CN111348915A - 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法 - Google Patents

一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111348915A
CN111348915A CN202010192735.4A CN202010192735A CN111348915A CN 111348915 A CN111348915 A CN 111348915A CN 202010192735 A CN202010192735 A CN 202010192735A CN 111348915 A CN111348915 A CN 111348915A
Authority
CN
China
Prior art keywords
zrc
carbon
equal
deficient
complex phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010192735.4A
Other languages
English (en)
Inventor
张国军
韦小凤
刘吉轩
李飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202010192735.4A priority Critical patent/CN111348915A/zh
Publication of CN111348915A publication Critical patent/CN111348915A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种缺碳型ZrC1‑x/C复相陶瓷材料及其制备方法,所述材料为ZrC1‑x/C复相陶瓷材料,其中0.61≤x≤0.99。本发明的缺碳型ZrC1‑x/C复相陶瓷内部存在大量碳空位、纳米孔隙、碳层间弱结合面、ZrC1‑x/C相界面,有利于使ZrC陶瓷的力学可靠性和抗辐照性能得到协同提升,在核用结构材料领域有着广阔的应用前景。

Description

一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法
技术领域
本发明属于缺碳型复相陶瓷材料及其制备领域,特别涉及一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法。
背景技术
随着核工业的不发展,新型核反应堆在追求更安全、更经济的目标下,要求所用材料具有优异的耐温性能、更高的力学可靠性及良好的抗辐照性能。碳化锆(ZrC)不仅具有高熔点(3500℃)、高硬度(~20GPa)、无固态相变、低饱和蒸汽压、耐高温、抗烧蚀等特点,还具有较低的中子吸收截面、耐核裂变产物腐蚀、抗辐照等优异的核用性能,有望作为新型核能系统用先进结构材料,如,核燃料包覆层、惰性基体等。
ZrC具有较宽的非化学计量成分范围,其C/Zr的摩尔比可在0.61-1之间变化,即ZrC0.61-ZrC1.0。在该成分范围内,尽管缺碳型ZrC1-x中存在大量碳空位,但其仍可以保持着与化学计量比ZrC1.0一样的面心立方晶体结构。研究发现,缺碳型ZrC1-x受He离子辐照时,其自身晶格中的碳空位对辐照产生的离位原子具有捕获作用,可以提高材料的辐照损伤容忍度,从而使材料表现出比化学计量比ZrC1.0更高的抗辐照性能。[Bao,Weichao,etal.Nuclear Instruments and Methods in Physics Research Section B:BeamInteractions with Materials and Atoms 434(2018)23-28.]。通过将一定比例的ZrC与金属锆共混后烧结,可以得到特定非化学计量比的缺碳型ZrC1-x陶瓷。但是单相的缺碳型ZrC1-x陶瓷的韧性较低,如ZrC0.85陶瓷的断裂韧性仅为1.9MPa m1/2,这使得材料的力学可靠性较差,极大的限制了其在核能领域的工程应用[Wang,Xin-Gang,et al.Journal of theEuropean Ceramic Society 31.6(2011):1103-1111.]。所以,如何提高缺碳型ZrC1-x陶瓷的力学可靠性,是该材料在核能得到实际应用之前亟待解决的问题。
碳材料(C)具有较低的中子吸收截面、良好的抗辐照性能,是核反应堆内最常用的材料之一。其主要包括石墨、石墨烯、碳纳米管、碳纤维、炭黑、介孔碳等,常被用于作为烧结助剂或第二相引入非氧化物陶瓷材料中,以提高陶瓷材料的致密度和力学性能。如,将石墨烯引入B4C陶瓷基体中,可以有效提高材料的断裂韧性、耐热冲击性、导热性和导电性等[Tan,Yongqiang,et al.Scripta Materialia 114(2016)98-102]。因此,将碳材料引入缺碳型ZrC1-x中,有希望制备出具有较高断裂韧性的缺碳型ZrC1-x/C复相陶瓷。中国发明专利CN106518120A曾公布了一种碳纤维-碳纳米管复合强韧化ZrC陶瓷复合材料的制备方法及应用,其首先采用化学气相沉积法在碳纤维三维编织体上沉积生长了碳纳米管,再将ZrC有机前驱体浸渍进入纤维编织体中,最终获得了ZrC/Cf复合材料。该材料具有轻质、多孔的特征,其孔隙率高达74%~81%,致密度低至(19%~26%),断裂韧性达4.63MPa·m1/2,适合应用于航空航天热防护领域[张幸红,等,中国发明专利,CN106518120A]。但是,CN106518120A公布的ZrC/Cf复合材料的高孔隙率和低致密度特征,使其不适合作为核能领域所需的高致密部件。且该ZrC/Cf复合材料中的ZrC相为化学计量比的ZrC1.0,ZrC1.0的抗辐照性能低于缺碳型ZrC1-x。若能进一步制备出高致密的缺碳型ZrC1-x/C复相陶瓷或复合材料,将有望大幅度提高核能领域用ZrC陶瓷的力学可靠性。但是,目前尚未见到有关高致密的缺碳型ZrC1-x/C复相陶瓷或复合材料的相关报道。
发明内容
本发明所要解决的技术问题是提供一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法,与现有技术相比,本发明工艺简单、成本低,本发明中采用碳材料C作为缺碳型ZrC1-x陶瓷材料的添加相,通过合理的设计ZrC1-x陶瓷的组分和制备工艺,制备出缺碳型ZrC1-x/C复相陶瓷材料,使得ZrC陶瓷的力学与抗辐照性能的协同提升,对促进我国新型核能系统的开发具有重要意义。
本发明的一种缺碳型复相陶瓷材料,所述材料为ZrC1-x/C复相陶瓷材料,其中0.61≤x≤0.99。
所述复相陶瓷材料中ZrC1-x的体积含量在90%-98%;C的体积含量在2%-10%。
所述C以石墨、石墨烯、碳黑、介孔碳、碳纳米管、短碳纤维或石墨烯的形式加入;ZrC1-x/C复相陶瓷材料的致密度在97%以上。
所述复相陶瓷材料的致密度的计算公式为:致密度=体积密度/理论密度*100%。
所述复相陶瓷的体积密度的测试方法严格按照国标(GB/T 25995-2010精细陶瓷密度和显气孔率试验方法)所述的步骤和方法实施。
所述复相陶瓷的理论密度依照文献所述的复相陶瓷材料的理论密度计算公式进行计算(田仕,等.致密陶瓷材料密度和气孔率的测试方法[J].理化检验(物理分册)47(2011)476-479)。
所述ZrC1.0和Zr摩尔比61:39~99:1;ZrC1.0和C体积比48:1~9:1。
本发明的一种缺碳型复相陶瓷材料的制备方法,包括:
将ZrC1.0、Zr与C进行混合,得到混合体,进行放电等离子体烧结,即得缺碳型复相陶瓷材料。
上述制备方法的优选方式如下:
所述ZrC1.0和Zr摩尔比61:39~99:1;ZrC1.0和C体积比48:1~9:1。
进一步,按照ZrC1.0:Zr摩尔比61:39~99:1的比例分别称取化学计量比的ZrC1.0和金属Zr粉末;按照ZrC1.0:C体积比48:1~9:1的比例,称取C粉,然后进行混合。
所述ZrC1.0、Zr与C均为粉末状;ZrC1.0粉末的粒径为0.2-5μm,质量纯度≥99%,厂家为中国科学院上海硅酸盐研究所;Zr粉的粒径为1-45μm,质量纯度≥99%,厂家为北京中金研新材料有限公司;C材料为石墨、石墨烯、碳黑、介孔碳、碳纳米管、短碳纤维、石墨烯中的一种。
所述石墨粒径≤10μm,质量纯度≥99%,厂家为上海石墨厂;石墨烯片的直径≤5μm,质量纯度≥99%,厂家为南京先丰纳米材料科技有限公司;碳黑粒径≤0.5μm,质量纯度≥99%,厂家为山东丰泰生物科技有限公司;介孔碳粒径≤5μm,孔径在2~50nm之间,质量纯度≥99%,厂家为南京先丰纳米材料科技有限公司;碳纳米管直径≤100nm、长度≤50μm、质量纯度≥99%,厂家为南京先丰纳米材料科技有限公司;短碳纤维直径≤200μm、长度≤5mm、质量纯度≥99%,厂家为上海力硕复合材料科技有限公司。
所述混合方式为湿法行星球磨,球磨介质为乙醇或丙酮,磨球材质为ZrO2,具体采用湿法滚式球磨工艺,在60~200转/分钟的转速下,将所称取的原料粉体球磨混合5-48h,再利用旋转蒸发仪将所得料浆烘干,得到干燥的混合粉体。
所述放电等离子体烧结具体工艺参数为:所得混合粉体装入石墨模具,并置于放电等离子体烧结炉内,以50-100℃/min的升温速率,升温至1700-2300℃,并在10-80MPa的外加压强下,在真空条件下或氩气气氛中,烧结2-30min。
进一步,上述真空条件的真空度≤50Pa;氩气的质量纯度≥99.99%。
进一步,所述烧结得到的缺碳型复相陶瓷材料用X射线衍射(XRD,D/max-2550VB+/PC,Japan)表征其相组成;用扫描电子显微镜(MAIA3,TESCAN,Czech Republic)观察其微观形貌;用压痕法测试所得材料的断裂韧性。
所述压痕法测量材料的断裂韧性严格按照标准JB/T 12616-2016要求的测试方法和步骤实施。
本发明的一种所述缺碳型复相陶瓷材料的应用。
有益效果
本发明采用ZrC1.0、Zr和C为原料,通过放电等离子体烧结法,原位反应制备缺碳型ZrC1-x/C复相陶瓷材料,且仅通过简单调节初始原料中ZrC1.0粉末、Zr粉和C粉的配比,即可获得组分和微结构特征不同的缺碳型ZrC1-x/C复相陶瓷材料。
与传统的ZrC1.0陶瓷材料相比,本发明所制备的缺碳型ZrC1-x/C复相陶瓷内部的ZrC1-x相存在大量碳空位,介孔碳、碳纳米管、炭黑中存在纳米孔隙,石墨碳层间存在弱结合面。这些特征,有利于使ZrC陶瓷的力学可靠性和抗辐照性能得到协同提升(见实施例6)。此外,本发明方法还具有制备工艺简单、可操控性强、容易实现规模化等优点。
附图说明
图1为实施例1制备的缺碳型ZrC1-x/C(碳黑)复相陶瓷的断面SEM形貌;
图2为实施例2制备的缺碳型ZrC1-x/C(石墨)复相陶瓷的XRD图谱;
图3为实施例3制备的缺碳型ZrC1-x/C(石墨烯)复相陶瓷的断面SEM形貌;
图4为实施例4制备的缺碳型ZrC1-x/C(短碳纤维)复相陶瓷的断面SEM形貌;
图5为实施例5制备的缺碳型ZrC1-x/C(碳纳米管)复相陶瓷的断面SEM形貌;
图6中(a)、(b)为实施例6制备的ZrC1.0陶瓷和缺碳型ZrC1-x/C(石墨)复相陶瓷经4MeVAu2+辐照测试前后的XRD图谱;其中,i-ZrC1.0和i-ZrC1-x/C分别代表辐照后的ZrC1.0陶瓷和ZrC1-x/C复相陶瓷。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种缺碳型ZrC1-x/C(x=0.2)复相陶瓷的制备方法:
将ZrC1.0粉、Zr粉和碳黑粉末,按ZrC1.0:Zr摩尔比4:1、ZrC1.0:C体积比97:3的比例进行配料。以乙醇为球磨介质、ZrO2球为磨球,在滚式球磨机上以200转/分钟的转速进行球磨混合5h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于50Pa)以100℃/min的升温速率,升温至2000℃,并在50MPa的外加压强下,保温5分钟,制备出缺碳型ZrC1-x/C复相陶瓷材料。
经分析:所制备的缺碳型ZrC1-x/C复相陶瓷材料,其致密度达到99.5%,其断面SEM形貌如图1所示。由图可见,材料内部无明显的气孔存在。
实施例2
一种缺碳型ZrC1-x/C(x=0.3)复相陶瓷的制备方法:
将ZrC1.0粉、Zr粉和石墨粉末,按ZrC1.0:Zr摩尔比7:3、ZrC1.0:C体积比97:3的比例进行配料。以乙醇为球磨介质、ZrO2球为磨球,在滚式球磨机上以120转/分钟的转速进行球磨混合16h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于100Pa)以80℃/min的升温速率,升温至1900℃,并在30MPa的外加压强下,保温10分钟,制备缺碳型ZrC1-x/C复相陶瓷材料。
经分析:所制备的缺碳型ZrC1-x/C复相陶瓷材料,其致密度达到99.9%,其XRD图谱如图2所示。由图可见,材料内由缺碳型ZrC0.7和石墨两相组成(其中Si为XRD测试时所用内标物质)。
实施例3
一种缺碳型ZrC1-x/C(x=0.15)复相陶瓷的制备方法:
将ZrC1.0粉、Zr粉和石墨烯粉末,按ZrC1.0:Zr摩尔比85:15、ZrC1.0:C体积比95:5的比例进行配料。以乙醇为球磨介质、ZrO2球为磨球,在滚式球磨机上以60转/分钟的转速进行球磨混合48h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于100Pa)以50℃/min的升温速率,升温至1800℃,并在80MPa的外加压强下,保温15分钟,制备缺碳型ZrC1-x/C复相陶瓷材料。)
经分析:所制备的缺碳型ZrC1-x/C复相陶瓷材料,其致密度达到99.7%,其断面SEM形貌如图3所示。由图可见,石墨烯均匀分布于ZrC1-x基体晶粒的晶界处,这有利于材料破坏过程中的裂纹扩展,提高材料的断裂韧性。采用压痕法测试材料的断裂韧性。结果表明,其断裂韧性可达2.8±0.8MPa·m1/2,较文献报道的单相ZrC0.85陶瓷断裂韧性1.9MPa·m1/,提升了47%[Wang,Xin-Gang,et al.Journal of the European Ceramic Society 31.6(2011):1103-1111.]。
实施例4
一种缺碳型ZrC1-x/C(x=0.25)复相陶瓷的制备方法:
将ZrC1.0粉、Zr粉和短碳纤维,按ZrC1.0:Zr摩尔比3:1、ZrC1.0:C体积比95:5的比例进行配料。以乙醇为球磨介质、ZrO2球为磨球,在滚式球磨机上以150转/分钟的转速进行球磨混合16h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在氩气气氛下以100℃/min的升温速率,升温至1750℃,并在70MPa的外加压强下,保温12分钟,制备缺碳型ZrC1-x/C复相陶瓷材料。
经分析:所制备的缺碳型ZrC1-x/C复相陶瓷材料,其致密度达到99.2%,其断面SEM形貌如图4所示。由图可见,在陶瓷基体断裂时,碳纤维被拔出。碳纤维的拔出可以有效提高材料的断裂韧性。采用压痕法测试材料的断裂韧性,结果表明,其断裂韧性可达3.8±0.4MPa·m1/2,是文献报道的单相ZrC0.85陶瓷断裂韧性1.9MPa·m1/2的2倍[Wang,Xin-Gang,et al.Journal of the European Ceramic Society 31.6(2011):1103-1111.]。
实施例5
一种缺碳型ZrC1-x/C(x=0.35)复相陶瓷的制备方法:
将ZrC1.0粉、Zr粉和碳纳米管,按ZrC1.0:Zr摩尔比65:35、ZrC1.0:C体积比97:3的比例进行配料。以乙醇为球磨介质、ZrO2球为磨球,在滚式球磨机上以80转/分钟的转速进行球磨混合36h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在氩气气氛下以80℃/min的升温速率,升温至1800℃,并在50MPa的外加压强下,保温5分钟,制备缺碳型ZrC1-x/C复相陶瓷材料。
经分析:所制备的缺碳型ZrC1-x/C复相陶瓷材料,其致密度达到99.9%,其断面SEM形貌如图5所示。由图可见,在陶瓷基体断裂时,碳纳米管被拔出。碳纳米管的拔出可以有效提高材料的断裂韧性。采用压痕法测试材料的断裂韧性,结果表明,其断裂韧性可达4.1±0.8MPa·m1/2,是文献报道的单相ZrC0.85陶瓷断裂韧性1.9MPa·m1/2的2.15倍[Wang,Xin-Gang,et al.Journal of the European Ceramic Society 31.6(2011):1103-1111.]。
实施例6
一种缺碳型ZrC1-x/C(x=0.2)复相陶瓷的制备方法:
将ZrC1.0粉、Zr粉和石墨粉末,按ZrC1.0:Zr摩尔比4:1、ZrC1.0:C体积比97:3的比例进行配料。以乙醇为球磨介质、ZrO2球为磨球,在滚式球磨机上以150转/分钟的转速进行球磨混合6h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于50Pa)以80℃/min的升温速率,升温至2100℃,并在60MPa的外加压强下,保温4分钟,制备出缺碳型ZrC1-x/C复相陶瓷材料。同时,以ZrC1.0粉为原料,采用上述相同工艺参数,制备出了ZrC1.0陶瓷,用于与ZrC1-x/C复相陶瓷材料进行性能对比。
经分析:所制备的缺碳型ZrC1-x/C复相陶瓷和ZrC1.0陶瓷,其致密度分别达到99.8%和99.6%。采用压痕法测试材料的断裂韧性,结果表明,ZrC1-x/C复相陶瓷的断裂韧性可达3.1±0.8MPa·m1/2,ZrC1.0陶瓷的断裂韧性为2.5±0.9MPa·m1/2,缺碳型ZrC1-x/C复相陶瓷比ZrC1.0陶瓷具有更高的力学可靠性。此外,如图6所示,经过剂量为2.5x1016/cm2的4MeV Au2+辐照后,制备的缺碳型ZrC1-x/C复相陶瓷材料的XRD衍射峰的峰位角度基本无偏移,而ZrC1.0陶瓷的XRD衍射峰的峰位明显向低角度偏移,表明相同辐照条件下,ZrC1-x/C复相陶瓷中ZrC1-x相的晶格结构更稳定,而ZrC1.0陶瓷中ZrC1.0相发生了较大的晶格畸变,缺碳型ZrC1-x/C复相陶瓷材料的抗辐照性能高于ZrC1.0陶瓷。由此可见,本发明通过制备缺碳型ZrC1-x/C复相陶瓷材料,实现了ZrC陶瓷的力学可靠性和抗辐照性能的协同提升。

Claims (10)

1.一种缺碳型复相陶瓷材料,其特征在于,所述材料为ZrC1-x/C复相陶瓷材料,其中0.61≤x≤0.99。
2.根据权利要求1所述材料,其特征在于,所述复相陶瓷材料中ZrC1-x的体积含量范围为90%-98%;C的体积含量范围为2%-10%。
3.根据权利要求1所述材料,其特征在于,所述C以石墨、石墨烯、碳黑、介孔碳、碳纳米管、短碳纤维或石墨烯的形式加入;ZrC1-x/C复相陶瓷材料的致密度在97%以上。
4.根据权利要求1所述材料,其特征在于,所述ZrC1.0和Zr摩尔比61:39~99:1;ZrC1.0和C体积比48:1~9:1。
5.一种缺碳型复相陶瓷材料的制备方法,包括:
将ZrC1.0、Zr与C进行混合,得到混合体,进行放电等离子体烧结,即得缺碳型复相陶瓷材料。
6.根据权利要求5所述制备方法,其特征在于,所述ZrC1.0、Zr与C均为粉末状;ZrC1.0粉末的粒径为0.2-5μm,质量纯度≥99%;Zr粉的粒径为1-45μm,质量纯度≥99%;C材料为石墨、石墨烯、碳黑、介孔碳、碳纳米管、短碳纤维、石墨烯中的一种。
7.根据权利要求6所述制备方法,其特征在于,所述石墨粒径≤10μm,质量纯度≥99%;石墨烯片的直径≤5μm,质量纯度≥99%;碳黑粒径≤0.5μm,质量纯度≥99%;介孔碳粒径≤5μm,孔径在2~50nm之间,质量纯度≥99%;碳纳米管直径≤100nm、长度≤50μm、质量纯度≥99%;短碳纤维直径≤200μm、长度≤5mm、质量纯度≥99%。
8.根据权利要求5所述制备方法,其特征在于,所述混合方式为湿法行星球磨,球磨介质为乙醇或丙酮,磨球材质为ZrO2,具体采用湿法滚式球磨工艺,在60~200转/分钟的转速下,将所称取的原料粉体球磨混合5-48h,再利用旋转蒸发仪将所得料浆烘干,得到干燥的混合粉体。
9.根据权利要求5所述制备方法,其特征在于,所述放电等离子体烧结具体工艺参数为:以50-100℃/min的升温速率,升温至1700-2300℃,并在10-80MPa的外加压强下,在真空条件下或氩气气氛中,烧结2-30min。
10.一种权利要求1所述缺碳型复相陶瓷材料的应用。
CN202010192735.4A 2020-03-18 2020-03-18 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法 Pending CN111348915A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010192735.4A CN111348915A (zh) 2020-03-18 2020-03-18 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010192735.4A CN111348915A (zh) 2020-03-18 2020-03-18 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111348915A true CN111348915A (zh) 2020-06-30

Family

ID=71190884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010192735.4A Pending CN111348915A (zh) 2020-03-18 2020-03-18 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111348915A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853476A (zh) * 2022-04-21 2022-08-05 哈尔滨工业大学 一种基于无机物质的超高性能碳基材料及其制备方法
CN115677364A (zh) * 2022-09-07 2023-02-03 西安交通大学 一种多层次碳化锆增强碳基复合材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002839A (zh) * 2017-12-08 2018-05-08 东华大学 一种ZrC1-x-SiC复相陶瓷的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002839A (zh) * 2017-12-08 2018-05-08 东华大学 一种ZrC1-x-SiC复相陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG XIN-GANG,ET AL: "Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853476A (zh) * 2022-04-21 2022-08-05 哈尔滨工业大学 一种基于无机物质的超高性能碳基材料及其制备方法
CN114853476B (zh) * 2022-04-21 2023-11-28 哈尔滨工业大学 一种基于无机物质的超高性能碳基材料及其制备方法
CN115677364A (zh) * 2022-09-07 2023-02-03 西安交通大学 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
CN115677364B (zh) * 2022-09-07 2023-09-26 西安交通大学 一种多层次碳化锆增强碳基复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP4734674B2 (ja) 低cte高等方性黒鉛
CN103073332B (zh) 具有纳米孔结构的过渡金属碳化物陶瓷及其制备方法
Liu et al. Pyrolysis mechanism of ZrC precursor and fabrication of C/C-ZrC composites by precursor infiltration and pyrolysis
Li et al. Microstructure, oxidation and thermal shock resistance of graphene reinforced SiBCN ceramics
CN111348915A (zh) 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法
Xu et al. Fabrication and properties of lightweight ZrB 2 and SiC-modified carbon bonded carbon fiber composites via polymeric precursor infiltration and pyrolysis
Zhao et al. Effect of the average grain size of green pitch coke on the microstructure and properties of self-sintered graphite blocks
Jia et al. High-temperature properties and interface evolution of C/SiBCN composites prepared by precursor infiltration and pyrolysis
Tan et al. Enhancement of sinterability and mechanical properties of B 4 C ceramics using Ti 3 AlC 2 as a sintering aid
CN117447204B (zh) 一种机械用碳材料的制备方法
Ge et al. Improving the electrical and microwave absorbing properties of Si3N4 ceramics with carbon nanotube fibers
Yan et al. Effect of BN content on the structural, mechanical, and dielectric properties of PDCs‐SiCN (BN) composite ceramics
Li et al. Property evolvements in SiCf/SiC composites fabricated by combination of PIP and electrophoretic deposition at different pyrolysis temperatures
Wu et al. The evolution of carbon fibers with Fe3+ doping and effects on the mechanical properties of Cf/BAS composites
Dai et al. Fabrication and characterization of carbon nanotube/Silicon Carbide nanocomposite laminates
Hu et al. In-situ preparation and mechanical property analysis of SiC/SiBCN (O) nanocomposites
KR101575902B1 (ko) 섬유강화 세라믹 기지 복합체 및 그 제조방법
CN115259874A (zh) 增韧、导电MXene-氧化锆复合陶瓷及其制备方法
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
Yang et al. Microstructure and strengthening behavior in high content SiC nanowires reinforced SiC composites
Dou et al. Tailoring layered Csf/SiBCN composites with pseudoplastic fracture behavior: Strengthening and toughening mechanisms
Wang et al. Effect of ZrO 2 dopant on the sintering behavior and performance of mcmb-derived carbon laminations
Pan et al. Densification of low‐density boron carbide by Li doping and its microstructural characterization
EP4183760A1 (en) Conductive diamond/amorphous carbon composite material having high strength and process for preparing the same
Xia et al. Effects of heat treatment temperature on oxidation behavior of glass-like carbon derived from acetone-furfural resin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200630