CN108002839A - 一种ZrC1-x-SiC复相陶瓷的制备方法 - Google Patents

一种ZrC1-x-SiC复相陶瓷的制备方法 Download PDF

Info

Publication number
CN108002839A
CN108002839A CN201711302895.4A CN201711302895A CN108002839A CN 108002839 A CN108002839 A CN 108002839A CN 201711302895 A CN201711302895 A CN 201711302895A CN 108002839 A CN108002839 A CN 108002839A
Authority
CN
China
Prior art keywords
zrc
sic
complex phase
preparation
phase ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711302895.4A
Other languages
English (en)
Other versions
CN108002839B (zh
Inventor
刘吉轩
张国军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201711302895.4A priority Critical patent/CN108002839B/zh
Publication of CN108002839A publication Critical patent/CN108002839A/zh
Application granted granted Critical
Publication of CN108002839B publication Critical patent/CN108002839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种ZrC1‑x‑SiC复相陶瓷的制备方法,其特征在于,称取ZrC1.0、Si3N4原料粉体,混合均匀,得到ZrC‑Si3N4混合粉体;将ZrC1.0‑Si3N4混合粉体在真空条件下,加热保温,反应制得ZrC1‑x‑SiC复合粉体;将ZrC1‑x‑SiC复合粉体装入石墨模具中,于热压烧结条件下,在惰性气氛中保温,制得ZrC1‑x‑SiC复相陶瓷。本发明采用Si3N4与ZrC1.0原位反应生成细小的SiC颗粒和非化学计量的缺碳型ZrC1‑x,制备的陶瓷的致密度高达100%,ZrC1‑x相的平均晶粒尺寸仅为2~3μm,还具有原料价廉易得、制备工艺简单、可操控性强、容易实现规模化等优点。

Description

一种ZrC1-x-SiC复相陶瓷的制备方法
技术领域
本发明涉及一种ZrC1-x-SiC复相陶瓷的制备方法,属于特种陶瓷技术领域。
背景技术
以高温气冷堆、超临界水冷堆、熔盐堆、钠冷快堆、铅冷快堆、气冷快堆等六种反应堆设计概念为代表的第四代裂变核能系统被认为具有更好的安全性、经济竞争力,是先进核能系统的发展趋势和技术前沿。然而,第四代裂变核能系统的服役环境更加苛刻,运行温度和辐照中子注量显著高于第二代裂变核能系统,使现有核能系统用结构材料遇到了新的挑战。碳化锆(ZrC)和碳化硅(SiC)具有耐高温、中子吸收截面小等优点,成为先进核能系统的重要候选材料。进一步提高ZrC、SiC两种材料的力学性能、抗辐照性能,是核能材料领域重要的追求目标。
研究发现,通过调控ZrC的化学计量,形成非化学计量的ZrC1-x,其晶格空位能够与辐照引起的离位间隙原子复合,具有促进辐照损伤自愈合的效果,提高了材料的辐照损伤容忍度。即,非化学计量的缺碳型ZrC1-x的抗辐照性能优于化学计量的ZrC1.0[Y Yang,etal.,Journal of Nuclear Materials,454(2014)130-135.]。另一方面,已有研究表明,多晶材料内部的界面可以捕获辐照产生的间隙原子和裂变气体,并能把捕获到的间隙原子反弹回材料内部的空位缺陷中,可促进离位原子-空位复合,有利于降低材料辐照损伤程度[G.Ackland,Science,327(2010)1587-1588;XM Bai,et al.,Science,327(2010)1631-1634.]。所以,增加ZrC、SiC陶瓷的内部的界面数量,将有助于提高材料的抗辐照性能。
众所周知,减小晶粒尺寸或添加第二相是增加材料内部界面数量的有效途径。因此,将ZrC与SiC复合,制备晶粒细小的ZrC-SiC复相陶瓷,将有利于从减小晶粒尺寸、形成ZrC/SiC异质界面两方面同时增加材料内部界面数量,达到提高材料抗辐照性能的目的。同时,若能在制备过程中形成非化学计量的ZrC1-x相,即,获得ZrC1-x-SiC复相陶瓷,将有利于进一步提升材料的抗辐照性能。研究表明:以ZrC粉和Si粉为原料进行反应热压烧结,可获得致密的ZrC1-x-SiC复相陶瓷[XG Wang,Journal of the American Ceramic Society,96(2013)32-36]。但是,由于Si粉熔点较低,高温烧结时在未完全反应前易形成液相Si而聚集,导致生成的SiC晶粒较为粗大,不利于材料的力学性能。因此,设计合理的反应路径,在反应烧结过程中原位生成非化学计量的ZrC1-x和细小的SiC晶粒,从而提升材料的力学和抗辐照性能,对核用ZrC1-x-SiC复相陶瓷的开发、应用具有重要意义。
发明内容
本发明所要解决的问题是:提供一种制备ZrC1-x-SiC复相陶瓷的方法,以获得含有非化学计量ZrC1-x且晶粒细小的ZrC1-x-SiC复相陶瓷。
为了解决上述问题,本发明采用的技术方案如下:
一种ZrC1-x-SiC复相陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1):将ZrC1.0、Si3N4以质量比98.5∶1.5~87.5∶12.5的比例称取原料粉体,采用湿法球磨使混合均匀,得到ZrC-Si3N4混合粉体;
步骤2):将ZrC1.0-Si3N4混合粉体在真空条件下,于1550~1650℃保温0.5~1小时,反应制得ZrC1-x-SiC复合粉体;
步骤3):将ZrC1-x-SiC复合粉体装入石墨模具中,于1950~2200℃、25~45MPa的热压烧结条件下,在惰性气氛中保温1~2小时,制得ZrC1-x-SiC复相陶瓷。
优选地,所述步骤1)中ZrC1.0原料粉体的粒径为0.5~2μm,质量纯度≥98.5%;Si3N4原料粉体的粒径为0.1~1.5μm,质量纯度≥99%。
优选地,所述步骤1)中湿法球磨的球磨介质为乙醇或丙酮,磨球材质为SiC或Si3N4
优选地,所述步骤2)制得的ZrC1-x-SiC复合粉体中,ZrC1-x粉体为非化学计量的缺碳型碳化锆。
优选地,所述步骤3)中的惰性气氛为质量纯度为99.99~99.999%的氩气。
与现有技术相比,本发明具有如下有益效果:
本发明采用Si3N4与ZrC1.0原位反应生成细小的SiC颗粒和非化学计量的缺碳型ZrC1-x,仅通过简单调节Si3N4与ZrC1.0的初始比例,即可控制生成物中ZrC1-x与SiC两相的比例。且在后续热压烧结过程中,细小的SiC颗粒可以阻碍ZrC1-x的粗化,使得所制备的ZrC1-x-SiC复相陶瓷的致密度高达100%、ZrC1-x相的平均晶粒尺寸仅为2~3μm。该材料的室温四点弯曲强度显著高于采用ZrC1.0和Si为原料反应热压烧结所得ZrC1-x-SiC陶瓷。此外,本发明方法还具有原料价廉易得、制备工艺简单、可操控性强、容易实现规模化等优点。
附图说明
图1为实施例1制备的ZrC1-x-SiC复相陶瓷断口微观形貌的SEM图;
图2为实施例2制备的ZrC1-x-SiC复相陶瓷的XRD图;
图3为实施例3制备的ZrC1-x-SiC复相陶瓷的XRD图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种ZrC1-x-SiC复相陶瓷的制备方法:
将ZrC1.0粉(0.5~2μm,98.5wt%)和Si3N4粉(0.1~1.5μm,99wt%)按质量比为92∶8进行配料,以乙醇为介质、Si3N4球为磨球在辊式球磨机上以200转/分钟的转速进行球磨混合24h,再经旋转蒸发得到ZrC1.0-Si3N4混合干粉;将该混合干粉在真空条件下,于1550℃保温1小时,反应制得ZrC1-x-SiC复合粉体;将所得复合粉体装入石墨模具中,于2000℃、30MPa的热压烧结条件下,在惰性气氛(质量纯度99.99以上的氩气)中保温1小时,制得ZrC1-x-SiC复相陶瓷;
经分析:所制备的复相陶瓷的致密度达100%,其由ZrC1-x和SiC两相组成,ZrC1-x相的平均晶粒尺寸仅为2.5μm,SiC相的平均晶粒尺寸仅为650nm,其断口微观形貌如图1所示。所得复相陶瓷与采用ZrC1.0和Si为原料反应热压烧结所得ZrC1-x-SiC陶瓷的四点弯曲强度对比如表1所示。
实施例2
一种ZrC1-x-SiC复相陶瓷的制备方法:
将ZrC1.0粉(0.5~2μm,98.5wt%)和Si3N4粉(0.1~1.5μm,99wt%)按质量比为95∶5进行配料,以乙醇为介质、Si3N4球为磨球在辊式球磨机上以200转/分钟的转速进行球磨混合24h,再经旋转蒸发得到ZrC1.0-Si3N4混合干粉;将该混合干粉在真空条件下,于1600℃保温0.5小时,反应制得ZrC1-x-SiC复合粉体;将所得复合粉体装入石墨模具中,于2050℃/25MPa的热压烧结条件下,在惰性气氛(质量纯度99.99以上的氩气)中保温1小时,制得ZrC1-x-SiC复相陶瓷;
经分析:所制备的复相陶瓷的致密度达100%,其XRD图谱如图2所示,可见,所制得的复相陶瓷仅含有ZrC1-x和SiC两相,表明初始Si3N4原料粉体已与ZrC1.0原料粉体完全反应生成了SiC和ZrC1-x。所制备的复相陶瓷的各相含量及其力学性能列于表1中。
实施例3
一种ZrC1-x-SiC复相陶瓷的制备方法:
将ZrC1.0粉(0.5~2μm,98.5wt%)和Si3N4粉(0.1~1.5μm,99wt%)按质量比为98.5∶1.5进行配料,以乙醇为介质、Si3N4球为磨球在辊式球磨机上以200转/分钟的转速进行球磨混合24h,再经旋转蒸发得到ZrC1.0-Si3N4混合干粉;将该混合干粉在真空条件下,于1600℃保温1小时,反应制得ZrC1-x-SiC复合粉体;将所得复合粉体装入石墨模具中,于2100℃/40MPa的热压烧结条件下,在惰性气氛(质量纯度99.99以上的氩气)中保温1.5小时,制得ZrC1-x-SiC复相陶瓷;
经分析:所制备的复相陶瓷的致密度达100%,其XRD图谱如图3所示,可见,所制得的复相陶瓷仅含有ZrC1-x和SiC两相。所制备的复相陶瓷的力学性能列于表1中。
实施例4
一种ZrC1-x-SiC复相陶瓷的制备方法:
将ZrC1.0粉(0.5~2μm,98.5wt%)和Si3N4粉(0.1~1.5μm,99wt%)按质量比为90.5∶9.5进行配料,以乙醇为介质、Si3N4球为磨球在辊式球磨机上以200转/分钟的转速进行球磨混合24h,再经旋转蒸发得到ZrC1.0-Si3N4混合干粉;将该混合干粉在真空条件下,于1650℃保温1小时,反应制得ZrC1-x-SiC复合粉体;将所得复合粉体装入石墨模具中,于2100℃/30MPa的热压烧结条件下,在惰性气氛(质量纯度99.99以上的氩气)中保温1小时,制得ZrC1-x-SiC复相陶瓷;
经分析:所制备的复相陶瓷的致密度达100%,可见,所制得的复相陶瓷仅含有ZrC1-x和SiC两相。所制备的复相陶瓷的力学性能列于表1中。
表1为实施例1~4所制备ZrC1-x-SiC复相陶瓷与以ZrC1.0和Si为原料反应热压烧结所得ZrC1-x-SiC陶瓷的力学性能对比。
表1

Claims (5)

1.一种ZrC1-x-SiC复相陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1):将ZrC1.0、Si3N4以质量比98.5∶1.5~87.5∶12.5的比例称取原料粉体,采用湿法球磨使混合均匀,得到ZrC-Si3N4混合粉体;
步骤2):将ZrC1.0-Si3N4混合粉体在真空条件下,于1550~1650℃保温0.5~1小时,反应制得ZrC1-x-SiC复合粉体;
步骤3):将ZrC1-x-SiC复合粉体装入石墨模具中,于1950~2200℃、25~45MPa的热压烧结条件下,在惰性气氛中保温1~2小时,制得ZrC1-x-SiC复相陶瓷。
2.如权利要求1所述ZrC1-x-SiC复相陶瓷的制备方法,其特征在于,所述步骤1)中ZrC1.0原料粉体的粒径为0.5~2μm,质量纯度≥98.5%;Si3N4原料粉体的粒径为0.1~1.5μm,质量纯度≥99%。
3.如权利要求1所述ZrC1-x-SiC复相陶瓷的制备方法,其特征在于,所述步骤1)中湿法球磨的球磨介质为乙醇或丙酮,磨球材质为SiC或Si3N4
4.如权利要求1所述ZrC1-x-SiC复相陶瓷的制备方法,其特征在于,所述步骤2)制得的ZrC1-x-SiC复合粉体中,ZrC1-x粉体为非化学计量的缺碳型碳化锆。
5.如权利要求1所述ZrC1-x-SiC复相陶瓷的制备方法,其特征在于,所述步骤3)中的惰性气氛为质量纯度为99.99~99.999%的氩气。
CN201711302895.4A 2017-12-08 2017-12-08 一种ZrC1-x-SiC复相陶瓷的制备方法 Active CN108002839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711302895.4A CN108002839B (zh) 2017-12-08 2017-12-08 一种ZrC1-x-SiC复相陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711302895.4A CN108002839B (zh) 2017-12-08 2017-12-08 一种ZrC1-x-SiC复相陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN108002839A true CN108002839A (zh) 2018-05-08
CN108002839B CN108002839B (zh) 2021-04-16

Family

ID=62057847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711302895.4A Active CN108002839B (zh) 2017-12-08 2017-12-08 一种ZrC1-x-SiC复相陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN108002839B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348915A (zh) * 2020-03-18 2020-06-30 东华大学 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法
CN111747748A (zh) * 2020-06-24 2020-10-09 山东合创明业精细陶瓷有限公司 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131899A (ja) * 1983-12-16 1985-07-13 Tokai Kounetsu Kogyo Kk 炭化ケイ素ウイスカ−の製造方法
CN1053271A (zh) * 1990-12-29 1991-07-24 清华大学 高性能α相碳化硅晶须的制造方法
CN103086731A (zh) * 2011-10-28 2013-05-08 中国科学院上海硅酸盐研究所 高强度纤维增强陶瓷基复合材料的微区原位反应制备方法
CN104163628A (zh) * 2013-05-17 2014-11-26 中国科学院上海硅酸盐研究所 一种制备HfC-SiC复相陶瓷的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131899A (ja) * 1983-12-16 1985-07-13 Tokai Kounetsu Kogyo Kk 炭化ケイ素ウイスカ−の製造方法
CN1053271A (zh) * 1990-12-29 1991-07-24 清华大学 高性能α相碳化硅晶须的制造方法
CN103086731A (zh) * 2011-10-28 2013-05-08 中国科学院上海硅酸盐研究所 高强度纤维增强陶瓷基复合材料的微区原位反应制备方法
CN104163628A (zh) * 2013-05-17 2014-11-26 中国科学院上海硅酸盐研究所 一种制备HfC-SiC复相陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG XINGANG等: "Reactive Hot Pressing of ZrC–SiC Ceramics at Low Temperature", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
殷小玮等: "化学气相反应法制备Zr-Si-C涂层", 《硅酸盐学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348915A (zh) * 2020-03-18 2020-06-30 东华大学 一种缺碳型ZrC1-x/C复相陶瓷材料及其制备方法
CN111747748A (zh) * 2020-06-24 2020-10-09 山东合创明业精细陶瓷有限公司 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN111747748B (zh) * 2020-06-24 2023-04-07 山东合创明业精细陶瓷有限公司 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法

Also Published As

Publication number Publication date
CN108002839B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN101844766B (zh) 快速制备碳化锆陶瓷粉体的方法
CN101746756B (zh) 一种富10b碳化硼粉体及其制备方法
CN110204341B (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
RU2679822C2 (ru) Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора
CN102757223A (zh) 一种稀土硼化物/碳化硼复合中子吸收材料及其制备方法
CN110156475A (zh) 一种碳氮化铀锆粉末的微波合成方法
CN101734918A (zh) 一种致密富10b碳化硼陶瓷及其制备方法
CN104496477A (zh) 一种高纯度Cr2AlC陶瓷粉体的制备方法
CN109903868A (zh) 一种uc燃料芯块的制备方法
CN104944432B (zh) 一种超细富10b二硼化钛粉体及其制备方法
CN108002839A (zh) 一种ZrC1-x-SiC复相陶瓷的制备方法
CN102924083B (zh) 一种碳化锆陶瓷粉体的制备方法
CN104150911B (zh) 一种微波辅助低温快速合成纳米氮化硅-碳化硅复合粉体的方法
CN115304378A (zh) 耐辐照高熵碳化物陶瓷的制备方法
CN101265106A (zh) 一种制备纳米/纳米型Si3N4/SiC纳米复相陶瓷的方法
CN113213916B (zh) 一种萤石结构钛酸镝反应堆控制棒及其制备方法
CN102674356B (zh) 一种纳米富10b碳化硼粉体的制备方法
CN101724907B (zh) 一种单相纳米晶Mn3(Cu0.5Ge0.5)N负热膨胀块体材料的制备方法
CN101717118B (zh) 一种CuCrS2纳米粉体的制备方法
CN115433007B (zh) 一种太阳能光谱宽频吸收材料及其制备方法
CN113173787A (zh) 一种锆酸钆/钽酸钆复合陶瓷及其制备方法
RU2590887C1 (ru) Способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора
CN101357762B (zh) 镁热燃烧还原合成碳化锆粉末的方法
CN100590075C (zh) 碳氮化钛纳米粉的多重激活制备法
CN112102968A (zh) 一种高热导燃料芯块及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant