CN105742364A - 一种抑制有源沟道区光致漏电流产生的mos管及应用 - Google Patents

一种抑制有源沟道区光致漏电流产生的mos管及应用 Download PDF

Info

Publication number
CN105742364A
CN105742364A CN201610227996.9A CN201610227996A CN105742364A CN 105742364 A CN105742364 A CN 105742364A CN 201610227996 A CN201610227996 A CN 201610227996A CN 105742364 A CN105742364 A CN 105742364A
Authority
CN
China
Prior art keywords
metal
source electrode
drain electrode
oxide
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610227996.9A
Other languages
English (en)
Inventor
刘召军
张珂
彭灯
王河深
莫炜静
刘熹
黄茂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSU CMU Shunde International Joint Research Institute
National Sun Yat Sen University
Original Assignee
SYSU CMU Shunde International Joint Research Institute
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSU CMU Shunde International Joint Research Institute, National Sun Yat Sen University filed Critical SYSU CMU Shunde International Joint Research Institute
Priority to CN201610227996.9A priority Critical patent/CN105742364A/zh
Priority to PCT/CN2016/084131 priority patent/WO2017177519A1/zh
Priority to US16/092,763 priority patent/US20190148231A1/en
Publication of CN105742364A publication Critical patent/CN105742364A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L2021/775Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate comprising a plurality of TFTs on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Abstract

本发明公开一种抑制有源沟道区光致漏电流产生的MOS管及应用,其制备过程为:通过离子注入在衬底两端形成源极和漏极。在衬底上表面的中部制备栅氧化层,在栅氧化层上沉积多晶硅或金属形成栅极,在栅极、源极与漏极上方沉积隔离层,并在源极和漏极上方刻蚀出接触孔,以引出源极和漏极,在源极和漏极上方的接触孔上沉积金属,刻蚀漏极上的金属用于隔离开源极和漏极,而源极上的金属直接延伸覆盖过有源沟道区,起到遮挡光线的作用。本发明提出的MOS管有效的遮挡了其上方射入的光线,抑制了光致漏电流的产生,既改善了晶体管的关态特性,也提高了有源寻址驱动电路的工作性能。

Description

一种抑制有源沟道区光致漏电流产生的MOS管及应用
技术领域
本发明涉及光电子器件领域,更具体地,涉及一种抑制有源沟道区光致漏电流产生的MOS管及应用。
背景技术
可寻址驱动电路目前已应用于诸多方面。在寻址机制上,一般分为两种,即有源矩阵和无源矩阵。相比于无源矩阵,有源矩阵拥有更好的可控性,可减少串扰,能实现大规模及高分辨率的显示。并且还有能量利用率高,可为高质量显示实现更多的灰度的优点。有源矩阵显示目前已经发展了数十年,并且已有诸多应用,比如有源矩阵液晶显示,有源矩阵有机发光二极管显示,以及最近正在发展的有源矩阵发光二极管显示等。
有源驱动电路有许多种,其中常用的2T1C驱动电路如图1所示,包括寻址晶体管T1,驱动晶体管T2和一个存储电容。Vselect信号用来控制选通T1晶体管,当T1晶体管打开,Vdata信号被传输至T2晶体管的栅极,控制选通T2管。当T2管打开时,LED阳极即与VDD相连,从而能够正常工作,即发光。当选择信号经过后,T1晶体管关闭,但还需要LED继续发光,此时存储电容就用来保持A点的电位,以保证在一整个帧周期内,都能有足够的电流流经LED。但是当有环境光存在时,尤其当该电路被应用于本身就具有比较高的发光强度LED显示时,光线将在MOS管有源沟道区激发额外的电子空穴对,导致MOS管关闭时,依然存在一定量的反向漏电流。当该漏电流较大时,将严重影响存储电容保持电位的能力,从而减小了相应LED的发光时间及发光质量。同理,T2管的关态漏电流也将带来预期之外的不利效果。这些都将降低基于该种有源驱动的电路的LED,LCD及OLED显示,或光通信设备的应用质量和效果。
发明内容
本发明为克服上述现有技术所述的光照激发的光电流导致MOS管关态时的反向漏电流增加的现象,首先提供一种抑制有源沟道区光致漏电流产生的MOS管的制备方法。
本发明还提出一种抑制有源沟道区光致漏电流产生的MOS管。
本发明还提出一种应用该抑制有源沟道区光致漏电流产生的MOS管的有源寻址电路。
为解决上述技术问题,本发明的技术方案如下:
一种抑制有源沟道区光致漏电流产生的MOS管的制备方法,其制备过程为:通过离子注入在衬底两端形成源极和漏极,在衬底上表面的中部制备栅氧化层,在栅氧化层上沉积多晶硅或金属形成栅极,该制备过程还包括:在栅极、源极与漏极上方沉积隔离层,并在源极和漏极上方刻蚀出接触孔,以引出源极和漏极,在源极和漏极上方的接触孔中沉积金属,刻蚀漏极上接触孔中的金属用于隔离开源极和漏极,而源极上接触中的金属直接延伸覆盖过有源沟道区,起到遮挡光线的作用。
优选的,所述衬底为硅基材料衬底,玻璃石英衬底或氮化物衬底。
优选的,所述栅氧化层为SiO2、HfO、Al2O3或ZrO氧化物,隔离层为SiO2或SiNx隔离层。
一种抑制有源沟道区光致漏电流产生的MOS管,包括衬底,衬底上表面的中部沉积有栅绝缘层,在栅绝缘层上有多晶硅或金属形成栅极,通过离子注入在衬底两端形成的源极和漏极,在栅极、源极与漏极上方沉积有隔离层,源极和漏极上方的隔离层刻蚀有用于引出源极和漏极的接触孔,在源极和漏极上的接触孔中沉积有金属,漏极上接触孔中金属刻蚀有用于隔离源极和漏极的隔离缺口,源极上的金属直接延伸覆盖过有源沟道区。
优选的,所述衬底为硅基材料衬底,玻璃石英衬底或氮化物衬底。
优选的,所述栅氧化层为SiO2、HfO、Al2O3或ZrO氧化物,隔离层为SiO2或SiNx隔离层。
一种应用所述抑制有源沟道区光致漏电流产生的MOS管的有源寻址电路,所述有源寻址电路中的MOS管为抑制有源沟道区光致漏电流产生的MOS管。
与现有技术相比,本发明技术方案的有益效果是:本发明提出的MOS管有效的遮挡了光线,抑制了光电流的产生,既改善了晶体管的关态特性,也提高了有源寻址驱动电路的工作性能。
附图说明
图1为2T1C有源驱动电路示意图。
图2为对晶体管不同条件下转移特性曲线的对比图。
图3为传统MOS管的截面示意图。
图4为本发明所述MOS管的三维结构图。
图5为本发明所述MOS管的平面结构示意图。
图6为对本发明MOS管进行仿真的仿真基本参数设置示意图。
图7为基于本发明的不同X长度的PMOS管的转移特性曲线图。
图8为自动消除光致漏电流的有源寻址电路的PCB版图。
图9为实施例有源驱动电路中存储电容充放电对比图。
图10为四组不同X长度和梳状栅个数的MOS管进行的PCB版图。
图11为基于图10的转移特性曲线的对比示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。下面结合附图和实施例对本发明的技术方案做进一步的说明。
针对现有技术中提到的光照激发的光电流导致MOS管关态时的反向漏电流增加的现象,本发明提出从MOS管源极引伸出一定长度金属,覆盖在MOS管有源沟道区上面,从而起到避免光线直射沟道的效果。
该种设计有效的遮挡了光线,抑制了光电流的产生,既改善了晶体管的关态特性,也提高了有源寻址驱动电路的工作性能。且金属覆盖层越长,抑制效果越好,但是却会降低器件的沟道宽长比,从而降低器件开态时的特性。所以应在覆盖层和沟道宽长比之间做出合适的取舍,从而达到最优化设计。
经过大量的实验及研究发现,光照会影响MOS晶体管性能:
光照会在MOS晶体管有源沟道区激发出额外的电子空穴对,从而使晶体管在关闭状态时,也存在着较大的反向漏电流。我们通过软件仿真验证了该想法。
我们分别测试了无光条件下,以及蓝光,红光,绿光照射时,沟道长度为2um的PMOS晶体管的Ids。光照功率为1w,并设置Vds为-1V,栅极电压由-5V逐渐增加到5V,阈值电压为-0.5V,即当其大于-0.5V时即为关闭状态。
图2则为对晶体管不同条件下转移特性曲线的对比,由此可看出MOS管在光照条件下性能的差别。从图中可清晰看出,有光条件下关态的漏电流要比无光条件时大几个数量级,可见光照对MOS管性能的影响还是非常大的。由此证明了我们的想法,光照条件确实会对MOS晶体管关闭状态时的漏电流有巨大影响。
基于上述发现,本发明设计了一种能遮挡光照,抑制有源沟道区光致漏电流产生的新型MOS管结构。
传统MOS管是利用掺杂工艺在硅衬底两端生成源极与漏极,并通过沉积金属以及适当的刻蚀将这两极引出。之后,在有源沟道区之上沉积栅氧化层,再将多晶硅沉积其上形成栅极。截面图如图3所示。
而本发明所提出的新型结构与传统的主要区别是将源极的金属部分延伸一定长度,覆盖在有源沟道区上面,从而避免了有源沟道区直接暴露在光照下而产生多余的光电流。具体做法如下:
一种抑制有源沟道区光致漏电流产生的MOS管制备方法,其制备过程为:通过离子注入在衬底两端形成源极和漏极,在衬底上表面的中部制备栅氧化层,在栅氧化层上沉积多晶硅或金属形成栅极,在栅极、源极与漏极上方沉积隔离层,并在源极和漏极上方刻蚀出接触孔,以引出源极和漏极,在源极和漏极上方的接触孔上沉积金属,刻蚀漏极上的金属用于隔离开源极和漏极,而源极上的金属直接延伸覆盖过有源沟道区,起到遮挡光线的作用。
采用上述制备方法制备得到的一种抑制有源沟道区光致漏电流产生的MOS管,包括衬底,衬底上表面的中部沉积有栅绝缘层,在栅绝缘层上有多晶硅或金属形成栅极,通过离子注入在衬底两端形成的源极和漏极,在栅极、源极与漏极上方沉积有隔离层,源极和漏极上方的隔离层刻蚀有用于引出源极和漏极的接触孔,在源极和漏极上的接触孔中沉积有金属,漏极上接触孔中金属刻蚀有用于隔离源极和漏极的隔离缺口,源极上的金属直接延伸覆盖过有源沟道区。
这样的结构既不会加入其它多余材料而引起无法预期的其他性能改变,也能达到良好的遮光效果,且简便易行,便于实现。具体三维、平面结构图如图4、5所示,其中箭头表示光照方向,X表示金属覆盖层的长度。
为证明该该MOS管结构的有效性,本实施例用软件进行仿真,仿真的基本参数如图6所示。采用晶体管为硅衬底,磷掺杂的PMOS,并通过半导体工艺对其沉积SiO2层和金属部分。仿真时,VGS从-5V逐渐增加至5V,VDS设置为-1V,并使用1w功率,波长为625nm的光照对此PMOS晶体管进行光照。该PMOS管的转移特性曲线如图7所示。
其中,MCF(MetalCoverFactor)为金属覆盖层的长度与沟道长度的比值,即:
M C F = X L × 100 %
该参数作为一个更具有相对借鉴意义的参考指数,更形象的表示出覆盖层长度与有源沟道长度的关系。从图7中可以看出,无光条件下,漏电流大小为2.5×10-13A,有光照却无金属覆盖层时(MCF=0%),漏电流约为1×10-8A,增加了几个数量级。而当有一定长度的金属覆盖层后,光照下的激发的光电流有明显的减少,且MCF指数越高,光电流抑制效果越好。说明本发明确实能有有效的消除光电流的影响,提高晶体管性能。
本实施例中还设计了一种可以自动消除光致漏电流的有源寻址电路。
本实施例是基于背景部分已介绍了传统2T1C电路,在该电路中T1为寻址晶体管,T2为驱动晶体管,C为存储电容。Vselect为选择信号,控制T1晶体管开关,Vdata为数据信号,承载着控制LED亮灭的信号。在本实例中,基于所提出的新的MOS设计了一种可以自动消除光致漏电流的有源寻址电路。其版图如图8所示:
图8已简洁的显示了2T1C电路版图。对于晶体管T2,①处细长区域即为梳状栅,其下方的②处部分为金属覆盖层。同理可理解T1晶体管的结构。而在该种电路结构中,存储电容由两部分组成。第一部分为源极金属和多晶硅之间夹着SiO2钝化层构成。第二部分为多晶硅与有源单晶硅层之间夹着栅极绝缘物(通常为SiO2或者高k材料)构成。LED像素接与输出部分即可。
该种电路结构能成功的消除光电流影响,且结构简便易实现。下面我们将通过计算与对比,来展示该新型电路对电容保持电位能力的增强效果。
我们分别从两方面进行讨论。写入时期代表着T1晶体管被选通,数据信号通过T1到达T2栅极的时期,此时对于电容来说即为充电部分。保持时期代表着选择信号已经通过,T1晶体管关闭但仍需LED发光,此时主要靠电容保持的电位来驱动T2晶体管。若存在漏电流,则电容将表现为逐渐放电。
令VD代表Vdata。当像素被选中时,写入电压和保持电压满足:
V w r i t e = V D ( 1 - e - t τ o n ) V h o l d = V D e - t τ o f f
其中,τon=RonCholdingτ=offRoffCholding
Ron和Roff为T1晶体管分别在打开和关闭状态时的沟道电阻。而电路正常运行要求:
V s i g n a l > 0.99 V D ⇒ T w r i t i n g > 4.6 τ o n
V s i g n a l > 0.95 V D &DoubleRightArrow; T h o l d i n g < &tau; o f f 19.5
其中,Vsignal即为A点的电压。Twriting和Tholding分别是写入期时间和保持期时间。这意味着,写入期时间越短,保持期时间越长,该驱动电路的效果越好。
我们通过实验测得有金属覆盖层以及无金属覆盖层的晶体管开态电流Ids分别是:2.75×10-5A和3.11×10-5A,而关态电流Ids则是:3.43×10-13A和6.94×10-9A,实验所用的总电容为15.6pf。最终,应用该设计前后的存储电容充放电对比为图9所示。
由图9可以看出,金属覆盖层的设计对充电时间的影响并不大,可能会引起几个us的延迟。但是在MOS管关闭状态时,加入金属覆盖层后明显能使存储电容的电位保持时间更长,即大于40ms。若无金属覆盖层,该电位只能保持几个ms,远远不能达到维持LED在整个周期内正常工作的要求。由此说明,该设计确实能增强电路中存储电容保持电位的能力,从而提高电路的工作质量等。
本发明提出了能消除光电流影响的新型MOS管结构和电路结构。由于金属覆盖层越长,抑制效果越好,但是因此器件漏极与栅极之间的距离也越大。尤其当版图的面积有限,这种结构将会影响原有的布局,甚至将直接影响器件的宽长比而导致其他性能的下降。所以应在覆盖层和沟道宽长比之间做出合适的取舍,从而达到最优化设计。
定义源极至漏极断口的距离为覆盖层长度(X部分),通过分析仿真来验证不同覆盖层长度的影响。
本发明通过设计多组不同X长度和梳状栅个数的MOS管进行对比,来达到最优化结果,以如图10,表1几组数据为例,最终测得梳状栅个数为9,金属覆盖层长度为5um时,器件性能最好。
表1
其转移特性曲线的对比如图11所示。
由此看以看出梳状栅个数为9,金属覆盖层长度为5um时,该结构的工作性能最好。
采用本方案所示结构的晶体管,可以有效的避免有源沟道区直接暴露在光线下,消除不必要的光电流。而以此为基础的源寻址电路结构也可有效的消除光致漏电流现象。此时,MOS晶体管将有更好的关态特性,驱动电路中存储电容保持电位的效果也会更好,电路性能更加稳定,LED也将呈现出更好的工作质量。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (7)

1.一种抑制有源沟道区光致漏电流产生的MOS管的制备方法,其制备过程为:通过离子注入在衬底两端形成源极和漏极,在衬底上表面的中部制备栅氧化层,在栅氧化层上沉积多晶硅或金属形成栅极,其特征在于,该制备过程还包括:在栅极、源极与漏极上方沉积隔离层,并在源极和漏极上方刻蚀出接触孔,以引出源极和漏极,在源极和漏极上方的接触孔中沉积金属,刻蚀漏极上接触孔中的金属用于隔离开源极和漏极,而源极上接触中的金属直接延伸覆盖过有源沟道区,起到遮挡光线的作用。
2.根据权利要求1所述的抑制有源沟道区光致漏电流产生的MOS管制备方法,其特征在于,所述衬底为硅基材料衬底,玻璃石英衬底或氮化物衬底。
3.根据权利要求1所述的抑制有源沟道区光致漏电流产生的MOS管制备方法,其特征在于,所述栅氧化层为SiO2、HfO、Al2O3或ZrO氧化物,隔离层为SiO2或SiNx隔离层。
4.一种抑制有源沟道区光致漏电流产生的MOS管,包括衬底,衬底上表面的中部沉积有栅绝缘层,在栅绝缘层上有多晶硅或金属形成栅极,通过离子注入在衬底两端形成的源极和漏极,其特征在于,在栅极、源极与漏极上方沉积有隔离层,源极和漏极上方的隔离层刻蚀有用于引出源极和漏极的接触孔,在源极和漏极上的接触孔中沉积有金属,漏极上接触孔中金属刻蚀有用于隔离源极和漏极的隔离缺口,源极上的金属直接延伸覆盖过有源沟道区。
5.根据权利要求4所述的抑制有源沟道区光致漏电流产生的MOS管,其特征在于,所述衬底为硅基材料衬底,玻璃石英衬底或氮化物衬底。
6.根据权利要求4所述的抑制有源沟道区光致漏电流产生的MOS管,其特征在于,所述栅氧化层为SiO2、HfO、Al2O3或ZrO氧化物,隔离层为SiO2或SiNx隔离层。
7.一种应用权利要求4至6任一项所述抑制有源沟道区光致漏电流产生的MOS管的有源寻址电路,其特征在于,所述有源寻址电路中的MOS管为抑制有源沟道区光致漏电流产生的MOS管。
CN201610227996.9A 2016-04-12 2016-04-12 一种抑制有源沟道区光致漏电流产生的mos管及应用 Pending CN105742364A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610227996.9A CN105742364A (zh) 2016-04-12 2016-04-12 一种抑制有源沟道区光致漏电流产生的mos管及应用
PCT/CN2016/084131 WO2017177519A1 (zh) 2016-04-12 2016-05-31 一种抑制有源沟道区光致漏电流产生的mos管及应用
US16/092,763 US20190148231A1 (en) 2016-04-12 2016-05-31 Mos transistor for suppressing generation of photo-induced leakage current in active channel region and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610227996.9A CN105742364A (zh) 2016-04-12 2016-04-12 一种抑制有源沟道区光致漏电流产生的mos管及应用

Publications (1)

Publication Number Publication Date
CN105742364A true CN105742364A (zh) 2016-07-06

Family

ID=56255326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610227996.9A Pending CN105742364A (zh) 2016-04-12 2016-04-12 一种抑制有源沟道区光致漏电流产生的mos管及应用

Country Status (3)

Country Link
US (1) US20190148231A1 (zh)
CN (1) CN105742364A (zh)
WO (1) WO2017177519A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1682259A (zh) * 2002-09-20 2005-10-12 株式会社半导体能源研究所 显示器件及其制造方法
CN101009333A (zh) * 2006-01-25 2007-08-01 爱普生映象元器件有限公司 半导体装置
US20150115261A1 (en) * 2008-05-16 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
CN205810819U (zh) * 2016-04-12 2016-12-14 中山大学 抑制有源沟道区光致漏电流产生的mos管及有源寻址电路

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368581A (en) * 1976-12-01 1978-06-19 Hitachi Ltd Semiconductor device
US4523189A (en) * 1981-05-25 1985-06-11 Fujitsu Limited El display device
JPS58137256A (ja) * 1982-02-10 1983-08-15 Hitachi Ltd 絶縁ゲ−ト半導体装置
JP3464803B2 (ja) * 1991-11-27 2003-11-10 株式会社東芝 半導体メモリセル
US5404326A (en) * 1992-06-30 1995-04-04 Sony Corporation Static random access memory cell structure having a thin film transistor load
US5838038A (en) * 1992-09-22 1998-11-17 Kabushiki Kaisha Toshiba Dynamic random access memory device with the combined open/folded bit-line pair arrangement
EP0606758B1 (en) * 1992-12-30 2000-09-06 Samsung Electronics Co., Ltd. Method of producing an SOI transistor DRAM
JPH07302912A (ja) * 1994-04-29 1995-11-14 Semiconductor Energy Lab Co Ltd 半導体装置
US5624863A (en) * 1995-07-17 1997-04-29 Micron Technology, Inc. Semiconductor processing method of forming complementary N-type doped and P-type doped active regions within a semiconductor substrate
JPH09191088A (ja) * 1995-11-09 1997-07-22 Mitsubishi Electric Corp 半導体記憶装置およびその製造方法
US6207994B1 (en) * 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
JP3433101B2 (ja) * 1998-06-03 2003-08-04 三洋電機株式会社 表示装置
US6222229B1 (en) * 1999-02-18 2001-04-24 Cree, Inc. Self-aligned shield structure for realizing high frequency power MOSFET devices with improved reliability
TW525216B (en) * 2000-12-11 2003-03-21 Semiconductor Energy Lab Semiconductor device, and manufacturing method thereof
US7087975B2 (en) * 2000-12-28 2006-08-08 Infineon Technologies Ag Area efficient stacking of antifuses in semiconductor device
US6555883B1 (en) * 2001-10-29 2003-04-29 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
KR100858297B1 (ko) * 2001-11-02 2008-09-11 삼성전자주식회사 반사-투과형 액정표시장치 및 그 제조 방법
US6552597B1 (en) * 2001-11-02 2003-04-22 Power Integrations, Inc. Integrated circuit with closely coupled high voltage output and offline transistor pair
JP4088190B2 (ja) * 2002-05-21 2008-05-21 セイコーエプソン株式会社 電気光学装置及び電子機器
JP2005250448A (ja) * 2004-02-05 2005-09-15 Sharp Corp 電子素子、表示素子及びその製造方法
JP2006066573A (ja) * 2004-08-26 2006-03-09 Seiko Epson Corp 半導体装置および半導体装置の製造方法
JP2007188936A (ja) * 2006-01-11 2007-07-26 Epson Imaging Devices Corp 表示装置
US8921186B2 (en) * 2008-05-15 2014-12-30 Great Wall Semiconductor Corporation Semiconductor device and method of forming high voltage SOI lateral double diffused MOSFET with shallow trench insulator
KR101463580B1 (ko) * 2008-06-03 2014-11-21 삼성전자주식회사 반도체 장치 및 그 제조 방법
US7851857B2 (en) * 2008-07-30 2010-12-14 Freescale Semiconductor, Inc. Dual current path LDMOSFET with graded PBL for ultra high voltage smart power applications
JP5743407B2 (ja) * 2010-01-15 2015-07-01 キヤノン株式会社 トランジスタの駆動方法及び該方法で駆動されるトランジスタを含む表示装置
CN102487041B (zh) * 2010-12-02 2014-07-23 京东方科技集团股份有限公司 阵列基板及其制造方法和电子纸显示器
US20130020632A1 (en) * 2011-07-18 2013-01-24 Disney Donald R Lateral transistor with capacitively depleted drift region
JP5848680B2 (ja) * 2011-11-22 2016-01-27 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP6048026B2 (ja) * 2012-09-20 2016-12-21 富士通株式会社 電源回路及び電源装置
CN103383946B (zh) * 2013-07-12 2016-05-25 京东方科技集团股份有限公司 一种阵列基板、显示装置及阵列基板的制备方法
US9306014B1 (en) * 2013-12-27 2016-04-05 Power Integrations, Inc. High-electron-mobility transistors
JP6310831B2 (ja) * 2014-09-26 2018-04-11 株式会社ジャパンディスプレイ センサ付き表示装置及び表示装置の制御方法
US9721634B2 (en) * 2015-04-27 2017-08-01 Qualcomm Incorporated Decoupling of source line layout from access transistor contact placement in a magnetic tunnel junction (MTJ) memory bit cell to facilitate reduced contact resistance
CN106558592B (zh) * 2015-09-18 2019-06-18 鸿富锦精密工业(深圳)有限公司 阵列基板、显示装置及阵列基板的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1682259A (zh) * 2002-09-20 2005-10-12 株式会社半导体能源研究所 显示器件及其制造方法
CN101009333A (zh) * 2006-01-25 2007-08-01 爱普生映象元器件有限公司 半导体装置
US20150115261A1 (en) * 2008-05-16 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
CN205810819U (zh) * 2016-04-12 2016-12-14 中山大学 抑制有源沟道区光致漏电流产生的mos管及有源寻址电路

Also Published As

Publication number Publication date
WO2017177519A1 (zh) 2017-10-19
US20190148231A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN103811496B (zh) 用于具有提高编程效率的非易失性存储单元的方法和装置
CN103107184B (zh) 有机发光显示面板及其制造方法
CN103872080B (zh) 有机发光二极管显示装置
US7857907B2 (en) Methods of forming silicon nanocrystals by laser annealing
CN103226931B (zh) 像素电路和有机发光显示器
CN105321957A (zh) 薄膜晶体管基板、包括其的显示面板及其制造方法
CN102117824B (zh) 有机发光显示设备及其制造方法
CN108206008A (zh) 像素电路、驱动方法、电致发光显示面板及显示装置
CN107564919A (zh) 背板衬底、其制造方法以及使用其的有机发光显示装置
CN100458871C (zh) 显示器、阵列基板以及显示器制造方法
CN107871757A (zh) 有机发光二极管(oled)阵列基板及其制备方法、显示装置
CN101626036A (zh) 薄膜晶体管及其制造方法和包括该晶体管的平板显示装置
KR101850662B1 (ko) 고해상도 amoled 백플레인의 제조방법
CN109785797A (zh) 一种新型的amoled像素电路
CN103606351B (zh) 有源矩阵有机发光二极管像素驱动电路及其驱动方法
CN105720060A (zh) 具有在fdsoi衬底中形成的垂直选择栅极的存储器单元
CN104134672B (zh) 薄膜晶体管基板和使用薄膜晶体管基板的有机发光装置
CN103296090B (zh) 一种金属氧化物薄膜晶体管及其制备方法
CN106992185A (zh) 薄膜晶体管基板、包括其的显示器及其制造方法
CN103000531A (zh) 一种用于低温多晶硅薄膜晶体管的制造方法
TWI419327B (zh) 無電容記憶體元件
CN205810819U (zh) 抑制有源沟道区光致漏电流产生的mos管及有源寻址电路
CN105742364A (zh) 一种抑制有源沟道区光致漏电流产生的mos管及应用
CN107452755A (zh) 阵列基板及其制作方法和显示面板
CN106952928B (zh) 一种tft背板的制作方法及tft背板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160706