CN105669232B - 一种SiC改性C/C-MoSi2复合材料的制备方法 - Google Patents

一种SiC改性C/C-MoSi2复合材料的制备方法 Download PDF

Info

Publication number
CN105669232B
CN105669232B CN201610060631.1A CN201610060631A CN105669232B CN 105669232 B CN105669232 B CN 105669232B CN 201610060631 A CN201610060631 A CN 201610060631A CN 105669232 B CN105669232 B CN 105669232B
Authority
CN
China
Prior art keywords
sic
mosi
composite material
modified
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610060631.1A
Other languages
English (en)
Other versions
CN105669232A (zh
Inventor
曹丽云
白喆
黄剑锋
欧阳海波
李翠艳
孔新刚
费杰
卢靖
王程
李嘉胤
介燕妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201610060631.1A priority Critical patent/CN105669232B/zh
Publication of CN105669232A publication Critical patent/CN105669232A/zh
Application granted granted Critical
Publication of CN105669232B publication Critical patent/CN105669232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种SiC改性C/C‑MoSi2复合材料的制备方法,将二硅化钼、SiC粉体分散于去离子水中,得到混合物,将混合物搅拌均匀后得到悬浮液;将悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入无水乙醇后,于160~220℃进行水热反应8~12h,水热反应结束后取出C/C试样并重复至MoSi2及SiC粉体渗透进入C/C试样内部;并采用等温化学气相渗透致密化,2500℃石墨化后得到SiC改性C/C‑MoSi2复合材料。本发明制备的SiC改性C/C‑MoSi2复合材料密度适中,结构致密,界面结合良好,抗烧蚀性能良好。本发明原料容易获得,制备工艺简单,操作简便,成本低,环境友好无污染。

Description

一种SiC改性C/C-MoSi2复合材料的制备方法
技术领域
本发明属于C/C复合材料技术领域,涉及一种SiC改性C/C-MoSi2复合材料的制备方法。
背景技术
碳/碳(C/C)复合材料由于具有非常优异的性能(膨胀系数低、密度低、耐高温、耐烧蚀、高强度、高模量等)使得其在航空航天领域具有广阔的应用前景,比如鼻锥,SRM喷管,涡轮机及燃气系统以及刹车盘等部位。然而,C/C复合材料在超过370℃的有氧环境就会被氧化,氧化质量损失导致其强度下降,限制了其应用范围,尤其是在高温或者潮湿环境下的使用。因此,提高C/C复合材料的高温抗氧化性对于其应用十分关键。
一种有效的解决途径是向C/C复合材料中引入超高温陶瓷,比如SiC、ZrC、HfC等。利用陶瓷相对C/C复合材料起到保护作用,同时还不会降低C/C复合材料的各项性能,反而会提高在高温环境下的稳定性,扩大应用范围。目前研究较多的碳/碳-耐高温陶瓷复合材料主要有C/C-SiC复合材料[Lei Liu,Hejun Li.Effect of surface ablation productson the ablation resistance of C/C–SiC composites under oxyacetylenetorch.Corrosion Science,2013,67:60-66、 S.Singh,V.K.Srivastava.Effect ofoxidation on elastic modulus of C/C–SiC composites.Materials Science andEngineering A,2008,468:534-539.]、C/C-ZrC复合材料[C.Y.Li,K.Z.Li,H.J.Li,Y.L.Zhang,H.B.Ouyang,Microstructure and ablation resistance of carbon/carboncomposites with a zirconium carbide rich surface layer,Corros.Sci.85(2014)160-166.、Shen Xuetao,Li Kezhi. Microstructure and ablation properties ofzirconium carbide doped carbon/carbon composites. Carbon,2010,48:344-351、Chun-xuan Liu,Jian-xun Chen.Pyrolysis mechanism of ZrC precursor andfabrication of C/C–ZrC composites by precursor infiltration andpyrolysis.Trans.Nonferrous Met.Soc.China,2014,24:1779-1784.]、C/C-SiC-ZrC复合材料[Zhaoqian Li,Hejun Li. Microstructure and ablation behaviors of integerfelt reinforced C/C-SiC-ZrC composites prepared by a two-step method.CeramicsInternational,2012,38:3419–3425、Lei Zhuang,Qian-gang Fu. Effect of pre-oxidation treatment on the bonding strength and thermal shock resistance ofSiC coating for C/C–ZrC–SiC composites.2015.]、C/C-HfC复合材料[Liang Xue,Zhe-an Su. Microstructure and ablation behavior of C/C–HfC composites prepared byprecursor infiltration and pyrolysis.Corrosion Science.2015]等。
到目前止碳/碳-耐高温陶瓷复合材料的制备方法多种多样,主要有以下几种:先驱体浸渍热解法,化学气相渗透法,熔融渗硅法,反应熔融浸渍法,化学气相沉积法等。前驱体浸渍裂解法多次浸渍工艺周期长,易产生收缩裂纹,成本高[B.Yan,Z.F.Chen,J.X.Zhu,J.Z.Zhang, Y.Jiang,Effects of ablation at different regions in three-dimensional orthogonal C/SiC composites ablated by oxyacetylene at 1800C,J.Mater.Process Tech.209(2009)3438–3443.],采用化学气相渗透法制备的复合材料基体致密化速度低,生产周期长,复合材料稳定性低[J.Yin,H.B.Zhang, X.Xiong,J.Zuo,H.J.Tao,Ablation properties of C/C–SiC composites tested on an arc heater,Solid State Sci.13(2011)2055–2059.],采用熔融渗硅法制备的复合材料容易使纤维增强体强度下降,成本也过高[Se Young Kim,etal.Wear-mechanical properties offiller-added liquid silicon infiltration C/C–SiC composites Materials andDesign[J],44(2013)107–113.],而采用反应熔融浸渍法制备的复合材料对碳纤维损伤很大,造成复合材料力学性能偏低,断裂韧性差[Z.Q.Li, H.J.Li,S.Y.Zhang,J.Wang,W.Li,F.J.Sun,Effect of reaction melt infiltration temperature on the ablationproperties of 2D C/C–SiC–ZrC composites,Corros.Sci.58(2012)12–19.]。而采用均相水热渗透结合等温化学气相渗(ICVI)透致密制备碳/碳-耐高温陶瓷复合材料的方法还未见报道。
发明内容
为克服现有技术中的问题,本发明的目的在于提供一种SiC改性C/C-MoSi2复合材料的制备方法,该方法制得的陶瓷基复合材料密度适中,结构致密,C/C与SiC界面,SiC与MoSi2界面以及C/C与MoSi2界面结合良好,并且高温抗氧化、抗烧蚀性能良好。
为达到上述目的,本发明采用了以下技术方案。
一种SiC改性C/C-MoSi2复合材料的制备方法,包括以下步骤:
1)将密度为0.4~0.6g/cm3的多孔碳/碳复合材料切割成圆形薄片,得到C/C试样;
2)将粒径为100~200nm的SiC、粒径为0.8~1μm的二硅化钼粉体按质量比(0.5~1): (2~4)分散于去离子水中,搅拌均匀后得到悬浮液;
3)将悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入无水乙醇后,于160~220℃进行水热反应24~48h,水热反应结束后取出C/C试样并洗涤,干燥;
4)将干燥后的试样在均热炉中采用等温化学气相渗透致密化,等温化学气相渗透的沉积温度为1100℃,沉积时间为60~80h,采用天然气作为碳源,并且天然气流量为1.5~2.5m3/h;
5)将致密化后的试样于氩气气氛保护下2500℃石墨化处理2h,得到SiC改性C/C-MoSi2复合材料。
步骤1)中圆形薄片的直径为1~4cm,厚度为1~1.5cm。
步骤2)中粒径为0.8~1μm的二硅化钼和粒径为100~200nm的SiC粉体具体通过以下方法制得:将二硅化钼粉体、SiC粉体混合分别湿法球磨24~48h,得到粒径为0.8~1μm的二硅化钼和粒径为100~200nm的SiC粉体。
步骤2)中搅拌均匀是通过磁力搅拌10~12h实现的。
步骤2)中碳化硅、二硅化钼的总质量与去离子水的比为(2.5~5)g:(150~200)mL。
步骤3)中加入悬浮液与无水乙醇的体积比为30~40mL:1~10mL。
步骤3)中干燥是在电热鼓风干燥箱中并在60~100℃下烘干2~4h。
与现有技术相比,本发明的有益效果体现在:
本发明通过多次水热渗透过程,使得MoSi2,SiC颗粒渗透进入多孔C/C复合材料内部。这一过程简单,实验设备简易,消耗能量低,环境友好无污染,并且由于渗透过程在水热超临界状态下,反应釜内部压力大,能使得被渗透颗粒有效定向到达C/C材料内部。采用等温化学气相渗透(CVI)法对复合材料进行致密,将沉积MoSi2,SiC颗粒后的复合材料置于均热炉中,反应气体天然气主要通过扩散从多孔碳/碳复合材料的纤维骨架表面渗入到含SiC和 MoSi2的C/C试样的内表面,发生化学反应并原位沉积,同时反应气体副产物从含SiC和MoSi2的C/C试样内部扩散出来,本发明采用的装置简单,能够有效提高了沉积速率,而且能封填多孔碳/碳复合材料以及SiC、MoSi2颗粒的缝隙,使得材料缺陷减少,致密化程度有效提升。本发明制备的SiC改性C/C-MoSi2复合材料密度适中,结构致密,界面结合良好,抗烧蚀性能良好,经30s烧蚀后,质量烧蚀率和线烧蚀率分别为0.70mg/s和0.0051mm/s,性能优于相同测试条件下同等密度的C/C复合材料。本发明原料容易获得,制备工艺简单,操作简便,成本低,环境友好无污染。本发明由均相水热渗透结合等温化学气相渗透制备出致密、有结构致密的SiC改性C/C-MoSi2复合材料,有望取得C/C复合材料高温抗氧化、抗烧蚀性能的新突破,对拓展C/C复合材料在高温领域的应用具有重要意义。
附图说明
图1为实施例1制备SiC改性C/C-MoSi2复合材料的XRD图;
具体实施方式
下面结合附图和实施例对本发明作详细说明。
实施例1:
1)将密度为0.4g/cm3的多孔碳/碳复合材料(江苏天鸟高新技术有限公司)切割成直径为3cm,厚度为1cm左右的圆形薄片;
2)将二硅化钼粉体、SiC粉体混合分别湿法球磨24h,得到二硅化钼粒径为1μm,SiC粒径为200nm;
3)将球磨后的MoSi22g、SiC粉体0.5g分散于150mL去离子水中,得到混合物,将混合物磁力搅拌10h,得到悬浮液;
4)将30mL悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入10mL无水乙醇后,于160℃进行水热反应48h,水热反应结束后取出C/C试样并洗涤,干燥;
5)将干燥后的试样在均热炉中采用等温化学气相渗透致密化,沉积温度为1100℃,沉积时间为60h,采用天然气作为碳源,并且天然气流量为1.5m3/h;
6)将致密化后的试样于氩气气氛保护下2500℃石墨化处理2h,得到密度为1.2g/cm3的 SiC改性C/C-MoSi2复合材料。
实施例2:
1)将密度为0.6g/cm3的多孔碳/碳复合材料(江苏天鸟高新技术有限公司)切割成直径为4cm,厚度为1.5cm左右的圆形薄片;
2)将二硅化钼粉体、SiC粉体混合分别湿法球磨48h,得到二硅化钼粒径为0.8μm,SiC 粒径为100nm;
3)将球磨后的MoSi24g、SiC粉体1g一起分散于150mL去离子水中,得到混合物,将混合物磁力搅拌10h,得到悬浮液;
4)将35mL悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入5mL无水乙醇后,于220℃进行水热反应24h,水热反应结束后取出C/C试样并洗涤,干燥;
5)将干燥后的试样在均热炉中采用等温化学气相渗透致密化,沉积温度为1100℃,沉积时间为80h,采用天然气作为碳源,并且天然气流量为2m3/h;
6)将致密化后的试样于氩气气氛保护下2500℃石墨化处理2h,最终得到密度为1.4g/cm3的复合材料SiC改性C/C-MoSi2复合材料。
实施例3:
1)将密度为0.5g/cm3的多孔碳/碳复合材料(江苏天鸟高新技术有限公司)切割成直径为4cm,厚度为1.5cm左右的圆形薄片;
2)将二硅化钼粉体、SiC粉体混合分别湿法球磨48h,得到二硅化钼粒径为0.8μm,SiC 粒径为100nm;
3)将球磨后的MoSi24g、SiC粉体0.5g都分散于150mL去离子水中,得到混合物,将混合物磁力搅拌12h,得到悬浮液;
4)将35mL悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入5mL无水乙醇后,于200℃进行水热反应60h,水热反应结束后取出C/C试样并洗涤,干燥;
5)将干燥后的试样在均热炉中采用等温化学气相渗透致密化,沉积温度为1100℃,沉积时间为30h,采用天然气作为碳源,并且天然气流量为2.5m3/h;
6)将致密化后的试样于氩气气氛保护下2500℃石墨化处理2h,最终得到密度为1.34g/cm3的复合材料SiC改性C/C-MoSi2复合材料。
实施例4:
1)将密度为0.6g/cm3的多孔碳/碳复合材料(江苏天鸟高新技术有限公司)切割成直径为2cm,厚度为1cm左右的圆形薄片;
2)将二硅化钼粉体、SiC粉体混合分别湿法球磨24h,得到二硅化钼粒径为1μm,SiC粒径为200nm;
3)将球磨后的MoSi22g、SiC粉体1g分散于170mL去离子水中,得到混合物,将混合物磁力搅拌12h,得到悬浮液;
4)将40mL悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入5mL无水乙醇后,于200℃进行水热反应48h,水热反应结束后取出C/C试样并洗涤,干燥;
5)将干燥后的试样在均热炉中采用等温化学气相渗透致密化,沉积温度为1100℃,沉积时间为70h,采用天然气作为碳源,并且天然气流量为2m3/h;
6)将致密化后的试样于氩气气氛保护下2500℃石墨化处理2h,最终得到密度为1.32g/cm3的复合材料SiC改性C/C-MoSi2复合材料。
实施例5:
1)将密度为0.6g/cm3的多孔碳/碳复合材料(江苏天鸟高新技术有限公司)切割成直径为1cm,厚度为1.5cm的圆形薄片;
2)将二硅化钼粉体、SiC粉体混合分别湿法球磨36h,得到二硅化钼粒径为0.8μm,SiC 粒径为150nm;
3)将球磨后的MoSi23g、SiC粉体1g分散于200mL去离子水中,得到混合物,将混合物磁力搅拌10h,得到悬浮液;
4)将30mL悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入1mL无水乙醇后,于180℃进行水热反应48h,水热反应结束后取出C/C试样并洗涤,干燥;
5)将干燥后的试样在均热炉中采用等温化学气相渗透致密化,沉积温度为1100℃,沉积时间为80h,采用天然气作为碳源,并且天然气流量为2.5m3/h;
6)将致密化后的试样于氩气气氛保护下2500℃石墨化处理2h,最终得到密度为1.4g/cm3的复合材料SiC改性C/C-MoSi2复合材料。
由图1可看出本发明制备的SiC改性C/C-MoSi2复合材料由SiC,MoSi2,C组成,没有其他杂相,说明通过本发明可以成功制备出C/C-MoSi2-SiC复合材料。
本发明通过水热渗透过程,使得MoSi2,SiC颗粒渗透进入多孔C/C复合材料内部。这一过程简单,实验设备简易,消耗能量低,环境友好无污染。并且由于渗透过程在水热超临界状态下,反应釜内部压力大,能使得被渗透颗粒有效定向到达C/C材料内部。采用等温CVI 法对复合材料进行致密,将沉积MoSi2,SiC颗粒后的复合材料置于均热炉中,反应气体主要通过扩散从纤维骨架表面渗入到预制体内表面,发生化学反应并原位沉积,同时反应气体副产物从含SiC和MoSi2的C/C试样(预制体)内部扩散出来并由真空泵抽到外面,在同一炉中可以制备形状、大小各异、厚薄不等的各种部件,从而能有效提高了沉积速率。而且能封填多孔碳/碳复合材料以及SiC、MoSi2颗粒的缝隙,使得材料缺陷减少,致密化程度有效提升。而且能有效封填C/C基体以及SiC、MoSi2颗粒的缝隙,使得材料缺陷减少,致密化程度有效提升,对于提高复合材料抗烧蚀性能起到了有很作用。本发明制得的复合材料经30s烧蚀后,质量烧蚀率和线烧蚀率分别为0.70mg/s和0.0051mm/s,性能优于相同测试条件下同等密度的C/C复合材料。本发明制备出致密、有结构致密的SiC改性C/C-MoSi2复合材料,有望取得C/C复合材料高温抗氧化、抗烧蚀性能的新突破,对拓展C/C复合材料在高温领域的应用具有重要意义。

Claims (7)

1.一种SiC改性C/C-MoSi2复合材料的制备方法,其特征在于,包括以下步骤:
1)将密度为0.4~0.6g/cm3的多孔碳/碳复合材料切割成圆形薄片,得到C/C试样;
2)将粒径为100~200nm的SiC、粒径为0.8~1μm的二硅化钼粉体按质量比(0.5~1):(2~4)分散于去离子水中,搅拌均匀后得到悬浮液;
3)将悬浮液与C/C试样一同加入到水热反应釜内衬中,并加入无水乙醇后,于160~220℃进行水热反应24~48h,水热反应结束后取出C/C试样并洗涤,干燥;
4)将干燥后的试样在均热炉中采用等温化学气相渗透致密化,等温化学气相渗透的沉积温度为1100℃,沉积时间为60~80h,采用天然气作为碳源,并且天然气流量为1.5~2.5m3/h;
5)将致密化后的试样于氩气气氛保护下2500℃石墨化处理2h,得到SiC改性C/C-MoSi2复合材料。
2.根据权利要求1所述的一种SiC改性C/C-MoSi2复合材料的制备方法,其特征在于,步骤1)中圆形薄片的直径为1~4cm,厚度为1~1.5cm。
3.根据权利要求1所述的一种SiC改性C/C-MoSi2复合材料的制备方法,其特征在于,步骤2)中粒径为0.8~1μm的二硅化钼和粒径为100~200nm的SiC粉体具体通过以下方法制得:将二硅化钼粉体、SiC粉体分别湿法球磨24~48h,得到粒径为0.8~1μm的二硅化钼和粒径为100~200nm的SiC粉体。
4.根据权利要求1所述的一种SiC改性C/C-MoSi2复合材料的制备方法,其特征在于,步骤2)中搅拌均匀是通过磁力搅拌10~12h实现的。
5.根据权利要求1所述的一种SiC改性C/C-MoSi2复合材料的制备方法,其特征在于,步骤2)中碳化硅、二硅化钼的总质量与去离子水的比为(2.5~5)g:(150~200)mL。
6.根据权利要求1所述的一种SiC改性C/C-MoSi2复合材料的制备方法,其特征在于,步骤3)中加入悬浮液与无水乙醇的体积比为30~40mL:1~10mL。
7.根据权利要求1所述的一种SiC改性C/C-MoSi2复合材料的制备方法,其特征在于,步骤3)中干燥是在电热鼓风干燥箱中并在60~100℃下烘干2~4h。
CN201610060631.1A 2016-01-28 2016-01-28 一种SiC改性C/C-MoSi2复合材料的制备方法 Active CN105669232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610060631.1A CN105669232B (zh) 2016-01-28 2016-01-28 一种SiC改性C/C-MoSi2复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610060631.1A CN105669232B (zh) 2016-01-28 2016-01-28 一种SiC改性C/C-MoSi2复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN105669232A CN105669232A (zh) 2016-06-15
CN105669232B true CN105669232B (zh) 2018-06-26

Family

ID=56302945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610060631.1A Active CN105669232B (zh) 2016-01-28 2016-01-28 一种SiC改性C/C-MoSi2复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN105669232B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456004B (zh) * 2018-02-11 2021-06-15 沈阳理工大学 一种碳/碳复合材料表面复合陶瓷涂层的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016760A (zh) * 2015-07-09 2015-11-04 西北工业大学 一种超高温陶瓷改性c/c复合材料的制备方法
CN105130485A (zh) * 2015-08-28 2015-12-09 陕西科技大学 一种薄片状C/C-SiC-MoSi2陶瓷基复合材料的制备方法
CN105198500A (zh) * 2015-08-28 2015-12-30 陕西科技大学 一种薄片状C/C-MoSi2复合材料的制备方法
CN105237025A (zh) * 2015-08-28 2016-01-13 陕西科技大学 一种C/C-SiC-MoSi2陶瓷基复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016760A (zh) * 2015-07-09 2015-11-04 西北工业大学 一种超高温陶瓷改性c/c复合材料的制备方法
CN105130485A (zh) * 2015-08-28 2015-12-09 陕西科技大学 一种薄片状C/C-SiC-MoSi2陶瓷基复合材料的制备方法
CN105198500A (zh) * 2015-08-28 2015-12-30 陕西科技大学 一种薄片状C/C-MoSi2复合材料的制备方法
CN105237025A (zh) * 2015-08-28 2016-01-13 陕西科技大学 一种C/C-SiC-MoSi2陶瓷基复合材料的制备方法

Also Published As

Publication number Publication date
CN105669232A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN105237025B (zh) 一种C/C‑SiC‑MoSi2陶瓷基复合材料的制备方法
WO2020199681A1 (zh) 一种在碳碳复合保温材料表面制备高性能碳化硅涂层的方法
CN108484190B (zh) 一种碳纤维增强的多相碳化物陶瓷基复合材料的制备方法
CN105130485B (zh) 一种薄片状C/C‑SiC‑MoSi2陶瓷基复合材料的制备方法
CN103708445B (zh) 一种制备石墨烯粉体材料的方法及石墨烯粉体材料
CN107759251B (zh) 一种多孔陶瓷表面高韧性陶瓷涂层的制备方法
CN105541416A (zh) 一种C/C复合材料表面HfC-SiC涂层的制备方法
Liu et al. Pyrolysis mechanism of ZrC precursor and fabrication of C/C-ZrC composites by precursor infiltration and pyrolysis
CN110357635A (zh) 一种提高碳基或陶瓷基复合材料表面抗氧化涂层结合强度的方法
CN108947554A (zh) 一种SiC纳米线增强SiC多孔陶瓷复合材料及其制备方法
CN103979974A (zh) 一种C/SiC-HfB2-HfC超高温陶瓷基复合材料的制备方法
CN105198501A (zh) 一种碳/碳复合材料表面金属钨梯度涂层的制备方法
CN106083120A (zh) 一种制备梯度结构C/C‑MoSi2‑SiC复合材料的方法
CN103435354A (zh) 一种制备碳化硅纳米线增韧Cf/SiC复合材料的方法
CN105350294B (zh) 一种镀碳化硅层的短切碳纤维及其制备方法
CN106673708A (zh) 一种碳/碳复合材料表面制备碳化硅纳米线多孔层的方法
CN103724043A (zh) 一种高导热c/c复合材料及制备方法
JP4484004B2 (ja) セラミックス基複合部材の製造方法
CN105669231B (zh) 一种碳纤维增强MoSi2-SiC陶瓷基复合材料的制备方法
CN105669232B (zh) 一种SiC改性C/C-MoSi2复合材料的制备方法
CN105198500B (zh) 一种薄片状C/C‑MoSi2复合材料的制备方法
CN106064949B (zh) 一种超声辅助微波水热法制备SiC改性C/C-MoSi2复合材料的方法
CN116120080A (zh) 一种ZrB2-ZrC-SiC改性碳/碳复合材料及其制备方法和应用
CN111348915A (zh) 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法
CN105732123B (zh) 一种C/C-MoSi2复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant