CN105664890B - 一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法 - Google Patents

一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法 Download PDF

Info

Publication number
CN105664890B
CN105664890B CN201610024704.1A CN201610024704A CN105664890B CN 105664890 B CN105664890 B CN 105664890B CN 201610024704 A CN201610024704 A CN 201610024704A CN 105664890 B CN105664890 B CN 105664890B
Authority
CN
China
Prior art keywords
sio
zif
magnetic
mofs
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610024704.1A
Other languages
English (en)
Other versions
CN105664890A (zh
Inventor
陈相峰
苏浩
林云良
赵汝松
苑金鹏
王珊珊
王晓利
陈跃
宋新力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Analysis and Test Center
Original Assignee
Shandong Analysis and Test Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Analysis and Test Center filed Critical Shandong Analysis and Test Center
Priority to CN201610024704.1A priority Critical patent/CN105664890B/zh
Publication of CN105664890A publication Critical patent/CN105664890A/zh
Application granted granted Critical
Publication of CN105664890B publication Critical patent/CN105664890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/184Herbicides, pesticides, fungicides, insecticides or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/52Sorbents specially adapted for preparative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • B01J2220/825Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds comprising a cladding or external coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法,包括将磁性Fe3O4@SiO2纳米球分散在3‑氨丙基三乙氧基硅烷和丁二酸酐的N,N‑二甲基甲酰胺溶液中,使其表面带有羧基;将羧基修饰的Fe3O4@SiO2纳米球,分散于硝酸锌和2‑甲基咪唑的甲醇溶液中,使其表面包裹上金属有机骨架材料ZIF‑8,得到Fe3O4@SiO2@ZIF‑8纳米颗粒;将Fe3O4@SiO2@ZIF‑8纳米颗粒分散于钛酸四丁酯的乙醇溶液中,制得磁性纳米复合材料。该材料使富集分离过程变得简便,通过MOFs和TiO2优势的结合能够提高杀菌剂的富集效率,可用于杀菌剂的富集分离和液相色谱串联质谱的检测。

Description

一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测 方法
技术领域
本发明涉及一种基于MOFs/TiO2磁性纳米复合材料富集-液相色谱串联质谱的水中杀菌剂的高灵敏度分析检测方法,属于分析测试领域。
背景技术
杀菌剂被广泛用于各种农作物、水果和蔬菜的保护。由于杀菌剂具有良好的稳定性、抗酸碱性和抗光漂白性,使其在储存和使用方面简单便捷,可防治麦类黑穗病、水稻稻瘟病、瓜类白粉病、和花卉病害等多种真菌病害,效果显著。代表性杀菌剂有噻菌灵、甲霜灵、乙霉威、腈菌唑以及戊唑醇等。由于杀菌剂在试验动物中显示致畸和致突变作用,且在人体内转化的代谢产物亦有毒理作用,是环境残留的重点监测对象。一般杀菌剂直接用于土壤中和喷洒到植物上,使其易残留在环境中。因此对环境中杀菌剂的富集和检测至关重要。
目前,对杀菌剂的分析检测方法有液相色谱法(LC)和液相色谱-串联质谱法(LC-MS/MS)等。但液相色谱法检测的选择性和特异性比较差,对复杂样品的干扰比较大,容易出现假阳性结果。因此采用液相色谱-串联质谱法对杀菌剂的测定,通过二级质谱扫描减少了复杂样品中的背景干扰,具有灵敏度高、稳定性好、线性范围宽等特点,提高了杀菌剂的检测灵敏度。
由于金属有机骨架材料(MOFs)结构的可调谐、可修饰以及良好的热稳定性和化学稳定性等诸多的优势,具备了有机物和无机物共有的特性,所以广泛应用在气体储存及吸附分离、离子的交换与识别、催化活性等方面的研究。二氧化钛(TiO2)也被广泛应用到氢气储存、分子传感、光电化学和半导体合成的模板应用中,且作为吸附剂在水样的富集中表现出比表面积大、吸附能力强和易合成等优势。但将两者用于有机污染物的富集时,便会通过离心或抽滤等方式将吸附剂从样品溶液中提取出来,使得离心过程变得复杂,同时易造成目标物的损失和富集程度较低。
发明内容
本发明的目的是提供了一种MOFs/TiO2磁性纳米复合材料,在外加磁场的作用下,该复合材料能够较快较好的从样品溶液中分离出来,使得分离和洗脱过程变得简便快捷,可用于杀菌剂的富集分离和液相色谱串联质谱的检测。
本发明采用以下技术方案:
一种MOFs/TiO2磁性纳米复合材料,该复合材料以四氧化三铁磁球为核,在四氧化三铁磁球表面包覆一层二氧化硅壳,形成磁性Fe3O4@SiO2纳米球,Fe3O4@SiO2纳米球表面修饰羧基官能团;羧基修饰的Fe3O4@SiO2纳米球包覆金属有机骨架材料ZIF-8壳,形成Fe3O4@SiO2@ZIF-8纳米颗粒;Fe3O4@SiO2@ZIF-8纳米颗粒表面包裹一层二氧化钛壳,形成Fe3O4@SiO2@ZIF-8@TiO2磁性纳米复合材料。
优选的,所述四氧化三铁磁球的粒径为300~400nm;所述二氧化硅壳的厚度为8~10nm(优选为9nm);所述ZIF-8壳的厚度为4~6nm(优选为5nm);二氧化钛壳的厚度为2~4nm(优选为3nm)。
一种MOFs/TiO2磁性纳米复合材料的制备方法,包括以下步骤:
(1)将磁性Fe3O4@SiO2纳米球分散在3-氨丙基三乙氧基硅烷和丁二酸酐的N,N-二甲基甲酰胺溶液中,使其表面带有羧基,得到羧基修饰的Fe3O4@SiO2纳米球;
(2)将羧基修饰的Fe3O4@SiO2纳米球,分散于硝酸锌和2-甲基咪唑的甲醇溶液中,使其表面包裹上金属有机骨架材料ZIF-8,得到Fe3O4@SiO2@ZIF-8纳米颗粒;
(3)将Fe3O4@SiO2@ZIF-8纳米颗粒分散于钛酸四丁酯的乙醇溶液中,制得MOFs/TiO2磁性纳米复合材料。
步骤(1)中,其具体反应步骤如下:将丁二酸酐和3-氨丙基三乙氧基硅烷(APTES)加至N,N-二甲基甲酰胺(DMF)中,在28~32℃搅拌2.5~3.5小时(优选30℃,3h),将Fe3O4@SiO2加至DMF和H2O中超声分散,并将其加入至上述溶液中继续搅拌11~13小时(优选12h)。在外加磁场作用下分离得到黑色产物—羧基修饰Fe3O4@SiO2纳米球,去离子水和乙醇洗涤数次,50~60℃(优选60℃)干燥过夜(10~18h);所述丁二酸酐、3-氨丙基三乙氧基硅烷、Fe3O4@SiO2纳米球、水和DMF的添加比例为:(0.4~0.6)g:0.8mL:(35~45)mg:(45~60)mL:(2.5~3.5)mL。优选的,所述丁二酸酐、3-氨丙基三乙氧基硅烷、Fe3O4@SiO2纳米球、水和DMF的添加比例为:0.5g:0.8mL:40mg:50mL:3mL。
其中,所述Fe3O4@SiO2纳米球的制备方法为将四氧化三铁磁球分散在正硅酸四乙酯的乙醇溶液中,使其表面包裹上二氧化硅。
具体的制备方法为:将Fe3O4磁球、乙醇、水、氨水、正硅酸四乙酯混合反应,在外加磁场的作用下分离得到,洗涤、干燥得到Fe3O4@SiO2纳米球。
更进一步,将Fe3O4磁球加到乙醇中,加入H2O和氨水超声20~40分钟(优选30分钟),之后加入正硅酸四乙酯(TEOS)继续超声4~5.5小时(优选5h),所述Fe3O4磁球、乙醇、水、氨水、正硅酸四乙酯的添加比例为(18~22)mg:(18~22)mL:(3~5)mL:(80~120) μL:(80~120)μL。优选的,所述Fe3O4磁球、乙醇、水、氨水、正硅酸四乙酯的添加比例为20mg:20mL:4mL:100μL:100μL。产物Fe3O4@SiO2在外加磁场的作用下分离得到,去离子水和乙醇洗涤数次,50~60℃(优选60℃)干燥过夜(10~18h),得到Fe3O4@SiO2纳米球。
优选的,本发明所述四氧化三铁磁球采用水热合成法合成,具体的制备方法为:以六水合三氯化铁作为铁源,NaAc作为稳定剂、乙二醇作为还原剂和溶剂,将上述物质进行混合在反应釜中进行反应,在外加磁场的作用在分离得到,洗涤、干燥得到Fe3O4磁球。
更进一步,将六水合三氯化铁(FeCl3·6H2O)和乙二醇加入到烧杯中,搅拌溶解至澄清后,缓慢加入醋酸钠(NaAC),继续搅拌25~30分钟(优选30分钟),所述FeCl3·6H2O、乙二醇、NaAC的添加比例为(1.25~1.45)g:(40~60)mL:(3.4~3.8)g;优选的,所述FeCl3·6H2O、乙二醇、NaAC的添加比例为1.35g:50mL:3.6g。之后转移至聚四氟乙烯反应釜中,190~210℃(优选200℃)下反应7.5~8.5小时(优选8h)。待反应釜降温后,在外加磁场的作用下分离得到黑色产物,去离子水和乙醇洗涤数次,50~60℃(优选60℃)干燥过夜(10~18h)。
步骤(2)中,其具体的反应步骤为:六水合硝酸锌(Zn(NO3)2·6H2O)溶于甲醇(MeOH)中,之后加入步骤(1)中合成的羧基修饰Fe3O4@SiO2超声分散10~20min(优选15min),加入2-甲基咪唑的甲醇溶液,继续超声20~40min(优选30min)。产物通过外加磁场作用下分离并用甲醇和去离子水洗涤数次。最后重复上述操作5次,在外加磁场作用下得到Fe3O4@SiO2@ZIF-8并用去离子水和甲醇洗涤数次,50~60℃(优选60℃)干燥过夜(10~18h);其中,六水合硝酸锌、羧基修饰Fe3O4@SiO2、2-甲基咪唑的添加比例为(0.02~0.04)g:(8~12)mg:(0.022~0.026)g;优选的,六水合硝酸锌、羧基修饰Fe3O4@SiO2、2-甲基咪唑的添加比例为0.03g:10mg:0.024g。
步骤(3)中,其具体的反应步骤为:将Fe3O4@SiO2@ZIF-8超声分散于乙醇(EtOH)中,之后加入到钛酸四丁酯的乙醇溶液中。将1mL去离子水加入到聚四氟反应釜中,之后加入上述混合溶液。聚四氟反应釜放置于150~170℃(优选160℃)干燥箱中反应14~16h(优选15h)。降至常温后,最终产物Fe3O4@SiO2@ZIF-8@TiO2通过外加磁场获得并用去离子水和乙醇反复洗涤,60℃干燥过夜。其中,Fe3O4@SiO2@ZIF-8、钛酸四丁酯、去离子水的添加比例为(18~22)mg:(40~60)μL:(0.8~1.2)mL;优选的,Fe3O4@SiO2@ZIF-8、钛酸四丁酯、去离子水的添加比例为20mg:50μL:1mL。
本发明还提供了一种MOFs/TiO2磁性纳米复合材料在杀菌剂富集与液相色谱串联质谱检测中的应用:将MOFs/TiO2磁性纳米复合材料分散于待测水样中,混匀,在外加磁场作 用下分离得到吸附材料,加入甲醇中洗脱,得到洗脱液,浓缩后即可用于液相色谱串联质谱检测。
具体的应用方法为:将MOFs/TiO2磁性复合材料超声分散于10mL加标水溶液或实际水样中,超声10分钟之后,在外加磁场作用下分离得到吸附材料,之后将其加入到2mL甲醇中超声洗脱5分钟。通过磁场作用得到的洗脱液在30℃下氮吹浓缩至100μL,取10μL用于液相色谱串联质谱检测。
优选的,所述杀菌剂为噻菌灵、甲霜灵、乙霉威、腈菌唑和戊唑醇等其中的一种或多种。
优选的,液相色谱串联质谱条件为:选定色谱柱为:Acclaim 120-C18柱;流动相:水(B)和乙腈(C)梯度洗脱;洗脱程序:编制洗脱曲线,起始状态为90%B,在0~3min,使B相降至70%,保持8min后回复起始状态;流速0.5mL/min:;进样体积:10μL;柱温:40℃;设定质谱条件:多反应监测模式;离子源为电喷雾离子源ESI;扫描方式为正离子扫描;毛细管电压为5000V;雾化气温度为600℃;雾化气压力为40PSI。
经过大量实验验证与分析,优选上述条件使得检测水中杀菌剂具有很高的灵敏度,可达到很低的检测限和优越的富集效率。
本发明的有益效果是:
(1)ZIF-8(沸石咪唑骨架材料)具有规则的孔道结构,超大的比表面积,良好的热稳定性和溶剂稳定性等优点,本发明采用特定的金属有机骨架材料ZIF-8为受载基质,与TiO2相结合制备成为MOFs/TiO2磁性纳米复合材料,两者的结合有效提高了杀菌剂富集效果。
本发明制备的MOFs/TiO2磁性纳米复合材料具有良好的磁响应性,在水中具有良好的稳定性和分散性,能够较快较便捷地将吸附材料分离出来,通过TiO2和杀菌剂极性官能团以及MOFs中的陪体和杀菌剂苯环的π-π相互作用,对杀菌剂具有很强的富集作用。
(2)本发明可将其用于液相色谱串联质谱的检测,具有很高的灵敏度,可达到很低的检测限和优越的富集效率。通过实验数据可得,方法显示出极好的萃取效果,线性范围较宽(0.01-100ng/L),相关性良好(R2>0.99),检测限较低(0.01-0.1ng/L),重现性较好(RSD<10);并且磁性纳米复合材料的回收率较高(85.8%-107.4%),可用于实际样品的检测。
(3)本发明的合成方法新颖、简单;具体而言,本发明采用水热法合成了所需粒径的四氧化三铁磁性纳米颗粒,其分散度良好,颗粒大小较均匀,大小在300~400nm,此为制备MOFs/TiO2磁性纳米复合材料提供良好的基础;本发明将磁球分散在正硅酸四乙酯的乙醇溶液中,使其表面包裹上二氧化硅纳米颗粒,其分散度良好,表面较为均匀,二氧化硅 层较薄,约8~10nm,此为制备MOFs/TiO2磁性纳米复合材料提供良好的基础。修饰羧基是为了让羧基先和锌离子生成配位键,然后,锌离子进一步的与二甲基咪唑反应,这样有助于表面ZIF-8的生长,从而使得最终得到的MOFs/TiO2磁性纳米复合材料对杀菌剂具有较强的富集作用。
附图说明
图1为四氧化三铁磁性纳米颗粒的扫描电子显微镜照片;依图可知四氧化三铁纳米颗粒由小颗粒团聚为大颗粒,分散度良好,颗粒大小较均匀,大小在300~400nm。
图2为四氧化三铁表面包裹二氧化硅磁性纳米颗粒的扫描电子显微镜照片;依图可知四氧化三铁表面包裹二氧化硅磁性纳米颗粒分散度良好,表面较为均匀。
图3为四氧化三铁表面包裹二氧化硅和ZIF-8金属有机骨架磁性纳米复合材料的扫描电子显微镜照片;依图可知四氧化三铁表面包裹二氧化硅和ZIF-8金属有机骨架磁性纳米颗粒分散度良好,表面明显包裹ZIF-8八面体小颗粒材料。
图4为四氧化三铁表面包裹二氧化硅、ZIF-8金属有机骨架和二氧化钛磁性纳米复合材料的扫描电子显微镜照片;依图可知四氧化三铁表面包裹二氧化硅、ZIF-8金属有机骨架和二氧化钛磁性纳米颗粒分散度良好,表面明显包裹二氧化钛球形小颗粒材料。
图5为四氧化三铁磁性纳米颗粒的透射电子显微镜照片;依图可知四氧化三铁为球形纳米颗粒,分散度良好。
图6为四氧化三铁表面包裹二氧化硅磁性纳米颗粒的透射电子显微镜照片;依图可知四氧化三铁表面包裹二氧化硅较薄,约9nm,分散度良好。
图7为四氧化三铁表面包裹二氧化硅和ZIF-8金属有机骨架磁性纳米复合材料的透射电子显微镜照片;依图可知Fe3O4@SiO2表面包裹ZIF-8八面体小颗粒,分散度良好。
图8为四氧化三铁表面包裹二氧化硅、ZIF-8金属有机骨架和二氧化钛磁性纳米复合材料的透射电子显微镜照片;依图可知Fe3O4@SiO2@ZIF-8表面包裹二氧化钛球形小颗粒,分散度良好。
图9为四氧化三铁表面包裹二氧化硅、ZIF-8金属有机骨架和二氧化钛磁性纳米复合材料的粉末X射线衍射图;依图通过对比可知Fe3O4@SiO2@ZIF-8@TiO2具有四氧化三铁、ZIF-8和二氧化钛的特征峰,其中二氧化硅无特征峰。其中,a→d依次代表:Fe3O4、Fe3O4@SiO2、Fe3O4@SiO2@ZIF-8、Fe3O4@SiO2@ZIF-8@TiO2
图10为四氧化三铁表面包裹二氧化硅、ZIF-8金属有机骨架和二氧化钛磁性纳米复合 材料的磁滞回线图;依图通过对比可知,在四氧化三铁表面依次包裹ZIF-8和二氧化钛,纳米复合材料的磁性依次降低,但依然具有磁性。
具体实施方式
实施例1
一种MOFs/TiO2磁性纳米复合材料的合成:
(1)将1.35g六水合三氯化铁(FeCl3·6H2O)和50mL乙二醇加入到烧杯中,搅拌溶解至澄清后,缓慢加入3.6g醋酸钠(NaAC),继续搅拌30分钟。之后转移至聚四氟乙烯反应釜中,200℃下反应8小时。待反应釜降温后,在外加磁场的作用下分离得到黑色产物,去离子水和乙醇洗涤数次,60℃干燥过夜;如图1和图5所示。
(2)将20mg合成的Fe3O4加到20mL乙醇中,加入4mL H2O和100μL氨水超声30分钟,之后加入100μL正硅酸四乙酯(TEOS)继续超声5小时。产物Fe3O4@SiO2在外加磁场的作用下分离得到,去离子水和乙醇洗涤数次,60℃干燥过夜;如图2和图6所示。
(3)0.5g丁二酸酐和1mL 3-氨丙基三乙氧基硅烷(APTES)加至30mL N,N-二甲基甲酰胺(DMF)中,在30℃水浴下机械搅拌3小时,将40mg Fe3O4@SiO2加至20mL DMF和3mL H2O中超声分散,并将其加入至上述溶液中继续搅拌12小时。在外加磁场作用下分离得到黑色产物—羧基修饰Fe3O4@SiO2颗粒,去离子水和乙醇洗涤数次,60℃干燥过夜;
(4)0.03g六水合硝酸锌(Zn(NO3)2·6H2O)溶于10mL甲醇(MeOH)中,之后加入步骤(3)合成的羧基修饰Fe3O4@SiO2(10mg)超声分散15min,加入10mL 2-甲基咪唑(0.024g)的甲醇溶液,继续常温下超声30min。产物通过外加磁场作用下分离并用甲醇和去离子水洗涤数次。最后重复上述操作5次,在外加磁场作用下得到Fe3O4@SiO2@ZIF-8并用去离子水和甲醇洗涤数次,60℃干燥过夜;如图3和图7所示。
(5)步骤(4)合成的Fe3O4@SiO2@ZIF-8(20mg)超声分散于15mL乙醇(EtOH)中,之后加入到1mL钛酸四丁酯(50μL)的乙醇溶液中。将1mL去离子水加入到聚四氟反应釜中,之后加入上述混合溶液。聚四氟反应釜放置于160℃干燥箱中反应15h。降至常温后,最终产物Fe3O4@SiO2@ZIF-8@TiO2通过外加磁场获得并用去离子水和乙醇反复洗涤,60℃干燥过夜。如图4和图8所示。
图9为本实施例四氧化三铁表面包裹二氧化硅、ZIF-8金属有机骨架和二氧化钛磁性纳米复合材料的粉末X射线衍射图。图10为本实施例四氧化三铁表面包裹二氧化硅、ZIF-8金属有机骨架和二氧化钛磁性纳米复合材料的磁滞回线图。
将上述得到的MOFs/TiO2磁性纳米复合材料作磁固相萃取吸附剂用于水样中杀菌剂的 富集分离与HPLC-MS/MS检测。
(1)试样的准备:标准杀菌剂样品配制浓度为1μg/mL的甲醇溶液,待用。
(2)试样的富集:取少量磁性微球复合材料超声分散于杀菌剂的水溶液或实际水样中,32℃下超声分散10分钟。在外加磁场的作用下分离得到吸附剂,加入2mL甲醇超声洗脱5分钟,通过磁场作用分离得到洗脱剂,30℃下氮吹浓缩至100μL。
所述的实际水样分别采集于济南市的黄河与黑虎泉,以及池塘和生活废水。
(3)HPLC-MS/MS检测:取10μL步骤(2)所得的洗脱液用液相色谱串联质谱进行检测,根据HPLC-MS/MS得出数据进行分析。
设定HPLC-MS/MS操作条件如下:选定色谱柱为:Acclaim 120-C18柱,(3μm×2.1mm×150mm);流动相:水(B)和乙腈(C)梯度洗脱;洗脱程序:编制洗脱曲线,起始状态为90%B,在0~3min,使B相降至70%,保持8min后回复起始状态;流速0.5mL/min:;进样体积:10μL;柱温:40℃;设定质谱条件:多反应监测模式(MRM);离子源为电喷雾离子源ESI;扫描方式为正离子扫描;毛细管电压为5000V;雾化气温度为600℃;雾化气压力(氮气)为40PSI。
所述实际水样包括水样的采集和前期预处理:在不同区域采集的实际水样用0.45μm的滤膜过滤,并且4℃下保存于棕色广口瓶中待测试使用。
结果如下所示:
表1磁性固相萃取-液相色谱串联质谱法检测水样中杀菌剂的特征参数
表2磁性固相萃取-液相色谱串联质谱法检测实际水样中杀菌剂的分析结果
a加标量10ng·L-1
b加标量1000ng·L-1
表1为MOFs/TiO2磁性纳米复合材料作为吸附剂磁性固相萃取—液相色谱串联质谱法检测水样中杀菌剂的特征参数;通过表格中数据可知该方法显示出极好的萃取效果,线性范围较宽(0.01-100ng/L),相关性良好(R2>0.99),检测限较低(0.01-0.1ng/L),重现性较好(RSD<10)。
表2为MOFs/TiO2磁性纳米复合材料作为吸附剂磁性固相萃取—液相色谱串联质谱法检测实际水样中杀菌剂的分析结果;通过表格中数据可知该方法在用于实际水样的检测中,回收率较高(85.8%-107.4%),可用于实际样品的检测。

Claims (10)

1.一种MOFs/TiO2磁性纳米复合材料,其特征是:该复合材料以四氧化三铁磁球为核,在四氧化三铁磁球表面包覆一层二氧化硅壳,形成磁性Fe3O4@SiO2纳米球,Fe3O4@SiO2纳米球表面修饰羧基官能团;羧基修饰的Fe3O4@SiO2纳米球包覆金属有机骨架材料ZIF-8壳,形成Fe3O4@SiO2@ZIF-8纳米颗粒;Fe3O4@SiO2@ZIF-8纳米颗粒表面包裹一层二氧化钛壳,形成Fe3O4@SiO2@ZIF-8@TiO2磁性纳米复合材料。
2.如权利要求1所述的复合材料,其特征是:所述四氧化三铁磁球的粒径为300~400nm;所述二氧化硅壳的厚度为8~10nm;所述ZIF-8壳的厚度为4~6nm;二氧化钛壳的厚度为2~4nm。
3.一种MOFs/TiO2磁性纳米复合材料的制备方法,其特征是,包括以下步骤:
(1)将磁性Fe3O4@SiO2纳米球分散在3-氨丙基三乙氧基硅烷和丁二酸酐的N,N-二甲基甲酰胺溶液中,使其表面带有羧基,得到羧基修饰的Fe3O4@SiO2纳米球;
(2)将羧基修饰的Fe3O4@SiO2纳米球,分散于硝酸锌和2-甲基咪唑的甲醇溶液中,使其表面包裹上金属有机骨架材料ZIF-8,得到Fe3O4@SiO2@ZIF-8纳米颗粒;
(3)将Fe3O4@SiO2@ZIF-8纳米颗粒分散于钛酸四丁酯的乙醇溶液中,制得MOFs/TiO2磁性纳米复合材料。
4.如权利要求3所述的制备方法,其特征是,步骤(1)中,丁二酸酐和3-氨丙基三乙氧基硅烷加至N,N-二甲基甲酰胺中,在28~32℃搅拌2.5~3.5小时,将Fe3O4@SiO2加至N,N-二甲基甲酰胺和H2O中超声分散,并将其加入至上述溶液中继续搅拌11~13小时;在外加磁场作用下分离得到黑色产物—羧基修饰Fe3O4@SiO2纳米球,去离子水和乙醇洗涤数次,50~60℃干燥10~18h。
5.如权利要求3或4所述的制备方法,其特征是,未修饰羧基之前的Fe3O4@SiO2纳米球的制备方法如下:将Fe3O4磁球、乙醇、水、氨水、正硅酸四乙酯按照添加量(18~22)mg:(18~22)mL:(3~5)mL:(80~120)μL:(80~120)μL混合并反应,在外加磁场的作用下分离得到,洗涤、干燥得到Fe3O4@SiO2纳米球。
6.如权利要求3所述的制备方法,其特征是,步骤(2)的具体反应步骤为:六水合硝酸锌溶于甲醇中,之后加入步骤(1)中合成的羧基修饰Fe3O4@SiO2超声分散10~20min,加入2-甲基咪唑的甲醇溶液,继续超声20~40min;产物Fe3O4@SiO2@ZIF-8通过外加磁场作用下分离洗涤,干燥得到Fe3O4@SiO2@ZIF-8。
7.如权利要求3所述的制备方法,其特征是,步骤(3)的具体反应步骤为:将Fe3O4@SiO2@ZIF-8超声分散于乙醇中,之后加入到钛酸四丁酯的乙醇溶液中;将去离子水加入到聚四氟反应釜中,之后加入上述混合溶液;聚四氟反应釜放置于150~170℃干燥箱中反应14~16h;降至常温后,最终产物Fe3O4@SiO2@ZIF-8@TiO2通过外加磁场获得并洗涤干燥,得到产物Fe3O4@SiO2@ZIF-8@TiO2
8.权利要求1或2所述的MOFs/TiO2磁性纳米复合材料在杀菌剂富集与液相色谱串联质谱检测中的应用。
9.如权利要求8所述的应用,其特征是,应用方法为:将MOFs/TiO2磁性纳米复合材料分散于待测水样中,混匀,在外加磁场作用下分离得到吸附材料,加入甲醇中洗脱,得到洗脱液,浓缩后即可用于液相色谱串联质谱检测。
10.如权利要求9所述的应用,其特征是,液相色谱串联质谱条件为:选定色谱柱为:Acclaim 120-C18柱;流动相:水(B)和乙腈(C)梯度洗脱;洗脱程序:编制洗脱曲线,起始状态为90%B,在0~3min,使B相降至70%,保持8min后回复起始状态;流速0.5mL/min:;进样体积:10μL;柱温:40℃;设定质谱条件:多反应监测模式;离子源为电喷雾离子源ESI;扫描方式为正离子扫描;毛细管电压为5000V;雾化气温度为600℃;雾化气压力为40PSI。
CN201610024704.1A 2016-01-14 2016-01-14 一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法 Active CN105664890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610024704.1A CN105664890B (zh) 2016-01-14 2016-01-14 一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610024704.1A CN105664890B (zh) 2016-01-14 2016-01-14 一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法

Publications (2)

Publication Number Publication Date
CN105664890A CN105664890A (zh) 2016-06-15
CN105664890B true CN105664890B (zh) 2017-01-18

Family

ID=56300841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610024704.1A Active CN105664890B (zh) 2016-01-14 2016-01-14 一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法

Country Status (1)

Country Link
CN (1) CN105664890B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268647B (zh) * 2016-08-05 2020-01-10 复旦大学 一种烟叶中尼古丁的磁性纳米微球吸附方法
CN106732472B (zh) * 2016-12-13 2019-04-16 安徽建筑大学 一种ZIF-8-SiO2杂化固定相的制备方法
CN107607640A (zh) * 2017-08-30 2018-01-19 复旦大学 一种硼酸修饰的纳米复合材料的糖肽富集与质谱检测方法
CN108465489B (zh) * 2018-03-07 2020-08-18 武汉理工大学 一种Fe3O4@ZIF-8核壳式复合材料及其制备方法和催化应用
CN108956918B (zh) * 2018-06-11 2022-01-11 安徽省佳逸环保科技有限公司 一种用于富集水体中有机磷农药的磁性膜材料的制备方法及有机磷农药的浓度检测方法
CN108855220B (zh) * 2018-07-02 2020-12-29 肇庆市华师大光电产业研究院 一种二氧化钛掺杂zif及其制备方法和应用
CN108970585A (zh) * 2018-07-27 2018-12-11 福州大学 一种阳离子后修饰的磁性金属有机骨架复合材料的制备方法及应用
CN109239246B (zh) * 2018-09-06 2020-06-26 天津商业大学 用金属有机骨架模板法制备多孔钛胶的固相萃取分析方法
CN109046473B (zh) * 2018-09-07 2021-03-05 中南大学 一种过渡金属修饰TiO2-MOFs膜的复合电极及其制备方法与应用
CN109650484B (zh) * 2019-01-22 2021-11-12 南通大学 一种废水处理剂及其制备方法
CN110346487A (zh) * 2019-07-18 2019-10-18 广西民族大学 ZIF-8@ SiO2核壳微球及其制备方法和应用
CN110589894A (zh) * 2019-09-17 2019-12-20 北京化工大学 一种中空金属氧化物纳米材料的制备方法
CN111154294A (zh) * 2020-01-22 2020-05-15 常州市五洲化工有限公司 一种超分散白炭黑及其制备方法
CN111821960A (zh) * 2020-07-24 2020-10-27 北京工商大学 基于金属有机骨架复合材料的液相色谱固定相及制备方法
CN114260027B (zh) * 2020-09-16 2023-04-25 四川大学 一种制备金属氧化物@金属有机骨架核壳材料的方法
CN112108120B (zh) * 2020-09-22 2023-07-25 宁夏医科大学 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用
CN112748194A (zh) * 2020-12-23 2021-05-04 河北安普检测技术服务有限公司 一种食品中农药残留的检测方法
CN115075054A (zh) * 2021-03-12 2022-09-20 喻善睦 一种多孔离型纸及其制备方法
CN113083370B (zh) * 2021-04-14 2023-11-24 苏州大学 一种共价键连接的TiO2@CTF-Py异质结材料及其制备方法与应用
CN114085049B (zh) * 2021-07-06 2023-04-14 罗翠莲 一种环保型建筑内外用矿物质墙釉及其制备方法
CN114958167B (zh) * 2022-03-23 2023-04-07 苏州谱融传感科技有限公司 一种宽光谱低热容红外吸收涂层的制备方法及其应用
CN115078330A (zh) * 2022-06-29 2022-09-20 江苏大学 一种消除CAP干扰的MOFs基复合预处理材料的制备方法及其用途
CN118179220B (zh) * 2024-05-13 2024-07-16 干霸干燥剂(深圳)有限公司 一种无泄漏的电子产品专用固体干燥剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551197A (zh) * 2013-11-11 2014-02-05 北京化工大学 一种具有孔笼孔道结构磁性金属有机骨架材料、制备及用于酰基化反应
CN103638979A (zh) * 2013-11-04 2014-03-19 北京化工大学 一种磁性类沸石咪唑酯金属有机骨架材料、制备及用于液相缩合催化反应
CN104353495A (zh) * 2014-10-09 2015-02-18 济南大学 一种多元磁性介孔催化剂的制备方法和应用
CN104722274A (zh) * 2015-01-26 2015-06-24 北京化工大学 一种磁性mof-5纳米复合吸附剂的制备及应用
CN105056915A (zh) * 2015-08-07 2015-11-18 兴义民族师范学院 一种核酸适配体修饰磁性金属有机骨架介质的制备及应用
CN105195096A (zh) * 2015-09-23 2015-12-30 沈阳药科大学 一种Fe3O4/MIL-101(Cr)的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103638979A (zh) * 2013-11-04 2014-03-19 北京化工大学 一种磁性类沸石咪唑酯金属有机骨架材料、制备及用于液相缩合催化反应
CN103551197A (zh) * 2013-11-11 2014-02-05 北京化工大学 一种具有孔笼孔道结构磁性金属有机骨架材料、制备及用于酰基化反应
CN104353495A (zh) * 2014-10-09 2015-02-18 济南大学 一种多元磁性介孔催化剂的制备方法和应用
CN104722274A (zh) * 2015-01-26 2015-06-24 北京化工大学 一种磁性mof-5纳米复合吸附剂的制备及应用
CN105056915A (zh) * 2015-08-07 2015-11-18 兴义民族师范学院 一种核酸适配体修饰磁性金属有机骨架介质的制备及应用
CN105195096A (zh) * 2015-09-23 2015-12-30 沈阳药科大学 一种Fe3O4/MIL-101(Cr)的制备方法及应用

Also Published As

Publication number Publication date
CN105664890A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN105664890B (zh) 一种基于MOFs/TiO2磁性复合材料的水中杀菌剂的分析检测方法
Su et al. Magnetic metal–organic framework–titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples
Li et al. Integration of Fe3O4@ UiO-66-NH2@ MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix
Qi et al. Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples
Habila et al. Synthesis and application of Fe3O4@ SiO2@ TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis
Yousefzadeh et al. Surface molecular imprinting and powerfully enhanced chemiluminescence emission by Cu nanoclusters/MOF composite for detection of tramadol
Filik et al. Magnetic nanostructures for preconcentration, speciation and determination of chromium ions: A review
CN105498694B (zh) 一种温敏聚合物包裹的金属有机骨架磁性材料及其应用
Feng et al. Effect of hydroxyl group of carboxylic acids on the adsorption of Acid Red G and Methylene Blue on TiO2
Tizro et al. Preparation and application of grafted β‑cyclodextrin/thermo-sensitive polymer onto modified Fe3O4@ SiO2 nano-particles for fenitrothion elimination from aqueous solution
CN109201019B (zh) 一种磁性聚酰亚胺复合材料及其制备方法和应用
CN110385116A (zh) 一种磁性纳米复合材料及其制备和应用
CN102974314A (zh) 一种磁性金纳米粒子复合材料及其制备方法和应用
CN114409913B (zh) 一种磁性金属有机框架材料及其制备方法和应用
Azimi et al. A magnetized nanoparticle based solid-phase extraction procedure followed by inductively coupled plasma atomic emission spectrometry to determine arsenic, lead and cadmium in water, milk, Indian rice and red tea
CN106323935B (zh) 一种核-壳-卫星三维结构的磁性复合sers基底及其制备方法
Jiang et al. Facile synthesis of a Fe 3 O 4/MIL-101 (Fe) composite with enhanced catalytic performance
CN114405479A (zh) 一种磁性共价有机骨架纳米材料、制备方法及应用
Oymak et al. Determination of color additive tartrazine (E 102) in food samples after dispersive solid phase extraction with a zirconium-based metal-organic framework (UiO-66 (Zr)-(COOH) 2)
Vieira et al. Study on determination and removal of metallic ions from aqueous and alcoholic solutions using a new POSS adsorbent
CN109078613A (zh) 一种功能型磁性离子液体石墨烯吸附剂及其制备方法与应用
CN109839466A (zh) 一种基于三维磁性分子印迹聚合物检测奶粉中三聚氰胺含量的方法
Darvishnejad et al. Thin film microextraction based on Co3O4@ GO-Nylon‐6 polymeric membrane to extract morin and quercetin and determining them through high performance liquid chromatography-ultraviolet detection
CN110187039B (zh) 一种色氨酸离子液体负载磁性氧化石墨烯纳米复合材料及其戊唑醇萃取检测方法
Zhang et al. Synthesis of a magnetic micelle molecularly imprinted polymers to selective adsorption of rutin from Sophora japonica

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160615

Assignee: Shandong blue city analysis Co. Ltd.

Assignor: Shandong Analysis Test Center

Contract record no.: 2017370000043

Denomination of invention: An Analytical Detection Method of Water Fungicide Based on MOFs / TiO 2 Magnetic Composites

Granted publication date: 20170118

License type: Common License

Record date: 20170628

EC01 Cancellation of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: SHANDONG LANCHENG ANALYSIS TESTING Co.,Ltd.

Assignor: SHANDONG ANALYSIS AND TEST CENTER

Contract record no.: 2017370000043

Date of cancellation: 20220507