CN105590662B - 透明导电体以及触摸屏 - Google Patents

透明导电体以及触摸屏 Download PDF

Info

Publication number
CN105590662B
CN105590662B CN201510744779.2A CN201510744779A CN105590662B CN 105590662 B CN105590662 B CN 105590662B CN 201510744779 A CN201510744779 A CN 201510744779A CN 105590662 B CN105590662 B CN 105590662B
Authority
CN
China
Prior art keywords
oxide layer
metal oxide
transparent conductive
conductive body
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510744779.2A
Other languages
English (en)
Other versions
CN105590662A (zh
Inventor
新开浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to CN201710685491.1A priority Critical patent/CN107578840B/zh
Publication of CN105590662A publication Critical patent/CN105590662A/zh
Application granted granted Critical
Publication of CN105590662B publication Critical patent/CN105590662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明提供一种透明导电体100,其特征在于:透明树脂基材10、第1金属氧化物层12、含有银合金的金属层16、以及第2金属氧化物层14按上述顺序进行层叠,其中,第2金属氧化物层14含有ZnO作为主成分并且含有Ga2O3以及GeO2作为副成分。

Description

透明导电体以及触摸屏
技术领域
本发明涉及透明导电体以及使用了该透明导电体的触摸屏。
背景技术
透明导电体被用作液晶显示器(LCD)、等离子显示屏(PDP)以及电致发光面板(有机EL、无机EL)等显示器、太阳能电池等的透明电极。另外,除了这些之外,还被用于电磁波屏蔽膜以及防红外线膜等。作为透明导电体中的金属氧化物层的材料,广泛使用将锡(Sn)添加于氧化铟(In2O3)的ITO。
近年来,智能手机以及写字板终端等具备触摸屏的终端正在快速普及。这些都具有在液晶面板上设置触摸传感器部并在最表面上具备防护玻璃的结构。触摸传感器部是通过将在玻璃或者薄膜基材的单面或双面上用溅射法成膜了ITO膜后得到的材料1片或者贴合2片而构成的。
随着触摸屏的大型化和触摸传感器功能的高精度化,寻求具有高透过率并且低电阻的透明导电体。为了降低使用了ITO膜的透明导电体的电阻,有必要增厚ITO膜的厚度,或者通过热退火(thermal annealing)来进行ITO膜的结晶化。但是,如果将ITO膜实施厚膜化则透过率降低。另外,在高温条件下对薄膜基材实施热退火处理通常很困难。因此,在设置于薄膜基材上的ITO膜的情况下,处于难以既维持高透过率又降低电阻的状况。
在这样的情况下,提出有具有以氧化锌作为主成分的金属氧化物层与金属层的层叠结构的透明导电膜(例如,日本专利特开平9-291355号公报)。
现有技术文献
专利文献
专利文献1:日本专利特开平9-291355号公报
发明内容
在触摸屏等的用途中,将透明导电膜按图案制成导电部分和绝缘部分并检测触摸的位置。因此,要求在具有金属氧化物层与金属层的层叠结构的透明导电体中,金属氧化物层和金属层能够用蚀刻一次性除去。然而,在以氧化锌作为主成分的金属氧化物层与金属层的层叠结构中,存在难以用蚀刻将金属氧化物层和金属层一次性除去的情况。
在此,在本公开内容中,提供一种透明导电体,其中在具有含有氧化锌作为主成分的金属氧化物层与金属层的层叠结构中,通过蚀刻能够容易地除去金属氧化物层和金属层。另外,在本公开内容中,通过使用这样的透明导电体从而提供一种能够容易地制造的触摸屏。
本发明在一个方面提供一种透明导电体,其中透明树脂基材、第1金属氧化物层、含有银合金的金属层、以及第2金属氧化物层按照上述顺序进行层叠,并且第2金属氧化物层含有ZnO作为主成分并且含有Ga2O3以及GeO2作为副成分。
像这样的透明导电体具有层叠结构,该层叠结构具备:构成最表面的含有ZnO作为主成分且含有Ga2O3以及GeO2作为副成分的第2金属氧化物层和含有银合金的金属层。该第2金属氧化物层和金属层容易通过蚀刻而被一次性除去。另外,可以做成具有高透明性、高导电性以及优异的耐腐蚀性的透明导电体。因此,能够适用于触摸屏等的需要蚀刻的用途。
在几个实施方式中,在第2金属氧化物层中,相对于ZnO、Ga2O3以及GeO2这三种成分的合计,ZnO的含量可以为70~90mol%。相对于上三种成分的合计,Ga2O3含量可以为5~15mol%。相对于上三种成分的合计,GeO2的含量可以为5~20mol%。通过以上述比例含有ZnO、Ga2O3以及GeO2,从而能够充分提高第2金属氧化物层的透明性、导电性、耐腐蚀性以及蚀刻性。
在几个实施方式中,第1金属氧化物层中,作为主成分可以含有ZnO,并且作为副成分可以含有Ga2O3以及GeO2。这样,就能够通过蚀刻而容易地一次性除去第1金属氧化物层、第2金属氧化物层以及金属层。另外,可以做成具有高透明性、高导电性以及优异的耐腐蚀性的透明导电体。
在几个实施方式中,金属层的厚度可以为4~11nm。既能够充分提高透明导电体的透明性又能够降低表面电阻。在几个实施方式中,银合金可以是Ag和选自Pd、Cu、Nd、In、Sn以及Sb中的至少一种金属的合金。
本发明在另一个方面提供一种触摸屏,该触摸屏在面板之上具有传感薄膜,该传感薄膜由上述透明导电体构成。这样的触摸屏由于具有由上述透明导电体构成的传感薄膜,所以能够容易地制造。
根据本公开内容,可以提供一种透明导电体,其中,在具有含有氧化锌作为主成分的金属氧化物层和金属层的层叠结构的透明导电体中,能够由蚀刻容易地除去金属氧化物层和金属层。另外,在本公开内容中,通过使用这样的透明导电体,可以提供一种能够容易制造的触摸屏。
附图说明
图1是示意性地表示透明导电体的一个实施方式的截面图。
图2是示意性地表示透明导电体的其它实施方式的截面图。
图3是放大表示触摸屏的一个实施方式中的截面的一部分的示意截面图。
图4(A)、(B)是构成触摸屏的一个实施方式的传感薄膜的平面图。
具体实施方式
以下,参照附图详细地说明本发明的优选实施方式。但是,本发明完全不限定于以下的实施方式。另外,在附图中对相同或者同等的要素标注相同符号,根据情况不同省略重复的说明。
图1是表示透明导电体的一个实施方式的示意截面图。透明导电体100具有:薄膜状的透明树脂基材10、第1金属氧化物层12、金属层16、第2金属氧化物层14按上述顺序配置的层叠结构。
本说明书所涉及的“透明”是指可见光透过,还可以在一定程度上散射光。对于光的散射程度,根据透明导电体100的用途所要求的水平不同。如一般被称作半透明那样的有光散射的情况也包含于本说明书中的“透明”的概念。光的散射程度优选相对较小,透明性优选相对较高。透明导电体100整体的全光线透过率例如为80%以上,优选为83%以上,更加优选为85%以上。该全光线透过率是使用积分球(integrating sphere)求得的包含扩散透射光的透过率,可以使用市售的薄膜混浊度测量仪(hazemeter)来进行测定。
作为透明树脂基材10,并没有特别的限定,可以是具有可挠性的有机树脂薄膜。有机树脂薄膜也可以是有机树脂薄片。作为有机树脂薄膜,例如可以列举聚对苯二甲酸乙二醇酯(PET)和聚萘二甲酸乙二醇酯(PEN)等聚酯薄膜、聚乙烯以及聚丙烯等聚烯烃薄膜、聚碳酸酯薄膜、丙烯酸薄膜、降冰片烯(norbornene)薄膜、聚芳酯薄膜、聚醚砜薄膜、二乙酰纤维素薄膜、以及三乙酰纤维素薄膜等。这些当中优选为聚对苯二甲酸乙二醇酯(PET)和聚萘二甲酸乙二醇酯(PEN)等的聚酯薄膜。
从刚性的观点出发,透明树脂基材10优选厚的。另外,从将透明导电体100薄膜化的观点出发,透明树脂基材10优选薄的。从这样的观点出发,透明树脂基材10的厚度例如为10~200μm。从做成光学特性上优异的透明导电体的观点出发,透明树脂基材的折射率例如为1.50~1.70。另外,本说明书中的折射率是在λ=633nm,温度20℃的条件下测定的值。
透明树脂基材10优选加热时的尺寸稳定性高。一般来说,可挠性的有机树脂薄膜在薄膜制作的过程中,通过加热会产生由于膨胀或者收缩引起的尺寸变化。在单轴拉伸或者双轴拉伸中,能够以低成本来制作厚度薄的透明树脂基材10。在形成引出电极时,如果加热透明导电体100,则由于热收缩而发生尺寸变化。像这样的尺寸变化可以按照ASTMD1204-02或者JIS-C-2151来测定。加热处理前后的尺寸变化率在将加热前的尺寸设定为Lo并且将加热后的尺寸设定为L时,可以由以下的式子求得。
尺寸变化率(%)=100×(L-Lo)/Lo
尺寸变化率(%)为正值的情况表示通过加热处理而发生了膨胀,负值的情况表示通过加热处理而发生了收缩。被双轴拉伸后的透明树脂基材10的尺寸变化率可以在拉伸时的行进方向(MD方向)和横向(TD方向)两个方向上进行测定。透明树脂基材10的尺寸变化率例如在MD方向上为-1.0~-0.3%,在TD方向上为-0.1~+0.1%。
透明树脂基材10可以是实施了选自电晕放电处理、辉光放电、火焰处理、紫外线照射处理、电子束照射处理以及臭氧处理中的至少一种表面处理。透明树脂基材也可以是树脂薄膜。通过使用树脂薄膜从而就能够使透明导电体100在柔软性方面表现优异。这样,并不限定于触摸屏用途的透明导电体,还能够用于柔软的有机EL照明等的透明电极用,或者用作电磁波屏蔽。
例如,在将透明导电体100作为构成触摸屏的传感薄膜使用的情况下,透明树脂基材10也可以使用具有可挠性的有机树脂薄膜以使得对手指以及笔等的外部施加的力适度地变形。
第2金属氧化物层14为含有氧化物的透明层,作为主成分含有ZnO,并且作为副成分含有Ga2O3以及GeO2。在这里所说的主成分是指在ZnO和Ga2O3以及GeO2三种成分中,摩尔基准的含量最多的成分。所谓副成分是指在上述三种成分中非主成分的成分。第2金属氧化物层14由于含有ZnO作为主成分因此在经济性上优异。另外,可以不使用ITO而形成兼备高导电性和高透明性的第2金属氧化物层14。为此,即使不实行热退火处理也能够制成具有低表面电阻的第2金属氧化物层14。
在第2金属氧化物层14中,从充分提高透过率和导电性的观点出发,相对于上述三种成分的合计,ZnO的含量例如为70mol%以上,优选为75mol%以上。从充分提高保存稳定性的观点出发,在第2金属氧化物层14中,相对于上述三种成分的合计,ZnO的含量例如为90mol%以下,优选为84mol%以下。如果ZnO含量过多,则在高温高湿环境下保存的情况下,会有容易产生白浊的倾向。另一方面,如果ZnO含量过少,则会有透过率以及导电性降低的倾向。
在第2金属氧化物层14中,从既充分降低表面电阻又充分提高透过率的观点出发,相对于上述三种成分的合计,Ga2O3的含量例如为15mol%以下,优选为11mol%以下。在第2金属氧化物层14中,从充分提高保存稳定性的观点出发,相对于上述三种成分的合计,Ga2O3含量例如为5mol%以上,优选为8mol%以上。如果Ga2O3的含量过多,则有表面电阻变高的倾向以及透过率降低的倾向。另一方面,如果Ga2O3含量过少,则在高温高湿环境下保存的情况下,会有变得容易产生白浊并且表面电阻变高的倾向。
在第2金属氧化物层14中,从既充分降低表面电阻又充分提高透过率的观点出发,相对于上述三种成分的总计,GeO2的含量例如为20mol%以下,优选为14mol%以下。在第2金属氧化物层14中,从充分提高保存稳定性的观点出发,相对于上述三种成分的合计,GeO2的含量例如为5mol%以上,优选为8mol%以上。如果GeO2含量过多,则有表面电阻变高的倾向以及透过率降低的倾向。另一方面,如果GeO2含量过少,则在高温高湿环境下进行保存的情况下,会有表面电阻变高的倾向。
第2金属氧化物层14兼备光学特性的调整、金属层16的保护以及导电性的确保等的功能。第2金属氧化物层14在不大大损害其功能的范围内,除了上述三种成分之外,还可以含有微量成分或者不可避免的成分。但是,从做成具有充分高的特性的透明导电体100的观点出发,优选在第2金属氧化物层14中的该三种成分的合计的比例相对较高。该比例例如为95mol%以上,优选为97mol%以上。另外,第2金属氧化物层14优选不含有ITO。
第1金属氧化物层12和第2金属氧化物层14在厚度、结构以及组成这几点上既可以相同也可以不同。关于第2金属氧化物层14的组成的记载对于第1金属氧化物层12也能够直接适用。通过第1金属氧化物层12具有与第2金属氧化物层14相同的组成,从而就能够通过蚀刻来一次性除去第1金属氧化物层12、金属层16以及第2金属氧化物层14。另外,能够进一步提高透明性以及耐腐蚀性。
第1金属氧化物层12也可以具有与第2金属氧化物层14不同的组成。在此情况下,可以通过蚀刻仅除去第2金属氧化物层14以及金属层16,并使第1金属氧化物层12原样残留。
从作为适合于各种各样的触摸屏的厚度的观点出发,第1金属氧化物层12以及第2金属氧化物层14的厚度例如为10~70nm。
第1金属氧化物层12以及第2金属氧化物层14可以通过真空蒸镀法、溅射法、离子电镀法或者CVD法等真空成膜法来制作。在这些之中,从能够使成膜室小型化的点以及成膜速度快的点出发,优选溅射法。作为溅射法可以列举DC磁控溅射法(magnetronsputtering)。作为靶材可以使用氧化物靶材、金属或者半金属靶材。
也可以在第2金属氧化物层14之上设置配线电极等。导通后述的金属层16的电流是从设置于第2金属氧化物层14之上的配线电极等经由第2金属氧化物层14而被传导的。因此,第2金属氧化物层14优选具有高导电性。从这样的观点出发,在第2金属氧化物层14单膜上的表面电阻值例如优选为1.0×10+7Ω/sq.(=1.0E+7Ω/sq.)以下,更加优选为5.0×10+6Ω/sq.以下。
金属层16是包含银合金作为主要成分的层。通过金属层16具有高导电性,从而能够充分降低透明导电体100的表面电阻。作为构成银合金的金属元素,可以列举Ag和选自Pd、Cu、Nd、In、Sn以及Sb中的至少一种。作为银合金的例子,可以列举Ag-Pd、Ag-Cu、Ag-Pd-Cu、Ag-Nd-Cu、Ag-In-Sn以及Ag-Sn-Sb。
金属层16除了银合金之外还可以含有添加物。添加物优选由蚀刻液就能够容易地除去的物质。金属层16中的银合金的含量例如可以为90质量%以上,也可以是95质量%以上。金属层16的厚度例如为1~30nm。从既充分降低透明导电体100的表面电阻又充分提高全光线透过率的观点出发,金属层16的厚度优选为4~11nm。如果金属层16的厚度过大则有全光线透过率降低的倾向。另一方面,如果金属层16的厚度过小,则有表面电阻变高的倾向。
金属层16具有调节透明导电体100的全光线透过率以及表面电阻的功能。金属层16可以通过真空蒸镀法、溅射法、离子电镀法或者CVD法等真空成膜法来制作。这些之中,从能够使成膜室小型化的点以及成膜速度快的点出发,优选溅射法。作为溅射法可以列举DC磁控溅射法。作为靶材可以使用金属靶材。
透明导电体100中的第1金属氧化物层12以及第2金属氧化物层14的至少一部分以及金属层16的至少一部分可以通过蚀刻等除去。
图2是表示透明导电体的其它实施方式的示意截面图。透明导电体101在以夹着透明树脂基材10的方式具备一对硬涂层20,这一点与透明导电体100不同。其它结构与透明导电体100相同。
透明导电体101中,作为一对硬涂层20,具备在透明树脂基材10的第1金属氧化物层12侧的主面上的第1硬涂层22,和在与透明树脂基材10的第1金属氧化物层12侧相反侧的主面上的第2硬涂层24。即,透明导电体101具有第2硬涂层24、透明树脂基材10、第1硬涂层22、第1金属氧化物层12、金属层16以及第2金属氧化物层14按该顺序进行层叠的层叠结构。第1硬涂层22和第2硬涂层24的厚度、结构以及组成既可以相同也可以不相同。另外,并不一定必须具备第1硬涂层22和第2硬涂层24两者,可以仅具备任意一者。
通过设置硬涂层20,从而可以充分抑制在透明树脂基材10上产生损伤。硬涂层20含有使树脂组合物固化而获得的树脂固化物。树脂组合物优选包含选自热固化性树脂组合物、紫外线固化性树脂组合物以及电子束固化性树脂组合物中的至少一种。热固化性树脂组合物可以含有选自环氧树脂、苯氧基类树脂以及三聚氰胺类树脂中的至少一种。
树脂组合物例如是一种含有具有(甲基)丙烯酰基、乙烯基等的能量射线反应性基团的固化性化合物的组合物。另外,(甲基)丙烯酰基的术语是包括丙烯酰基以及甲基丙烯酰基中的至少一种的含义。固化性化合物优选包含在1个分子内含有2个以上,优选为3个以上的能量射线反应性基团的多官能团单体或者低聚物。
固化性化合物优选含有丙烯酸类单体。作为丙烯酸类单体,具体可以列举1,6-己二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、环氧乙烷改性双酚A二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、三羟甲基丙烷环氧乙烷改性三(甲基)丙烯酸酯、三羟甲基丙烷环氧丙烷改性三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、双三羟甲基丙烷四(甲基)丙烯酸酯、双季戊四醇五(甲基)丙烯酸酯、双季戊四醇六(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、以及3-(甲基)丙烯酰氧基甘油单(甲基)丙烯酸酯等。但是,不一定限定于这些化合物。例如,也可以列举聚氨酯改性丙烯酸酯以及环氧乙烷改性丙烯酸酯等。
作为固化性化合物,也可以使用具有乙烯基的化合物。作为具有乙烯基的化合物,例如可以列举乙二醇二乙烯基醚、季戊四醇二乙烯基醚、1,6-己二醇二乙烯基醚、三羟甲基丙烷二乙烯基醚、环氧乙烷改性氢醌二乙烯基醚、环氧乙烷改性双酚A二乙烯基醚、季戊四醇三乙烯基醚、双季戊四醇六乙烯基醚、以及双三羟甲基丙烷聚乙烯基醚等。但是,并不限定于这些。
在通过紫外线来固化固化性化合物的情况下,树脂组合物含有光聚合引发剂。作为光聚合引发剂可以使用各种各样的光聚合引发剂。例如,可以适当选自苯乙酮类、二苯乙醇酮类、二苯甲酮类以及噻吨酮类等公知的化合物。更为具体而言,可以列举Darocur1173、Irgacure651、Irgacure184、Irgacure907(以上是商品名,日本Chiba SpecialtyChemicals Co.,Ltd.制);以及KAYACURE DETX-S(商品名,日本化药株式会社制)。
光聚合引发剂相对于固化性化合物的质量可以为0.01~20质量%,或者0.5~5质量%左右。树脂组合物可以是将光聚合引发剂添加到丙烯酸类单体的公知物质。作为将光聚合引发剂添加到丙烯酸类单体的物质,例如可以列举作为紫外线固化型树脂的SD-318(商品名,大日本油墨化学工业株式会社制)以及XNR5535(商品名,长濑产业株式会社制)等。
为了提高涂膜强度以及/或者调整折射率等,树脂组合物还可以含有有机微颗粒以及/或者无机微颗粒。作为有机微颗粒例如可以列举有机硅微颗粒、交联丙烯酸树脂微颗粒以及交联聚苯乙烯微颗粒等。作为无机微颗粒例如可以列举氧化硅微颗粒、氧化铝微颗粒、氧化锆微颗粒、氧化钛微颗粒以及氧化铁微颗粒等。这些之中,优选氧化硅微颗粒。
微颗粒优选在其表面被硅烷偶联剂处理,并且优选为(甲基)丙烯酰基以及/或者乙烯基等能量射线反应性基团以膜状存在于表面的微颗粒。如果使用这样的具有反应性的微颗粒,则在照射能量射线时,或微颗粒彼此反应,或微颗粒与多官能团单体或者低聚物反应,从而能够增强膜的强度。优选使用被含有(甲基)丙烯酰基的硅烷偶联剂处理过的氧化硅微颗粒。
从小于硬涂层20的厚度并且确保充分的透明性的观点出发,微颗粒的平均粒径可以是100nm以下,也可以是20nm以下。另一方面,从胶体溶液的制造上的观点出发,可以为5nm以上,也可以为10nm以上。在使用有机微颗粒以及/或者无机微颗粒的情况下,有机微颗粒和无机微颗粒的合计含量相对于固化性化合物100质量份,例如可以为5~500质量份,也可以是20~200质量份。
如果使用以能量射线进行固化的树脂组合物,则通过照射紫外线等能量射线可以使树脂组合物固化。因此,从制造工序上的观点出发,也优选使用这样的树脂组合物。
第1硬涂层22可以通过将树脂组合物的溶液或者分散液涂布于透明树脂基材10的一面上从而干燥,并固化树脂组合物来进行制作。此时的涂布可以根据公知的方法进行。作为涂布方法例如可以列举挤压喷嘴法、刮刀法、刀法、棒涂布法、接触式涂布法、接触式反向涂布法、凹版辊涂法、浸涂法、逆转辊涂法、直接辊涂法、帘式法以及挤压法等。第2硬涂层24也可以和第1硬涂层22同样在透明树脂基材10的另一面上制作。
第1硬涂层22以及第2硬涂层24的厚度例如为0.5~10μm。如果厚度超过10μm,则有容易产生厚度不均匀或皱纹等的倾向。另一方面,如果厚度低于0.5μm,则在透明树脂基材10中含有相当量的增塑剂或者低聚物等低分子量成分的情况下,会出现难以充分抑制这些成分的流出的情况。另外,从抑制翘曲的观点出发,第1硬涂层22以及第2硬涂层24的厚度优选做成相同的程度。
第1硬涂层22以及第2硬涂层24的折射率例如为1.40~1.60。透明树脂基材10与第1硬涂层22的折射率之差的绝对值优选为0.1以下。透明树脂基材10与第2硬涂层24的折射率之差的绝对值也优选为0.1以下。通过减小第1硬涂层22以及第2硬涂层24与透明树脂基材10的折射率之差的绝对值,从而能够抑制由于第1硬涂层22以及第2硬涂层24的厚度的不均匀而发生的干扰条纹的强度。
构成透明导电体100、101的各层的厚度能够按以下的顺序来进行测定。由聚焦离子束装置(FIB,Focused Ion Beam)切断透明导电体100、101从而获得截面。使用透射电子显微镜(TEM)来观察该截面,并测定各层的厚度。测定优选在任意选择的10处以上的位置进行,并求得其平均值。作为获得截面的方法,也可以使用显微镜用薄片切片机(microtome)作为聚焦离子束装置以外的装置。作为测定厚度的方法,也可以使用扫描电子显微镜(SEM)。另外,使用荧光X射线装置也能够测定膜厚。
透明导电体100、101的厚度可以为200μm以下,也可以为150μm以下。如果是像这样的厚度,则能够充分满足薄化的要求级别。透明导电体100、101的全光线透过率例如能够做到85%以上的高值。另外,透明导电体100、101的表面电阻值(四端子法)即使不进行第1金属氧化物层12以及第2金属氧化物层14的热退火处理也能够做到例如30Ω/sq.以下,并且还能够做到25Ω/sq.以下。
具备上述结构的透明导电体100、101具有第1金属氧化物层12、金属层16以及第2金属氧化物层14层叠的层叠结构。该层叠结构能够使用通常的蚀刻液容易地一次性除去。另外,具有高透过率,并且即使不进行热退火也具有高导电性。因此,能够适合作为触摸屏的传感薄膜使用。
图3是放大表示具备一对传感薄膜的触摸屏200的截面的一部分的示意截面图。图4(A)以及图4(B)是使用了上述透明导电体100的传感薄膜100a以及100b的平面图。触摸屏200具备经由光学胶18相对配置的一对传感薄膜100a、100b。触摸屏200是以能够将接触体的触摸位置作为平行于成为画面的面板70的二维坐标(X-Y坐标)平面中的坐标位置(横向位置和纵向位置)而算出的方式而被构成。
具体而言,触摸屏200具备经由光学胶18贴合的纵向位置检测用的传感薄膜100a(以下称为“Y用传感薄膜”)和横向位置检测用的传感薄膜100b(以下称为“X用传感薄膜”)。在X用传感薄膜100b的下面侧,将垫片92设置于X用传感薄膜100b与显示装置的面板70之间。
在Y用传感薄膜100a的上面侧(与面板70侧相反侧)经由光学胶17设置有防护玻璃19。即,触摸屏200在面板70之上具有X用传感薄膜100b、Y用传感薄膜100a以及防护玻璃19按该顺序从面板70侧配置的层叠结构。
检测纵向位置的Y用传感薄膜100a和检测横向位置的X用传感薄膜100b是由上述透明导电体100构成的。Y用传感薄膜100a以及X用传感薄膜100b以与防护玻璃19相对的方式具有作为导电部的传感器电极15a以及传感器电极15b。
该传感器电极15a是由第1金属氧化物层12和第2金属氧化物层14以及金属层16构成。如图4(A)所示,传感器电极15a以能够检测纵向(y方向)的触摸位置的方式在纵向(y方向)上延伸多根。多根传感器电极15a沿着纵向(y方向)互相平行地并排配置。传感器电极15a的一端经由用银浆形成的导体线路50与驱动用IC侧的电极80相接续。
检测横向位置的X用传感薄膜100b在与Y用传感薄膜100a相对的相对面上具有传感器电极15b。该传感器电极15b由第1金属氧化物层12、第2金属氧化物层14以及金属层16构成。如图4(B)所示,传感器电极15b以能够检测横向(x方向)的触摸位置的方式在横向(x方向)上延伸多根。多根传感器电极15b沿着横向(x方向)互相平行地并排配置。传感器电极15b的一端经由用银浆形成的导体线路50与驱动用IC侧的电极80相接续。
从Y用传感薄膜100a与X用传感薄膜100b的层叠方向看时,Y用传感薄膜100a和X用传感薄膜100b以各自的传感器电极15a、15b互相垂直的方式经由光学胶18而被重叠。在Y用传感薄膜100a的与X用传感薄膜100b侧的相反侧,经由光学胶17设置有防护玻璃19。光学胶17、18、防护玻璃19以及面板70能够使用通常的材料。
图4(A),(B)中的导体线路50以及电极80由金属(例如Ag)等导电性材料构成。导体线路50以及电极80例如是由丝网印刷按图案形成的。透明树脂基材10也具有作为覆盖触摸屏200的表面的保护膜的功能。
各传感薄膜100a、100b上的传感器电极15a、15b的形状以及个数并不限定于图3和图4(A)以及图4(B)中所示的形态。例如,也可以通过增加传感器电极15a、15b的个数来提高触摸位置的检测精度。
在X用传感薄膜100b的与Y用传感薄膜100a侧的相反侧,经由垫片92设置面板70。垫片92可以设置在对应于传感器电极15a、15b形状的位置和包围传感器电极15a、15b全体的位置。垫片92可以用具有透光性的材料,例如由PET(聚对苯二甲酸乙酯)树脂形成。垫片92的一端通过光学胶或者丙烯酸树脂类或环氧树脂类等的具有透光性的粘结剂90而被粘结于X用传感薄膜100b的下面。垫片92的另一端由粘结剂90而被粘结于显示装置的面板70。这样通过经由垫片92将X用传感薄膜100b和面板70相对配置,从而就能够在X用传感薄膜100b与显示装置的面板70之间设置空隙S。
在电极80上电连接控制部(IC)。分别测定由指尖与触摸屏200的Y用传感薄膜100a之间的静电容量的变化所产生的各个传感器电极15a、15b的容量变化。控制部能够根据测定结果将接触体的触摸位置作为坐标位置(X轴方向的位置与Y轴方向的位置的交点)来计算。另外,传感器电极的驱动方法以及坐标位置的计算方法除了上述方法之外还可以采用公知的各种方法。
触摸屏200可以按以下的顺序制造。在准备了透明导电体100之后,进行对第1金属氧化物层12、金属层16以及第2金属氧化物层14的蚀刻,并形成图案。具体而言,使用光刻技术用旋转涂布法在第2金属氧化物层14的表面涂布抗蚀材料。之后,为了提高紧密附着性也可以进行预烘烤,接着,配置掩蔽图案从而进行曝光,通过用显影液进行显影从而形成抗蚀图案。抗蚀图案的形成不限定于光刻法,也可以由丝网印刷法等形成。
接着,将形成了抗蚀图案的透明导电体100浸渍于酸性蚀刻液,并溶解除去没有形成抗蚀图案的部分处的第1金属氧化物层12、第2金属氧化物层14以及金属层16。之后,除去抗蚀层,从而得到形成有传感器电极15a的Y用传感薄膜100a和形成有传感器电极15b的X用传感薄膜100b。
将第1金属氧化物层12和第2金属氧化物层14设定为不同的组成,如果将第1金属氧化物层12做成不会由蚀刻除去的组成,则能够一次性蚀刻金属层16和第2金属氧化物层14,并且还能够在蚀刻后直接残留第1金属氧化物层12。作为蚀刻液,可以使用无机酸类的蚀刻液。例如,优选磷酸类的蚀刻液。
接下来,例如涂布银合金浆料等金属浆料从而形成导体线路50以及电极80。这样,控制部和传感器电极15a、15b被电连接。接下来,使用光学胶18以各个传感器电极15a、15b朝着同一个方向的方式贴合Y用传感薄膜100a和X用传感薄膜100b。在此情况下,从Y用传感薄膜100a与X用传感薄膜100b的层叠方向看时,传感器电极15a、15b以互相垂直的形式进行贴合。于是,使用光学胶17来贴合防护玻璃19和Y用传感薄膜100a。这样就能够制造触摸屏200。
触摸屏200使用透明导电体100作为Y用传感薄膜100a以及X用传感薄膜100b。透明导电体100可以由蚀刻一次性除去第1金属氧化物层12和第2金属氧化物层14以及金属层16。因此,可以简化触摸屏200的制造工艺,从而容易地制造出触摸屏200。
另外,没有必要在Y用传感薄膜100a以及X用传感薄膜100b两者中都使用透明导电体100,任一方都可以使用其它透明导电体。即使是这样的触摸屏也能够地使显示充分清晰。另外,作为传感薄膜,也可以不使用透明导电体100而使用透明导电体101。
这样,透明导电体100、101能够适宜地用于触摸屏。但是,其用途并不限定于触摸屏,例如通过蚀刻将第1金属氧化物层12和第2金属氧化物层14以及金属层16加工成规定形状从而形成具有第1金属氧化物层12、第2金属氧化物层14和金属层16的部分(导电部)、以及没有第1金属氧化物层12、第2金属氧化物层14和金属层16的部分(非导电部),在液晶显示器(LCD)、等离子显示屏(PDP)、电致发光面板(有机EL、无机EL)、电致变色元件以及电子纸等各种显示装置中能够作为透明电极用、防带电用、电磁波屏蔽用来使用。另外,也可以作为天线使用。
以上,说明了本发明的优选实施方式,但是本发明并不限定于上述实施方式。例如,上述透明导电体101具有一对硬涂层20,不过也可以只具备第1硬涂层22以及第2硬涂层24中的任一者。另外,也可以在透明树脂基材10的一个面上设置硬涂层,并在另一个面上设置多个光学调节层。在此情况下,第1金属氧化物层12、金属层16以及第2金属氧化物层14也可以设置于该光学调节层之上。进一步,在透明导电体100、101中,在不会大大损害其功能的范围内,除上述层以外还可以在任意的位置设置任意的层。
[实施例]
以下列举实施例以及比较例来进一步具体说明本发明,但是本发明不限定于这些实施例。
[实施例1~18]
(透明导电体101的制作)
制作如图2所示的透明导电体。透明导电体具有被夹持于一对硬涂层的透明树脂基材、第1金属氧化物层、金属层以及第2金属氧化物层按该顺序层叠的层叠结构。并按以下所述要领制作各个实施例的透明导电体。
准备厚度为100μm的聚对苯二甲酸乙二醇酯薄膜(Toray Industries,Inc.制,产品序号:U48)。使用该PET薄膜作为透明树脂基材。通过DC磁控溅射在透明树脂基材上依次形成了第1金属氧化物层、金属层以及第2金属氧化物层。第1金属氧化物层以及第2金属氧化物层使用具有表1所示的组成的ZnO-Ga2O3-GeO2靶材来形成。各个实施例中的第1金属氧化物层以及第2金属氧化物层使用具有同一组成的靶材来形成。各个实施例中的第1金属氧化物层以及第2金属氧化物层的组成如表1所示。各实施例中的第1金属氧化物层以及第2金属氧化物层的厚度做成50nm。
在表1所示的全部实施例中,金属层使用AgPdCu[Ag:Pd:Cu=99.0:0.5:0.5(质量%)]靶材来形成。金属层16的厚度做成了5nm。
(透明导电体101的评价)
按以下的程序来评价蚀刻特性。首先,准备了含有磷酸、醋酸和硝酸的PAN类蚀刻液。在室温下将各实施例的透明导电体浸渍于该蚀刻液中1分钟从而进行蚀刻。之后,进行了全光线透过率测定,并判定了第1金属氧化物层、金属层以及第2金属氧化物层是否被溶解。具体而言,蚀刻后的样品的全光线透过率与仅透明树脂基材的全光线透过率一致的情况判定为“A”,不一致的情况判定为“B”。全光线透过率(透过率)使用薄膜混浊度测量仪(商品名:NDH-7000,日本电色工业公司制)来测定的。评价结果如表1所示。
使用四端子电阻率计(商品名:Loresta GP三菱化学株式会社制)测定了各实施例的表面电阻。将测定结果表示于表1中。在表1中,“表面电阻(1)”是将透明导电体在85℃、85%RH(相对湿度85%)的环境下保存50小时之前的表面电阻值,“表面电阻(2)”是在上述环境条件下保存之后的表面电阻值。
在85℃和85%RH的环境下保存各实施例的透明导电体之后,目视进行保存稳定性的评价。在透明导电体中看见白浊的情况判定为“B”,没有看到白浊的情况被判定为“A”。判定结果如表1所示。
[表1]
如表1所示,在所有实施例中蚀刻特性的评价为“A”。由此可以确认实施例1~18的透明导电体中的金属氧化物层以及金属层能够容易地除去。实施例10的透明导电体全光线透过率最高,但保存稳定性的评价为B。另外,在高温高湿环境下保存之后的表面电阻也高。这是由于表面电阻的测定器的四端子接触的第2金属氧化物层的导电性降低了。因此,在没有必要将配线电极安装于第2金属氧化物层上使之导通的用途中,即使表面电阻(2)高也不会成为实用上的问题。另外,对于保存稳定性,如果在不要求那么高级别的透明性,例如噪音片(noise sheet)等的用途(例如噪声屏蔽等)中,则为能够充分使用的水平。
为了评价金属氧化物层的特性,而与上述的顺序同样制作了仅金属氧化物层(单层)的样品。按照和上述顺序同样进行了该样品的评价。将评价结果示于表2中。另外,表2的吸收率是使用用分光器测定的透过率以及反射率的测定结果,用100-透过率-反射率=吸收率的式子求得的值。该吸收率为波长380nm下的值。
[表2]
如表1所示,确认了各实施例的金属氧化物层吸收率充分低。另外,确认了即使含有ZnO作为主成分,通过含有Ga2O3以及GeO2作为副成分也能够提高耐腐蚀性。
[实施例19~30]
除了改变制作金属层时的靶材组成,按表3所示改变了金属层的组成以及/或者改变了金属层的厚度之外,其它均与实施例6同样制作了透明导电体。即,在实施例19~实施例26中改变了金属层的厚度。在实施例27中使用AgNdCu[Ag:Nd:Cu=99.0:0.5:0.5(质量%)]靶材来形成金属层。在实施例28中使用AgInSn[Ag:In:Sn=99.0:0.5:0.5(质量%)]靶材来形成金属层。在实施例29中使用AgSnSb[Ag:Sn:Sb=99.0:0.5:0.5(质量%)]靶材来形成金属层。在实施例30中使用AgCu[Ag:Cu=99.5:0.5(质量%)]靶材来形成金属层。
和实施例6同样对制作好的实施例19~30的透明导电体进行了评价。评价结果如同表3所示。另外,实施例19~30的金属氧化物层的组成以及厚度与实施例6相同。另外,保存稳定性是在85℃、85%RH的环境下保存50小时的条件和在60℃、90%RH的环境下保存50小时的条件下测定的。在以各条件保存之后,用目视将在透明导电体中看到白浊的情况判断为“B”,没有看到白浊的情况判断为“A”。
[表3]
根据表3所示的结果可知,所有实施例中蚀刻特性的评价都是“A”。由此可以确认,实施例19~30的透明导体中的金属氧化物层以及金属层能够容易地除去。另外,确认了如果金属层的厚度变大,则有表面电阻变小的倾向以及全光线透过率降低的倾向。另外,确认了在银合金含有Pd的情况下在保存稳定性上特别优异。
[比较例1~4]
除了使用具有表4所示的组成的靶材作为形成第1金属氧化物层以及第2金属氧化物层时的靶材以外,其余均与实施例1同样制作了比较例1~4的透明导电体。在比较例1中,使用ZnO-TiO2-Nb2O5靶材形成了第1金属氧化物层以及第2金属氧化物层。在比较例2中,使用了ZnO-In2O3-Cr2O3靶材。在比较例3中,使用了ZnO-SnO2-In2O3靶材。在比较例4中,使用了ZnO-SnO2-Cr2O3靶材。在各个比较例中,第1金属氧化物层和第2金属氧化物层使用具有同一组成的靶材来形成。各个比较例中的第1金属氧化物层以及第2金属氧化物层的组成如表4所示。和实施1同样评价了各个比较例的透明导电体的蚀刻特性。结果如表4所示。
[表4]
在各比较例中,上面表示成分,下面表示mol%。
如同表4所示,确认了具有不含ZnO-Ga2O3-GeO2三成分的金属氧化物层的透明导电体不能充分蚀刻。

Claims (6)

1.一种透明导电体,其中,
透明树脂基材、第1金属氧化物层、含有银合金的金属层、以及第2金属氧化物层按该顺序进行层叠,
所述第2金属氧化物层作为主成分含有ZnO,并且作为副成分含有Ga2O3以及GeO2
在所述第2金属氧化物层中,
相对于ZnO、Ga2O3以及GeO2三种成分的合计,ZnO的含量为70~90mol%,
相对于所述三种成分的合计,Ga2O3的含量为5~15mol%,
相对于所述三种成分的合计,GeO2的含量为5~20mol%。
2.如权利要求1所述的透明导电体,其中,
所述金属层的厚度为4~11nm。
3.如权利要求1或2所述的透明导电体,其中,
所述第1金属氧化物层作为主成分含有ZnO,并且作为副成分含有Ga2O3以及GeO2
4.如权利要求1或2所述的透明导电体,其中,
所述银合金是Ag和选自Pd、Cu、Nd、In、Sn以及Sb中的至少一种金属的合金。
5.如权利要求3所述的透明导电体,其中,
所述银合金是Ag和选自Pd、Cu、Nd、In、Sn以及Sb中的至少一种金属的合金。
6.一种触摸屏,其中,
所述触摸屏在面板之上具有传感薄膜,
所述传感薄膜由权利要求1~5中任一项所述的透明导电体构成。
CN201510744779.2A 2014-11-06 2015-11-05 透明导电体以及触摸屏 Active CN105590662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710685491.1A CN107578840B (zh) 2014-11-06 2015-11-05 透明导电体以及触摸屏

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014226177A JP6398624B2 (ja) 2014-11-06 2014-11-06 透明導電体及びタッチパネル
JP2014-226177 2014-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710685491.1A Division CN107578840B (zh) 2014-11-06 2015-11-05 透明导电体以及触摸屏

Publications (2)

Publication Number Publication Date
CN105590662A CN105590662A (zh) 2016-05-18
CN105590662B true CN105590662B (zh) 2017-09-08

Family

ID=55930173

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510744779.2A Active CN105590662B (zh) 2014-11-06 2015-11-05 透明导电体以及触摸屏
CN201710685491.1A Active CN107578840B (zh) 2014-11-06 2015-11-05 透明导电体以及触摸屏

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710685491.1A Active CN107578840B (zh) 2014-11-06 2015-11-05 透明导电体以及触摸屏

Country Status (3)

Country Link
JP (1) JP6398624B2 (zh)
CN (2) CN105590662B (zh)
TW (1) TWI595392B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260647B2 (ja) * 2016-06-13 2018-01-17 Tdk株式会社 透明導電体
TWI746603B (zh) * 2016-08-09 2021-11-21 南韓商東友精細化工有限公司 透明電極、包括其的觸控感測器及影像顯示裝置
CN107357108A (zh) * 2017-07-19 2017-11-17 无锡舒玛天科新能源技术有限公司 柔性可弯曲玻璃电致变色器及其制备方法
CN115224468B (zh) * 2022-09-20 2022-12-06 珠海翔翼航空技术有限公司 一种机翼共形透明微带天线、制备方法及航天器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785675B2 (ja) * 1996-04-26 2006-06-14 旭硝子株式会社 透明導電膜付き基体及びその製造方法
JPH10306367A (ja) * 1997-05-06 1998-11-17 Sumitomo Metal Mining Co Ltd スパッタリングターゲット用ZnO−Ga2O3系焼結体およびその製造方法
JP2001242483A (ja) * 2000-02-25 2001-09-07 Hitachi Ltd 液晶表示装置及びその配線構造
JP2002075061A (ja) * 2000-08-30 2002-03-15 Uchitsugu Minami 透明導電膜
JP2003157018A (ja) * 2001-07-23 2003-05-30 Asahi Glass Co Ltd 高剛性平面型ディスプレイパネル
WO2003096080A2 (en) * 2002-05-08 2003-11-20 Target Technology Company, Llc. Silver alloy thin film reflector and transparent electrical conductor
JP4488184B2 (ja) * 2004-04-21 2010-06-23 出光興産株式会社 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜
CN100549219C (zh) * 2005-06-28 2009-10-14 日矿金属株式会社 氧化镓-氧化锌系溅射靶、透明导电膜的形成方法及透明导电膜
JP2007273185A (ja) * 2006-03-30 2007-10-18 Mitsui Mining & Smelting Co Ltd 酸化亜鉛系透明導電膜及びそのパターニング方法
JP2010157497A (ja) * 2008-12-02 2010-07-15 Geomatec Co Ltd 透明導電膜付き基板とその製造方法
JP2012053594A (ja) * 2010-08-31 2012-03-15 Sekisui Nano Coat Technology Co Ltd タッチパネル用透明導電性フィルム
JP5766928B2 (ja) * 2010-09-29 2015-08-19 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置および電子機器
US20120127113A1 (en) * 2010-11-22 2012-05-24 Industrial Technology Research Institute Flexible resistive touch sensor structure
JP5488849B2 (ja) * 2011-06-24 2014-05-14 三菱マテリアル株式会社 導電性膜およびその製造方法並びにこれに用いるスパッタリングターゲット
KR20130052992A (ko) * 2011-11-14 2013-05-23 주식회사 에스에스디 터치 패널 및 그의 제조방법
KR102186807B1 (ko) * 2012-05-31 2020-12-04 다이니폰 인사츠 가부시키가이샤 정전 용량식 터치 패널 기판 및 표시 장치
JP2014005538A (ja) * 2012-06-26 2014-01-16 Samsung Corning Precision Materials Co Ltd 酸化亜鉛系スパッタリングターゲット、その製造方法、およびこれを通じて蒸着された遮断膜を有する薄膜トランジスタ
KR20140090876A (ko) * 2013-01-10 2014-07-18 경희대학교 산학협력단 다층 구조의 투명 전극
JP2016511913A (ja) * 2013-01-22 2016-04-21 カンブリオス テクノロジーズ コーポレイション Esd保護のための高熱安定性を有するナノ構造透明導体
WO2014167835A1 (ja) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 透明導電体
JP2014053313A (ja) * 2013-10-15 2014-03-20 Nitto Denko Corp 透明導電性フィルム、透明導電性積層体及びタッチパネル

Also Published As

Publication number Publication date
CN107578840B (zh) 2019-07-26
TW201633090A (zh) 2016-09-16
CN105590662A (zh) 2016-05-18
TWI595392B (zh) 2017-08-11
CN107578840A (zh) 2018-01-12
JP6398624B2 (ja) 2018-10-03
JP2016087963A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
JP6601199B2 (ja) 透明導電体
CN104795131B (zh) 透明导电体以及触摸面板
CN105549775B (zh) 层压体
JP6048526B2 (ja) 透明導電体及びタッチパネル
CN105590662B (zh) 透明导电体以及触摸屏
CN107533402B (zh) 透明导电体及其制造方法以及触摸面板
JP5976970B1 (ja) 光透過性フィルム
CN105807986B (zh) 透明导电体和触摸屏
CN109313964B (zh) 透明导电体
CN105700735B (zh) 透明导电体和触摸屏
KR102099138B1 (ko) 전자 부품을 제작하기 위하여 사용되는 적층체 및 적층체 제조 방법, 필름 센서 및 필름 센서를 구비하는 터치 패널 장치 및 농도 구배형의 금속층을 성막하는 성막 방법
JP2018051893A (ja) 透明導電体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant