CN105609418A - 氮化物半导体装置的制造方法 - Google Patents

氮化物半导体装置的制造方法 Download PDF

Info

Publication number
CN105609418A
CN105609418A CN201510789242.8A CN201510789242A CN105609418A CN 105609418 A CN105609418 A CN 105609418A CN 201510789242 A CN201510789242 A CN 201510789242A CN 105609418 A CN105609418 A CN 105609418A
Authority
CN
China
Prior art keywords
nitride semiconductor
semiconductor device
burning
transistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510789242.8A
Other languages
English (en)
Other versions
CN105609418B (zh
Inventor
佐佐木肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN105609418A publication Critical patent/CN105609418A/zh
Application granted granted Critical
Publication of CN105609418B publication Critical patent/CN105609418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明得到一种能够制造使栅极漏电流减少、提高寿命和动作稳定性的高可靠性的氮化物半导体装置的方法。形成晶体管,该晶体管具有与氮化物半导体层(3)进行了肖特基接合的栅极电极(4)。在200℃~360℃的温度下对晶体管进行8小时~240小时的高温退火。在高温退火后,进行RF预烧,该RF预烧是在180℃~360℃的沟道温度下对晶体管施加高频。

Description

氮化物半导体装置的制造方法
技术领域
本发明涉及一种用于高频信号的放大等的氮化物半导体装置的制造方法。
背景技术
与MOSFET不同,由氮化物半导体构成的高频器件,在栅极处使用了肖特基结,因此如果施加栅极-漏极间电压,则会流动栅极漏电流。认为如果肖特基结界面附近的半导体的结晶性恶化,则该栅极漏电流会大量地流动。如果栅极漏电流流动,则在插入至电路中的栅极电阻端发生电压降,栅极电压移向正侧,特性发生变动。并且,还存在由于热失控而破坏器件的可能性。另外,还认为由于栅极漏电流流动,因而半导体的晶体缺陷增长,进而使栅极漏电流增加。
因此,在制造如上述的氮化物半导体装置时,在晶圆工艺和封装件装配之后,追加在高温下施加高频的RF预烧(RFburn-in)工序,从而使栅极漏电流减少,使器件的可靠性提高。此外,通过追加在高温下施加DC压力(stress)的预烧工序,使栅极漏电流减少(例如参照专利文献1)。
专利文献1:日本特开2014-192352号公报
当前通过高频预烧、DC预烧使栅极漏电流减少,但在要求高可靠性的例如航空航天用系统中,要求栅极漏电流的进一步减少。
发明内容
本发明是为了解决上述课题而提出的,其目的在于得到一种能够制造使栅极漏电流减少、提高寿命和动作稳定性的高可靠性的氮化物半导体装置的方法。
本发明涉及的氮化物半导体装置的制造方法,其特征在于,具有下述工序:形成晶体管的工序,该晶体管具有与氮化物半导体层进行了肖特基接合的栅极电极;在200℃~360℃的温度下对所述晶体管进行8小时~240小时的高温退火的工序;以及在所述高温退火后进行RF预烧的工序,该RF预烧是在180℃~360℃的沟道温度下对所述晶体管施加高频。
发明的效果
在本发明中,首先利用高温退火使工艺缺陷转移至准稳定化状态,利用之后的RF预烧转移至几乎完全的稳定化状态,从而使栅极漏电流减少。由此,能够制造使寿命和动作稳定性提高的高可靠性的氮化物半导体装置。
附图说明
图1是表示本发明的实施方式1所涉及的氮化物半导体装置的剖面图。
图2是本发明的实施方式1所涉及的氮化物半导体装置的制造方法的流程图。
图3是对比例所涉及的氮化物半导体装置的制造方法的流程图。
图4是本发明的实施方式2所涉及的氮化物半导体装置的制造方法的流程图。
图5是本发明的实施方式3所涉及的氮化物半导体装置的制造方法的流程图。
图6是本发明的实施方式4所涉及的氮化物半导体装置的制造方法的流程图。
标号的说明
1SiC衬底,2GaN缓冲层,3AlGaN肖特基势垒层,4栅极电极,5源极电极,6漏极电极,7钝化膜,8栅极电源,9漏极电源,10二维电子气
具体实施方式
参照附图,对本发明的实施方式所涉及的氮化物半导体装置的制造方法进行说明。对相同或相应的结构要素标注相同标号,有时省略重复的说明。
实施方式1.
图1是表示本发明的实施方式1所涉及的晶体管的剖面图。在SiC衬底1上,依次层叠有GaN缓冲层2和AlGaN肖特基势垒层3。在ALGaN肖特基势垒层3形成有与ALGaN肖特基势垒层3进行了肖特基接合的栅极电极4、和与ALGaN肖特基势垒层3进行欧姆接合的源极电极5以及漏极电极6。由氮化膜形成的钝化膜7覆盖着栅极电极4等。源极电极5接地,栅极电极4与栅极电源8连接,漏极电极6与漏极电源9连接。由ALGaN肖特基势垒层3和GaN缓冲层2的异质结通过自发极化和压电效应形成有二维电子气10(2DEG)。
图2是本发明的实施方式1所涉及的氮化物半导体装置的制造方法的流程图。首先,准备晶圆状态的SiC衬底1(步骤S1)。然后,使GaN缓冲层2和AlGaN肖特基势垒层3按顺序进行外延生长(步骤S2)。然后,在晶圆工艺中形成源极电极5、栅极电极4、漏极电极6、以及钝化膜7,形成图1的晶体管(步骤S3)。然后,将形成有晶体管的晶圆分割成单个的半导体芯片,将半导体芯片装配至封装件(步骤S4)。然后,在200℃~360℃的温度下对晶体管进行8小时~240小时的高温退火(步骤S5)。然后,进行在180℃~360℃的沟道温度下对晶体管施加高频的RF预烧(步骤S6)。通过以上工序制造氮化物半导体装置。
下面,将本实施方式的效果与对比例进行比较说明。图3是对比例所涉及的氮化物半导体装置的制造方法的流程图。在对比例中,在封装件装配后不进行高温退火,而进行RF预烧。虽然只进行RF预烧也能够使栅极漏电流减少,但是不够充分。因此,如本实施方式所示,在RF预烧之前进行高温退火,从而能够进一步使栅极漏电流减少。
对该高温退火的退火条件进行调查,发现如果在200℃~360℃的温度范围内在氮气氛围中进行8小时~240小时的退火,则能够得到效果。作为RF预烧的条件,将输入RF功率Pin设为压缩等级P2dB左右,有意地将调谐器调整为不匹配状态,使沟道温度上升至大于或等于180℃(180℃~360℃)。
表1中示出进行了高温退火和RF预烧时栅极漏电流的代表例。向栅极-漏极间施加-200V的反向偏置,对栅极漏电流进行测定。在没有高温退火和RF预烧等前处理的情况下,在该规格的器件中栅极漏电流是8.1×10-4A。在此确认到:如果进行280℃的高温退火,则通过24小时的退火,减少至2.1×10-4A,通过96小时的退火,减少至1.8×10-5A。如果不进行高温退火而只进行RF预烧,则能够减少至1.3×10-5A。如果像本实施方式这样将在280℃下进行96个小时的高温退火与RF预烧组合,则能够将栅极漏电流减少至7.5×10-6A。
[表1]
处理 栅极漏电流(A)
无前处理 8.1x10-4
高温退火(24小时) 2.1x10-4
高温退火(96小时) 1.8x10-5
RF预烧 1.3x10-5
高温退火(96小时)+RF预烧 7.5x10-6
通常,有时高温退火、RF预烧会加入在器件的制造过程中。但是,至今为止并没有如本实施方式这样,将在200℃~360℃下进行8小时~240小时的高温退火与故意使沟道温度上升的RF预烧组合的例子。
可以想到这些栅极漏电流的减少效果在各个处理过程中产生如下述的现象。在器件制造工序特别是栅极形成工序中,对半导体衬底施加工艺损伤,发生不少的点缺陷等晶体缺陷。特别是在氮化物半导体装置中,作为栅极电极使用Ni、Pt、Pd、TaN、WSiN等高熔点金属,因此需要用高能量形成金属,使半导体内发生晶体缺陷的可能性变高。该缺陷作为施主起作用的情况下,导致电势降低,栅极肖特基势垒的耗尽层的厚度减小,电子隧穿概率增加,栅极漏电流增加。另外还认为,在产生的缺陷之间通过跳跃电导而传导电子,栅极漏电流流动。
可以想到在高温退火中存在下述效果等:使该晶体缺陷达到热稳定化,通过退火消除晶体缺陷的效果;缓和缺陷周围发生的微小的应力的效果;以及使半导体内、肖特基界面、半导体与氮化膜的界面处微量存在的氢向稳定状态移动的效果。但是,200℃~360℃程度的温度并不足以使缺陷完全恢复。虽然更高温度的退火是有效的,但是比此更高的温度会使栅极、漏极、源极等的金属电极与半导体发生反应,引起劣化。另外,发生钝化膜剥离等劣化的可能性较高。
另一方面,RF预烧是通过施加高频而生成电子-空穴对,在缺陷部分处再结合,由此将能量向缺陷供给,即使在相对较低的温度下也能够通过退火消除缺陷的手法。
可以想到,在本实施方式中,首先通过高温退火使工艺缺陷向准稳定化状态转移,利用之后的RF预烧向几乎完全的稳定化状态转移,从而使栅极漏电流减少。
图3是对比例所涉及的氮化物半导体装置的制造方法的流程图。在对比例中不进行高温退火而进行RF预烧。这种情况下,因为对缺陷中较为不稳定的缺陷部分急剧施加高频,因此有时会破坏器件。与此相对,在本实施方式中,首先通过高温使不稳定的缺陷转移为准稳定状态,从而能够消除之后的RF预烧中的器件破坏。因此,根据本实施方式,能够制造出使栅极漏电流减少,提高寿命和动作稳定性的高可靠性的氮化物半导体装置。
此外,高温退火是在氮气氛围中进行的,但并不仅限于此,也可以在氢气气氛或者是氘气气氛中进行。在氮气或氩气等惰性气体中将氢或者氘以100ppm至100%的范围混入而使用。在此,100%的情况是指纯氢气以及纯氘气气氛。如果在氢气气氛中进行高温退火,则微量的氢会穿过氮化膜而扩散到器件内。扩散的氢与晶体缺陷的悬空键结合而使缺陷能级减小。并且,使用氘气的情况下,一旦与悬空键结合使缺陷能级减小,则根据化学反应的同位素效应,能够与氢相比更坚固地与缺陷结合、保持稳定状态。此外,通过在外延生长、晶圆工艺中采用的MOCVD或等离子CVD等工艺中,使用氢气或氘气作为载气,由此,自然也会使氢或氘进入到器件内,能够得到同样的效果。
实施方式2.
图4是本发明的实施方式2所涉及的氮化物半导体装置的制造方法的流程图。实施方式1中在封装件装配后进行高温退火,因此需要对单独的芯片或封装件进行退火。另一方面,在本实施方式中,在进行高温退火后,将形成有晶体管的晶圆分割成单个的半导体芯片,将半导体芯片装配到封装件中。如上所述,紧跟在晶圆工艺后以晶圆的状态进行高温退火,从而能够对数千至数万的芯片一举进行退火,能够将作业大幅简化。
实施方式3.
图5是本发明的实施方式3所涉及的氮化物半导体装置的制造方法的流程图。在进行RF预烧后,进行在125℃~250℃下以1小时~96小时将-20V~-2V的栅极电压施加至栅极电极而保持截止状态的高温截止偏置(步骤S7)。对漏极电极6施加通常的电压。在实施方式1的RF预烧后,追加施加高温截止偏置压力,从而具有在较深的缺陷能级捕获电子而提高电势的作用。由此能够进一步使栅极漏电流减少。
实施方式4.
图6是本发明的实施方式4所涉及的氮化物半导体装置的制造方法的流程图。代替实施方式1的高温退火(步骤S5),以-65℃~360℃的范围向晶体管施加3次~1000次的温度循环(步骤S8)。通过进行温度循环,能够使晶体缺陷特别是使位错减少。反复进行热膨胀和热收缩后,位错在晶体内移动,例如如果2个位错相遇则结合为一个位错,位错的数量减少。通过反复该过程能够使位错的数量减少。点缺陷也同样,点缺陷彼此相遇或者被位错吸收,从而能够使缺陷数减少。其结果,能够制造出使栅极漏电流减少,提高寿命和动作稳定性的高可靠性的氮化物半导体装置。
此外,在实施方式1~4中使用了SiC衬底1作为支撑衬底,但是不仅限于此,只要是Si衬底、蓝宝石衬底、GaN衬底等能够使氮化物进行外延生长的衬底即可。只是支撑衬底的材质不同而外延构造相同,因此通过高温退火和RF预烧同样能够使栅极漏电流减少。使用Si衬底的情况下能够价廉地制造器件。另外,Si衬底与氮化物外延的热膨胀系数较大,因此在进行温度循环的实施方式4中能够得到更大的效果。使用蓝宝石衬底的情况下,也与Si衬底一样,能够价廉地制造,还能得到温度循环的效果。使用GaN衬底的情况下,不存在衬底与外延间的晶格的不匹配,因此几乎没有位错缺陷,发生的缺陷只有工艺损伤,在本发明中通过去除工艺损伤,从而能够制造栅极漏电流几乎不流动的理想的器件。

Claims (6)

1.一种氮化物半导体装置的制造方法,其特征在于,具有下述工序:
形成晶体管的工序,该晶体管具有与氮化物半导体层进行了肖特基接合的栅极电极;
在200℃~360℃的温度下对所述晶体管进行8小时~240小时的高温退火的工序;以及
在所述高温退火后进行RF预烧的工序,该RF预烧是在180℃~360℃的沟道温度下对所述晶体管施加高频。
2.根据权利要求1所述的氮化物半导体装置的制造方法,其特征在于,
所述高温退火在氮气气氛、氢气气氛或者氘气气氛下进行。
3.根据权利要求1或2所述的氮化物半导体装置的制造方法,其特征在于,
还具有将形成有所述晶体管的晶圆分割成单个的半导体芯片,将所述半导体芯片装配到封装件的工序,
将所述半导体芯片装配到所述封装件后,进行所述高温退火。
4.根据权利要求1或2所述的氮化物半导体装置的制造方法,其特征在于,还具有下述工序:
在进行所述高温退火后,将形成有所述晶体管的晶圆分割成单个的半导体芯片,将所述半导体芯片装配到封装件的工序。
5.根据权利要求1或2所述的氮化物半导体装置的制造方法,其特征在于,
还具有在进行所述RF预烧后进行高温截止偏置的工序,该高温截止偏置是在125℃~250℃下以1小时~96小时将-20V~-2V的栅极电压向所述栅极电极施加而保持截止状态。
6.一种氮化物半导体装置的制造方法,其特征在于,具有下述工序:
形成晶体管的工序,该晶体管具有与氮化物半导体层进行了肖特基接合的栅极电极;
以-65℃~360℃的范围向所述晶体管施加3次~1000次的温度循环的工序;以及
在所述温度循环后进行RF预烧的工序,该RF预烧是在180℃~360℃的沟道温度下对所述晶体管施加高频。
CN201510789242.8A 2014-11-17 2015-11-17 氮化物半导体装置的制造方法 Active CN105609418B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-232808 2014-11-17
JP2014232808A JP6292104B2 (ja) 2014-11-17 2014-11-17 窒化物半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN105609418A true CN105609418A (zh) 2016-05-25
CN105609418B CN105609418B (zh) 2018-09-07

Family

ID=55855672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510789242.8A Active CN105609418B (zh) 2014-11-17 2015-11-17 氮化物半导体装置的制造方法

Country Status (4)

Country Link
US (1) US9691875B2 (zh)
JP (1) JP6292104B2 (zh)
CN (1) CN105609418B (zh)
DE (1) DE102015213501B4 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007595B4 (de) * 2017-05-31 2023-02-09 Mitsubishi Electric Corporation Verfahren zur herstellung einer halbleitereinheit
US11569182B2 (en) * 2019-10-22 2023-01-31 Analog Devices, Inc. Aluminum-based gallium nitride integrated circuits

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070018199A1 (en) * 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20080121934A1 (en) * 2006-11-24 2008-05-29 Eudyna Devices Inc. Semiconductor device having schottky junction and method for manufacturing the same
CN103824881A (zh) * 2012-11-16 2014-05-28 安华高科技通用Ip(新加坡)公司 包括经掺杂低温缓冲层的假晶高电子迁移率晶体管

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033066A (ja) * 1983-08-04 1985-02-20 Fujitsu Ltd 高周波トランジスタのバ−ンイン方法
JPS61278162A (ja) 1985-06-04 1986-12-09 Toshiba Corp シヨツトキ電極の形成方法
JP2544084B2 (ja) * 1993-12-28 1996-10-16 山一電機株式会社 電気部品の接続器
JPH11354601A (ja) * 1998-06-09 1999-12-24 Toshiba Corp 半導体装置の試験方法および半導体装置の製造方法
JP2000100882A (ja) * 1998-09-18 2000-04-07 Hitachi Ltd 半導体装置の製造方法とその検査方法、及び、それらの方法に用いる冶具
US6586781B2 (en) * 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
DE10014388A1 (de) * 2000-03-23 2001-10-04 Infineon Technologies Ag Verfahren zur Durchführung eines Burn-in-Prozesses eines Speichers
US6686616B1 (en) * 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
CN1568431A (zh) * 2001-08-13 2005-01-19 霍尼韦尔国际公司 用于电子器件的晶片级老化试验的系统
US7638815B2 (en) * 2002-12-27 2009-12-29 Momentive Performance Materials Inc. Crystalline composition, wafer, and semi-conductor structure
US7507617B2 (en) * 2003-12-25 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2005283432A (ja) * 2004-03-30 2005-10-13 Denso Corp 半導体ウエハおよびその半導体ウエハを用いた半導体装置の製造方法
EP1805548B1 (en) * 2004-10-27 2013-05-29 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, and laser irradiation method, laser irradiation apparatus, and laser annealing method of non-single crystalline semiconductor film using the same
US7709859B2 (en) * 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US20060132167A1 (en) * 2004-12-22 2006-06-22 Jian Chen Contactless wafer level burn-in
JP2006302993A (ja) 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd プローブカード接続良否判定方法およびその装置
JP4451811B2 (ja) * 2005-05-09 2010-04-14 ローム株式会社 窒化物半導体素子の製法
US9153645B2 (en) * 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) * 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7638842B2 (en) * 2005-09-07 2009-12-29 Amberwave Systems Corporation Lattice-mismatched semiconductor structures on insulators
EP2312635B1 (en) * 2005-09-07 2020-04-01 Cree, Inc. Transistors with fluorine treatment
US7932539B2 (en) * 2005-11-29 2011-04-26 The Hong Kong University Of Science And Technology Enhancement-mode III-N devices, circuits, and methods
US20070141731A1 (en) * 2005-12-20 2007-06-21 Hemink Gerrit J Semiconductor memory with redundant replacement for elements posing future operability concern
JP5202897B2 (ja) 2007-07-25 2013-06-05 住友電工デバイス・イノベーション株式会社 電界効果トランジスタおよびその製造方法
CN101359686B (zh) * 2007-08-03 2013-01-02 香港科技大学 可靠的常关型ⅲ-氮化物有源器件结构及相关方法和系统
US20090120924A1 (en) * 2007-11-08 2009-05-14 Stephen Moffatt Pulse train annealing method and apparatus
US8098536B2 (en) * 2008-01-24 2012-01-17 International Business Machines Corporation Self-repair integrated circuit and repair method
US7863710B2 (en) * 2008-02-15 2011-01-04 Intel Corporation Dislocation removal from a group III-V film grown on a semiconductor substrate
WO2009119356A1 (ja) * 2008-03-24 2009-10-01 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の作製方法
US9711633B2 (en) * 2008-05-09 2017-07-18 Cree, Inc. Methods of forming group III-nitride semiconductor devices including implanting ions directly into source and drain regions and annealing to activate the implanted ions
US7994027B2 (en) * 2008-05-09 2011-08-09 George Mason Intellectual Properties, Inc. Microwave heating for semiconductor nanostructure fabrication
JP5107138B2 (ja) * 2008-05-29 2012-12-26 住友電工デバイス・イノベーション株式会社 半導体装置
US20110227199A1 (en) * 2008-11-28 2011-09-22 Sumitomo Chemical Company, Limited Method for producing semiconductor substrate, semiconductor substrate, method for manufacturing electronic device, and reaction apparatus
US8216924B2 (en) * 2009-10-16 2012-07-10 Cree, Inc. Methods of fabricating transistors using laser annealing of source/drain regions
JP5706670B2 (ja) * 2009-11-24 2015-04-22 株式会社半導体エネルギー研究所 Soi基板の作製方法
KR101724084B1 (ko) * 2011-03-03 2017-04-07 삼성전자 주식회사 반도체 소자의 제조방법
US8557632B1 (en) * 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
JP5983999B2 (ja) * 2012-06-29 2016-09-06 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
WO2014066740A1 (en) * 2012-10-26 2014-05-01 Element Six Technologies Us Corporation Semiconductor devices with improved reliability and operating life and methods of manufacturing the same
JP6179158B2 (ja) * 2013-03-27 2017-08-16 三菱電機株式会社 トランジスタの製造方法、増幅器の製造方法
JP6111821B2 (ja) * 2013-04-25 2017-04-12 三菱電機株式会社 電界効果トランジスタ
JP6155848B2 (ja) 2013-05-29 2017-07-05 富士通セミコンダクター株式会社 欠陥補正方法、半導体製造装置、半導体製造方法、及び欠陥補正プログラム
JP6299117B2 (ja) * 2013-08-30 2018-03-28 三菱電機株式会社 窒化物半導体デバイスの製造方法、バーンイン装置
TW201517133A (zh) * 2013-10-07 2015-05-01 Applied Materials Inc 使用熱佈植與奈秒退火致使銦鋁鎵氮化物材料系統中摻雜劑的高活化
JP6242678B2 (ja) * 2013-12-25 2017-12-06 住友化学株式会社 窒化物半導体素子及びその製造方法
US9281183B2 (en) * 2014-01-15 2016-03-08 The Regents Of The University Of California Metalorganic chemical vapor deposition of oxide dielectrics on N-polar III-nitride semiconductors with high interface quality and tunable fixed interface charge
JP2015154353A (ja) * 2014-02-17 2015-08-24 三菱電機株式会社 高周波電力増幅器及びその製造方法
JP6310782B2 (ja) * 2014-06-20 2018-04-11 ルネサスエレクトロニクス株式会社 半導体装置の製造方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070018199A1 (en) * 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20080121934A1 (en) * 2006-11-24 2008-05-29 Eudyna Devices Inc. Semiconductor device having schottky junction and method for manufacturing the same
CN103824881A (zh) * 2012-11-16 2014-05-28 安华高科技通用Ip(新加坡)公司 包括经掺杂低温缓冲层的假晶高电子迁移率晶体管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.M.CONWAY,ET AL: ""Accelerated RF Life Testing Of GaN HFETS"", 《RELIABILITY PHYSICS SYMPOSIUM, 2007. PROCEEDINGS. 45TH ANNUAL. IEEE INTERNATIONAL》 *
DONALD A.GAJEWSKI,ETAL: ""Reliability Of GaN/AlGaN HEMT MMIC Technolohy on 100-MM- 4H-SiC"", 《JEDEC ROCS WOKKSHOP》 *

Also Published As

Publication number Publication date
CN105609418B (zh) 2018-09-07
US9691875B2 (en) 2017-06-27
JP2016096306A (ja) 2016-05-26
DE102015213501A1 (de) 2016-05-19
JP6292104B2 (ja) 2018-03-14
US20160141385A1 (en) 2016-05-19
DE102015213501B4 (de) 2019-09-12

Similar Documents

Publication Publication Date Title
US11735460B2 (en) Integrated circuit devices with an engineered substrate
US8114726B2 (en) AlGaN/GaN HEMT with normally-off threshold minimized and method of manufacturing the same
CN103066103B (zh) 硅衬底上的iii族氮化物的衬底击穿电压改进方法
CN101981658B (zh) 半导体元件、半导体元件用外延基板及其制作方法
WO2012157371A1 (ja) 半導体装置
US20150123139A1 (en) High electron mobility transistor and method of manufacturing the same
US8633514B2 (en) Group III nitride semiconductor wafer and group III nitride semiconductor device
US11430875B2 (en) Method for manufacturing transistor
CN105609418A (zh) 氮化物半导体装置的制造方法
WO2012014675A1 (ja) 半導体素子、hemt素子、および半導体素子の製造方法
JP5415668B2 (ja) 半導体素子
JP2007123824A (ja) Iii族窒化物系化合物半導体を用いた電子装置
CN104937699B (zh) 外延晶片和使用其的开关元件及发光元件
KR20130083198A (ko) 질화물계 반도체 이종접합 반도체 소자
Alshahed et al. 600 V, low-leakage AlGaN/GaN MIS-HEMT on bulk GaN substrates
Aragon Etched-and-Regrown Diodes on M-Plane GaN for Next Generation Power Electronic Devices
JP2019012726A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant