEM)显微图。在本实施例中,制备了由(Fe72B22Y6)Ti2和((Fe72B22Y6)Ti2)Pt2形成的氧化催化剂样品。两种样品都通过重复实验的工艺制备为具有再现性。
使用电弧熔化器均匀地制备其组合物包括预定比率的上面描述的元素的母合金。通过Spex研磨或球磨粉碎将熔体纺丝机制造的非晶带转换成具有如图5中示出的表面形状和颗粒尺寸的粉末。通过对关于表面形状和平均颗粒尺寸的SEM显微图的分析,认识到,制造的粉末的颗粒尺寸在5μm至10μm的范围。
图6示出意图检查由根据本实施例制备的非晶金属合金粉末形成的氧化催化剂的原子结构的XRD分析的结果,可以认识到,由于制造的带不具有XRD峰,但是具有表示均匀的非晶结构的宽XRD图案,因此非晶金属带通过如期望的上面描述的方法来制备。由于粉末样品具有与Spex研磨之后相同的图案,因此,可以认识到,在研磨期间没有发生结晶。
图7是示出为了检查由根据本实施例制备的非晶金属合金形成的氧化催化剂的性质所测量的CO氧化性质的曲线图。可以从图7认识是,Fe基非晶金属粉末在250℃或更高的温度下随着两个样品组合物的CO转化比达到70%或更高而明显地具有CO氧化催化活性。另外,可以认识到,包括2原子%的Pt元素的样品组合物具有如期望的更高的氧化催化性质。如曲线图中表示的,重复两次的实验示出一致的测试结果,从而使测试结果可靠。
在图7中,在氧化催化剂由非晶金属合金粉末形成之后立即执行CO氧化测试。然而,为了改善氧化催化剂的性质,通常执行以几百度(300℃至700℃)氧化或还原样品的预处理。预处理可以调整由非晶金属合金粉末形成的氧化催化剂的氧化态并优化用于材料的催化活性。
图8示出预处理(高温氧化)之后制备的非晶金属合金粉末样品的CO氧化性质的变化。如曲线图中表示的,当在以400℃、500℃和600℃对样品执行的高温氧化之后执行CO氧化时,所有的样品具有改善的氧化性质。具体地,在以600℃氧化的情况下,CO转化比比150℃的相对低的温度下的95%的转化比高。该转化比超过了作为可商业获得的催化剂的Pt的转化比。
图9是示出意图检查如上面描述所制备的由非晶金属合金形成的氧化催化剂样品是否对NO氧化具有影响的NO氧化测试结果的曲线图。该测试被设计为测量在NO流经样品之后NO2的浓度的变化。然而,如图9中的结果所示,确定在宽温度范围内注入的NO被排放而未转化成NO2
因此,为了确定所制备的氧化催化剂样品不同于优异的CO氧化性质而对NO氧化不具有影响的原因,执行了NO程序升温脱附(NO-TPD)测试,结果示出在图10中。NO-TPD意图检查用于NO分子吸附的性质。首先,样品在NO中是饱和的,然后,分析NO的脱附信号,同时升高温度,由此计算在样品中吸附的NO的量。
从图10的结果中可以认识到,由于在预处理之前和预处理之后基本上没有检测到NO脱附的量,因此根据本实施例制备的氧化催化剂完全不吸附NO,同时现有技术中开发的NO氧化催化剂吸附显著量的NO,因此,可以明显地测量NO脱附的量。由于氧化催化剂样品基本上没有吸附NO的量,因此,氧化催化剂具有选择性的CO氧化性能。
根据本实施例制备的氧化催化剂的选择性的CO氧化性质适用于各种重要的工业领域。具体地,目前,为了氧化来自电厂或焚烧炉的废气中的CO,一般使用可商业获得的Pt催化剂。该工艺的副作用是作为副反应发生的NO2生成。与无色无味的NO不同,当在空气中仅包含15ppm的NO2时,NO2形成具有气味的可察觉到的黄烟。为了克服该问题,需要诸如输入乙醇的附加工艺。相比之下,根据本实施例制备的氧化催化剂对于CO是完全选择性的,因此,不引起诸如NO2生成的副作用。因此,不需要诸如输入乙醇的附加工艺。
图11是示出使用根据本实施例制备的氧化催化剂样品对氨(NH3)执行的氧化测试结果的曲线图。从曲线图的结果可以认识到,在400℃和600℃下预处理的样品在300℃的温度范围中都具有80%或更高的氨转化比。
图12是示出意图确定在通过图11中示出的氨氧化测试转换的气体中是否发生NO2副反应的NO2浓度测量的曲线图。该曲线图指示出,NO2浓度为0ppm,即,不产生NO2。如从NO-TPD测试认识到的,可以解释为在氨氧化期间产生的NO分子未被吸附到非晶金属合金粉末的表面且因此未转化NO2的选择性氧化的结果。在处理由滑离(slip)导致的残余氨或处理在若干化学过程中作为副产物产生的氨的De-NOxSCR体系中发现了氨的选择性氧化的应用。当该体系使用根据本实施例制备的氧化催化剂时,可以识别氧化催化剂体系,而没有NO2的气味和黄色烟的问题。
图13示出与在根据本实施例的制备氧化催化剂的方法中粉末化之后的样品中以及在根据本实施例的制备氧化催化剂的方法中粉末化之后被氧化的样品中所包含的金属组分中的Fe有关的XPS数据。可以基于XPS数据测量元素的结合能水平并基于结合能水平预测期望的材料的表面的原子结构,从而确定金属的氧化态。如从图13中的曲线图认识到的,通过测量作为制备的氧化催化剂的主要元素的Fe的XPS峰,能够确定三种类型的铁氧化物(即,FeO(Fe氧化态:+2)、Fe2O3(+3)和Fe3O4(+8/3))中的峰的位置和强度。如从XPS结果曲线图所认识到的,在预处理之前的样品的情况下,FeO(其中,Fe的氧化程度为+2)具有最大的峰。在400℃下预处理之后,Fe2O3和Fe3O4的峰逐渐增大。具体地,该趋势在600℃下的预处理之后更突出。与CO氧化性质随着如在400℃和600℃的预处理中的预处理温度逐渐增大而更高的结果(图8)相比,可以总结出,催化性质将随着表面结构更接近于Fe2O3的表面结构而更高,其中,氧化程度由+2变为+3。
一般而言,诸如FeO和Fe2O3的金属氧化物具有规则的晶体结构。为了检查规则的结晶结构,图14示出的透射电子显微镜(TEM)测量的结果意图分析基于XPS数据确定的铁氧化物的表面的原子结构。如从XPS预期的,从TEM显微图观察到由表面氧化引起的初始非晶金属的非晶结构中的结晶部分。从快速傅里叶变换(FFT)图像可以认识到,由部分表面氧化引起的纳米结晶结构部分地分布,尽管未分布在整个表面上。
虽然根据本实施例制备的氧化催化剂的表面的特定部分由于氧化而结晶,但是由于形成氧化催化剂的非晶金属合金既没有因具有从500℃至600℃的范围的温度的废气而凝聚也未因其而结晶,因此氧化催化剂通常具有优异的耐久性。如图15中所示,在粉末化步骤之后和在继粉末化步骤之后的在600℃下的氧化预处理之后,通过XRD分析来测量非晶XRD图案。即,关于总体颗粒结构,可以认识到,在600℃下执行煅烧达四小时之后维持相同的结构而不结晶。因此,根据本实施例的由非晶金属合金粉末形成的氧化催化剂不受劣化、生长等的影响,因此,即使在已经长时间段地暴露于废气之后,也不从废气净化过滤器的载体的表面脱落。因此,氧化催化剂的性质优于现有技术的Pt和Rd催化剂的性质。
另外,根据本实施例制备的氧化催化剂应用到废气净化过滤器。具体地,废气净化过滤器可以包括其表面涂覆有根据本实施例制备的氧化催化剂的载体。废气净化过滤器可以通过下述步骤来制造:通过将由非晶金属合金粉末形成的氧化催化剂混合到溶剂中来形成浆料,以及通过将多孔载体浸入浆料中对多孔载体的表面涂覆氧化催化剂层。
为了制造废气净化过滤器,进行更详细地描述,首先,通过用水溶性溶剂、醇类溶剂或它们的混合物稀释氧化催化剂来形成浆料。在此情况下,优选的是,以从10wt%至50wt%的范围的溶剂的比添加氧化催化剂。
如上面描述的溶剂可以包括分散剂以改善氧化催化剂的分散性。为了实现基于空间位阻的分散性,分散剂可以包括诸如CTAB或DTAB的表面活性剂,或者为了实现电分散性,可以包括从NH4OH、NaCl和NH4Cl中选择的至少一种盐。
然后,通过将多孔载体浸入制备的浆料中在载体的表面上形成氧化催化剂层。这里,优选地是,氧化催化剂层的厚度被控制为从0.5μm至5μm的范围。
接着,通过在100℃至150℃范围的温度下加热在其表面上具有氧化催化剂层的多孔载体长达2小时来蒸发溶剂。然后通过在450℃至550℃的范围的温度下加热多孔载体来烧结氧化催化剂层,从而完成废气净化过滤器的制造。
已经参照附图给出了本公开的特定实施例的上述描述。它们并不意图是详尽的或意图将本公开限制为这里公开的精确形式,鉴于上述教导,对于本领域普通技术人员来说,明显地可以进行许多修改和变型。
因此,本公开的范围不意图限于上述的实施例,而是由其所附的权利要求和它们的等同物限定。

Claims (16)

1.一种氧化催化剂,所述氧化催化剂涂覆废气净化过滤器的载体的表面,并包括非晶金属合金粉末。
2.根据权利要求1所述的氧化催化剂,其中,非晶金属合金粉末包括包含从由Fe、Ni、Mn、Co、Zr和Pt组成的组中选择的至少一种元素和从由B、Y、Ti、P、Pd、Be、Si、C、Ag、Na、Mg、Ga和Al组成的组中选择的至少两种元素的混合物。
3.根据权利要求1所述的氧化催化剂,其中,非晶金属合金粉末的颗粒尺寸在0.1μm至10μm的范围。
4.根据权利要求1所述的氧化催化剂,其中,非晶金属合金粉末的表面粗糙度值在1nm至10nm的范围。
5.一种制备涂覆废气净化过滤器的载体的表面的氧化催化剂的方法,所述方法包括:
熔融步骤,将金属和母合金熔融,以产生包括金属和母合金的熔融金属合金;
快速冷却步骤,通过将熔融金属合金快速冷却来产生非晶金属合金;以及
粉末化步骤,将非晶金属合金转换成粉末。
6.根据权利要求5所述的方法,其中,在熔融步骤中,使用从由Fe、Ni、Mn、Co、Zr和Pt组成的组中选择的至少一种元素和从由B、Y、Ti、P、Pd、Be、Si、C、Ag、Na、Mg、Ga和Al组成的组中选择的至少两种元素作为金属和母合金。
7.根据权利要求6所述的方法,其中,在熔融步骤中,使用Fe、B、Y、Ti和Pt作为金属和母合金。
8.根据权利要求7所述的方法,其中,在熔融步骤中,以至少50原子%的Fe、10原子%至30原子%的B、5原子%至20原子%的Y和0原子%至10原子%的Ti+Pt的比使用Fe、B、Y、Ti和Pt作为金属和母合金。
9.根据权利要求5所述的方法,其中,在快速冷却步骤中,熔融金属合金以100℃/s至1,000,000℃/s的范围的冷却速率进行冷却。
10.根据权利要求5所述的方法,其中,粉末化步骤包括在真空雾化或熔体纺丝之后的粉碎。
11.根据权利要求5所述的方法,所述方法还包括在粉末化步骤之后增加非晶金属合金的表面粗糙度值的步骤。
12.根据权利要求5所述的方法,所述方法还包括在氧气氛中在从300℃至600℃的范围的温度下氧化非晶金属合金粉末的氧化步骤。
13.根据权利要求12所述的方法,其中,在氧化步骤之后,包括非晶金属合金粉末的氧化催化剂具有在150℃下将95%或更多的CO转换成CO2的性质,并且不与NO反应。
14.根据权利要求12所述的方法,其中,在氧化步骤之后,包括非晶金属合金粉末的氧化催化剂具有在300℃下用于75%或更多的NH3的氧化性质,并在NH3的氧化期间不产生NO2副产物。
15.根据权利要求12所述的方法,其中,在氧化步骤中,随着热处理温度增加,非晶金属合金的表面结构从非晶金属合金中的Fe的氧化程度为+2的FeO结构变为非晶金属合金中的Fe的氧化程度为+3的Fe2O3结构。
16.一种废气净化过滤器,所述废气净化过滤器包括:
如权利要求1至4中的任一项所述的氧化催化剂;以及
载体,其表面涂覆有所述氧化催化剂。
CN201480063089.4A 2013-11-18 2014-11-18 氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器 Active CN105765190B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20130139899 2013-11-18
KR10-2013-0139899 2013-11-18
KR10-2014-0045435 2014-04-16
KR1020140045435A KR101555924B1 (ko) 2013-11-18 2014-04-16 산화 촉매, 그 제조방법 및 이를 포함하는 배기가스 정화용 필터
PCT/KR2014/011083 WO2015072817A1 (ko) 2013-11-18 2014-11-18 산화 촉매, 그 제조방법 및 이를 포함하는 배기가스 정화용 필터

Publications (2)

Publication Number Publication Date
CN105765190A true CN105765190A (zh) 2016-07-13
CN105765190B CN105765190B (zh) 2019-01-11

Family

ID=53393134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480063089.4A Active CN105765190B (zh) 2013-11-18 2014-11-18 氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器

Country Status (4)

Country Link
US (1) US10046312B2 (zh)
JP (1) JP6278369B2 (zh)
KR (1) KR101555924B1 (zh)
CN (1) CN105765190B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475099A (zh) * 2016-08-31 2017-03-08 李芹 一种低成本的高活性铁触媒的制备方法
CN110252114A (zh) * 2019-06-20 2019-09-20 深圳市中拓智森环保科技有限公司 空气净化剂溶液及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173909A1 (en) 2019-02-26 2020-09-03 Umicore Ag & Co. Kg Catalyst materials comprising nanoparticles on a carrier and methods for their production

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163879A (ja) * 1993-09-29 1995-06-27 Takeshi Masumoto Ti−Cu系合金触媒材料及びその製造方法
JPH07275656A (ja) * 1994-04-08 1995-10-24 Kobe Steel Ltd ガス浄化方法
JPH07313887A (ja) * 1994-05-20 1995-12-05 Toyobo Co Ltd 繊維状触媒及びその製造方法
JPH10286467A (ja) * 1997-02-17 1998-10-27 Daicel Chem Ind Ltd 酸化触媒系、酸化方法および酸化物の製造方法
KR20010012376A (ko) * 1997-05-09 2001-02-15 아사무라 타카싯 배기가스 정화 촉매용 메탈 허니콤체 및 그 제조방법
KR20020066910A (ko) * 2001-02-16 2002-08-21 김선미 희토복합산화물를 이용한 삼원촉매의 제조 방법과 자동차폐기체 정화 장치
KR100382050B1 (ko) * 2000-12-29 2003-05-09 한국전력기술 주식회사 배가스 내의 다이옥신 및 질소산화물 제거용 저온 촉매 및이를 이용한 연소배가스의 처리방법
CN101025105A (zh) * 2006-02-21 2007-08-29 三菱自动车工业株式会社 柴油机的排气净化用过滤器及排气净化装置
JP2011161330A (ja) * 2010-02-05 2011-08-25 Nippon Steel Corp 排ガス脱硝装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836982A (en) * 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
JPS6411642A (en) * 1987-07-02 1989-01-17 Idemitsu Kosan Co Oxidation catalyst of carbon monoxide
JPS6434443A (en) * 1987-07-14 1989-02-03 Lonza Ag Catalyst for oxidizing carbon compound
JPS6447831A (en) * 1987-08-12 1989-02-22 Takeshi Masumoto High strength and heat resistant aluminum-based alloy and its production
JPH0824845B2 (ja) * 1989-05-11 1996-03-13 健 増本 水素酸化用合金触媒
JP2897958B2 (ja) * 1989-10-11 1999-05-31 功二 橋本 排気ガス清浄化用アモルフアス合金触媒
JPH084746B2 (ja) * 1990-02-28 1996-01-24 功二 橋本 フロン分解用アモルファス合金触媒
JPH0899039A (ja) * 1994-09-30 1996-04-16 Daiki Gomme Kogyo Kk NOx分解用アモルファス合金触媒
KR200269882Y1 (ko) 2001-01-19 2002-03-27 김선미 희토 다금속산화물과 원적외선을 이용한 삼원촉매.
JP4237730B2 (ja) * 2005-05-13 2009-03-11 株式会社東芝 磁性材料の製造方法
US8665055B2 (en) * 2006-02-21 2014-03-04 Michael E. McHenry Soft magnetic alloy and uses thereof
BR122017017768B1 (pt) * 2008-08-22 2021-02-17 Tohoku Magnet Institute Co., Ltd. composição de liga e método para formar uma liga nanocristalina baseada em ferro
KR101251499B1 (ko) 2008-12-05 2013-04-05 오덱(주) 질소 산화물 제거용 제올라이트 촉매, 이의 제조 방법 및 이를 이용한 질소 산화물 제거 방법
US20140328714A1 (en) * 2011-11-21 2014-11-06 Crucible Intellectual Property, Llc Alloying technique for fe-based bulk amorphous alloy
CN102808140B (zh) * 2012-09-07 2014-02-26 武汉科技大学 高饱和磁感应强度铁基纳米晶软磁合金材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163879A (ja) * 1993-09-29 1995-06-27 Takeshi Masumoto Ti−Cu系合金触媒材料及びその製造方法
JPH07275656A (ja) * 1994-04-08 1995-10-24 Kobe Steel Ltd ガス浄化方法
JPH07313887A (ja) * 1994-05-20 1995-12-05 Toyobo Co Ltd 繊維状触媒及びその製造方法
JPH10286467A (ja) * 1997-02-17 1998-10-27 Daicel Chem Ind Ltd 酸化触媒系、酸化方法および酸化物の製造方法
KR20010012376A (ko) * 1997-05-09 2001-02-15 아사무라 타카싯 배기가스 정화 촉매용 메탈 허니콤체 및 그 제조방법
KR100382050B1 (ko) * 2000-12-29 2003-05-09 한국전력기술 주식회사 배가스 내의 다이옥신 및 질소산화물 제거용 저온 촉매 및이를 이용한 연소배가스의 처리방법
KR20020066910A (ko) * 2001-02-16 2002-08-21 김선미 희토복합산화물를 이용한 삼원촉매의 제조 방법과 자동차폐기체 정화 장치
CN101025105A (zh) * 2006-02-21 2007-08-29 三菱自动车工业株式会社 柴油机的排气净化用过滤器及排气净化装置
JP2011161330A (ja) * 2010-02-05 2011-08-25 Nippon Steel Corp 排ガス脱硝装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475099A (zh) * 2016-08-31 2017-03-08 李芹 一种低成本的高活性铁触媒的制备方法
CN106475099B (zh) * 2016-08-31 2018-12-18 杭州绿一环保技术有限公司 一种低成本的高活性铁触媒的制备方法
CN110252114A (zh) * 2019-06-20 2019-09-20 深圳市中拓智森环保科技有限公司 空气净化剂溶液及其制备方法

Also Published As

Publication number Publication date
JP6278369B2 (ja) 2018-02-14
JP2016538992A (ja) 2016-12-15
KR20150059062A (ko) 2015-05-29
US10046312B2 (en) 2018-08-14
US20160288103A1 (en) 2016-10-06
KR101555924B1 (ko) 2015-09-30
CN105765190B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109304195B (zh) 一种碳包覆过渡金属的纳米复合材料及应用
Dasireddy et al. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT)
El Kasmi et al. Innovative CVD synthesis of Cu2O catalysts for CO oxidation
Dey et al. Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature
Urán et al. Effect of catalyst preparation for the simultaneous removal of soot and NOx
US20180207623A1 (en) Metal tungstates for use as nitrogen oxides reduction catalysts
CN105170177B (zh) 废气净化用催化剂的制造方法
Cao et al. Synthesis, characterization and catalytic performances of Cu-and Mn-containing ordered mesoporous carbons for the selective catalytic reduction of NO with NH 3
Li et al. The role of iron oxide in the highly effective Fe-modified Co 3 O 4 catalyst for low-temperature CO oxidation
EP2986374B1 (en) Method for manufacturing a monolithic catalyst for simultaneous removal of nox and carbon particles, especially from off-gases of carbon power plants
Glaspell et al. Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: Magnetic and catalytic properties
CN105765190A (zh) 氧化催化剂、用于制备其的方法和包括其的用于废气净化的过滤器
JP5453732B2 (ja) 触媒前駆体、触媒材料およびそれらの製造方法
Xu et al. Preparation, characterization, and catalytic performance of PdPt/3DOM LaMnAl11O19 for the combustion of methane
He et al. An investigation of NO/CO reaction over perovskite-type oxide La0. 8Ce0. 2B0. 4Mn0. 6O3 (B= Cu or Ag) catalysts synthesized by reverse microemulsion
WO2015076065A1 (ja) 排ガス浄化用触媒及びその製造方法
Pérez-Hernández et al. Ag nanowires as precursors to synthesize novel Ag-CeO2 nanotubes for H2 production by methanol reforming
Jiang et al. Unveiling mechanism and the roles of distinct active sites over Cu/beta@ ceo2 with strong core-shell interface interaction for simultaneous removal of NO and toluene
JP5024656B2 (ja) 複合材料、複合材料基材、複合材料分散液、及びそれらの製造方法
JP2008279439A (ja) 一酸化炭素及び/又は窒素酸化物の除去用触媒並びにその製造方法
JP4772561B2 (ja) メタノール改質触媒、シフト触媒、メタノール改質触媒の製造方法およびシフト触媒の製造方法
Wang et al. CuO decorated vacancy-rich CeO2 nanopencils for highly efficient catalytic NO reduction by CO at low temperature
Sun et al. Ultra‐Fine Tungsten Carbide Powder Prepared by a Nitridation–Carburization Method
WO2015072817A1 (ko) 산화 촉매, 그 제조방법 및 이를 포함하는 배기가스 정화용 필터
TW201249535A (en) Nano-metal particles dispersed in composite oxide catalyst and synthesizing method of the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant