CN105492634A - 具有改善的镁橄榄石涂层特性的晶粒取向电工钢 - Google Patents

具有改善的镁橄榄石涂层特性的晶粒取向电工钢 Download PDF

Info

Publication number
CN105492634A
CN105492634A CN201480047190.0A CN201480047190A CN105492634A CN 105492634 A CN105492634 A CN 105492634A CN 201480047190 A CN201480047190 A CN 201480047190A CN 105492634 A CN105492634 A CN 105492634A
Authority
CN
China
Prior art keywords
coating
chromium
weight
electrical steel
electrical sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480047190.0A
Other languages
English (en)
Other versions
CN105492634B (zh
Inventor
J·W·舍恩
K·T·帕廷
C·M·威尔金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cleveland Cliffs Steel Properties Inc
Original Assignee
AK Steel Properties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AK Steel Properties Inc filed Critical AK Steel Properties Inc
Priority to CN201811378307.XA priority Critical patent/CN109321726A/zh
Publication of CN105492634A publication Critical patent/CN105492634A/zh
Application granted granted Critical
Publication of CN105492634B publication Critical patent/CN105492634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

将电工钢基底的铬含量增加到大于或等于约0.45重量百分比(重量%)的水平产生了具有更优且更均匀的着色、厚度及粘附的极大改善的镁橄榄石涂层。而且,这样形成的镁橄榄石涂层提供了更大的张力,潜在地减少了任何二次涂层的相对重要性。

Description

具有改善的镁橄榄石涂层特性的晶粒取向电工钢
优先权
本申请要求2013年8月27日提交的题为“MethodofProducingaHighPermeabilityGrainOrientedSiliconSteelSheetWithImprovedForsteriteCoatingCharacteristics”的美国临时专利申请序列号61/870,332的优先权,其公开内容通过引用并入本文。
发明背景
在制造晶粒取向的硅-铁电工钢(electricalsteels)的过程中,镁橄榄石涂层在高温退火工艺期间形成。这种镁橄榄石涂层广为人知并广泛用于生产晶粒取向电工钢的现有技术方法。这种涂层在本领域中各异地被称为“玻璃膜”、“轧机玻璃(millglass)”、“轧机退火(millanneal)”涂层或其他类似术语,并由ASTM规范A976定义为C-2型绝缘涂层。
镁橄榄石涂层由在电工钢带上形成的氧化物层与退火隔离涂层(annealingseparatorcoating)的化学反应形成,所述退火隔离涂层在高温退火之前被施加到所述带上。退火隔离涂层也是本领域中所公知的,并且通常包含含有其他物质的水基氧化镁浆料,以增强其功能。
在退火隔离涂层已干燥之后,所述带通常缠成线圈并在其中经历高温退火工艺的间歇式装箱退火工艺中退火。在该高温退火工艺期间,除形成镁橄榄石涂层外,还在钢带中生长出(develop)边缘立方(cube-on-edge)晶粒取向并且所述钢被纯化。该工艺步骤有着在本领域中已经确立的广泛多样的程序。在该高温退火工艺结束后,将钢冷却,并通过除去任何未反应的或过量的退火隔离涂层的公知方法来清洁所述带的表面。
在大多数情况下,然后将额外的涂层施加到镁橄榄石涂层上。这种额外的涂层在ASTM规范A976中描述为C-5型涂层,并通常描述为“C-5覆盖C-2”涂层。除其他外,C-5涂层(a)在磁芯内的个体钢板之间提供超高压电设备所需的额外电绝缘,其防止循环电流和由此产生的较高磁芯损耗;(b)使钢带置于机械张力状态,这减少钢板的磁芯损耗并改善钢板的磁致伸缩特性,其减少成品电设备中的振动和噪音。C-5型绝缘涂层在本领域中各异地被称为“高应力”、“张力效应(tensioneffect)”、或“二次”涂层。由于它们通常是透明或半透明的,在晶粒取向电工钢板上使用的这些公知的C-5覆盖C-2涂层需要C-2涂层的高度表面均匀性(cosmeticuniformity)和高度物理粘附。C-5和C-2涂层的组合为成品钢带产物提供高度的张力,改善钢带的磁性质。因此,镁橄榄石涂层和所施加的二次涂层二者的改善在本领域中有着很高的兴趣。
发明内容
将钢基底的铬含量增加到大于或等于约0.45重量百分比(重量%)的水平产生了具有更佳且更均匀的着色、厚度及粘附的极大改善的镁橄榄石涂层。而且,这样形成的镁橄榄石涂层提供了更大的张力,因此减少了C-5二次涂层的相对重要性。
附图简要说明
图1描述了在高温退火以形成镁橄榄石涂层之前,实验室生产电工钢组合物的表面氧化物显微图像和氧含量。
图2描述了在高温退火之前,图1的电工钢中的氧分布的辉光放电光谱(GDS)分析图。
图3描述了在高温退火之前,图1的电工钢中的铬分布的GDS分析图。
图4描述了在高温退火之前,图1的电工钢中的硅分布的GDS分析图。
图5描述了在高温退火之后,实验室生产电工钢组合物上形成的镁橄榄石涂层的显微图像。
图6描述了在高温退火之后,图5的电工钢中的氧分布的GDS分析图。
图7描述了在高温退火之后,图5的电工钢中的铬分布的GDS分析图。
图8描述了具有C-5覆盖C-2涂层的实验室生产电工钢组合物的涂层粘附测试样品的图像。
图9描述了在1.7T下测量的具有C-5覆盖C-2涂层的电工钢组合物的相对磁芯损耗的图。
图10描述了在1.8T下测量的具有C-5覆盖C-2涂层的电工钢组合物的相对磁芯损耗的图。
图11描述了在1.7T下测量的具有C-5覆盖C-2涂层的电工钢组合物的磁芯损耗相对改善的图。
图12描述了在1.8T下测量的具有C-5覆盖C-2涂层的电工钢组合物的磁芯损耗相对改善的图。
图13描述了在高温退火之前,图12的轧机生产电工钢中的氧分布的GDS分析。
图14描述了在高温退火之前,图12的轧机生产电工钢中的铬分布的GDS分析图。
图15描述了在高温退火之后,图12的轧机生产电工钢中的氧分布的GDS分析。
图16描述了在高温退火之后,图12的电工钢中的铬分布的GDS分析图。
详细说明
在晶粒取向电工钢(electricalsteels)的典型工业制造方法中,钢被熔化成特定的且通常具有专利的组合物。在大多数情况下,钢熔化物包含C、Mn、S、Se、Al、B和N的少量合金添加物,以及主要成分Fe与Si。钢熔化物通常铸成板坯(slab)。铸板坯可以在被轧成1-4mm(通常1.5-3mm)带以进行进一步加工之前,在一个或两个步骤中经历板坯再加热和热轧。热轧的带可以在冷轧至0.15-0.50mm(通常0.18-0.30mm)范围的最终厚度之前被热条退火(hotbandanneal)。冷轧工艺通常在一个或多个步骤中进行。如果使用超过两个或更多个冷轧步骤,则在各个冷轧步骤之间通常有退火步骤。在冷轧结束后,钢被脱碳退火以(a)提供足够低的碳水平以阻止成品中的磁老化;和(b)以足以促进镁橄榄石涂层形成的程度来氧化钢板的表面。
脱碳退火的带被氧化镁或氧化镁与其他添加物的混合物涂布,其涂层在该带缠成线圈状之前干燥。氧化镁涂布的线圈然后在H2-N2或H2气氛中在高温下(1100℃-1200℃)退火,持续延长的时间。在该高温退火步骤期间,晶粒取向电工钢的性质得到生长。边缘立方或(110)[001]晶粒取向得到生长,随着元素如S、Se和N被除去,钢被纯化,并形成镁橄榄石涂层。在高温退火完成后,冷却并解开、清洁线圈以从氧化镁隔离涂层除去任何残留物,并且通常在镁橄榄石涂层上施加C-5隔离涂层。
铬添加对于晶粒取向电工钢的生产的用途被教导于1995年6月6日发布的题为“RegularGrainOrientedElectricalSteelProductionProcess”的美国专利第5,421,911号、1997年12月30日发布的题为“MethodforProducingSilicon-ChromiumGrainOrientedElectricalSteel”的美国专利第5,702,539号、和2011年2月15日发布的题为“HighPermeabilityGrainOrientedElectricalSteel”的美国专利第7,887,645号中。这些专利的每一篇的教导通过引用并入本文。铬添加被用于在晶粒取向电工钢的制造中提供更高的体积电阻率、增强奥氏体的形成和提供其他有益特性。在商业实践中,铬已经在0.10重量%至0.41重量%,最通常在0.20重量%至0.35重量%的范围内使用。在这个商业范围内,铬对镁橄榄石涂层的有益作用不明显。事实上,其他现有技术已经报告了铬减少镁橄榄石涂层在晶粒取向电工钢上形成。例如,2013年4月25日公布的题为“GrainOrientedElectricalSteelSheetandMethodforManufacturingSame”的美国专利申请序列号20130098508教导了由形成的镁橄榄石涂层提供的最佳张力需要不超过0.1重量%的铬含量。
在某些实施方式中,发现在钢熔化物中含有大于或等于约0.45重量%铬的电工钢组合物在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在又一些实施方式中,发现在钢熔化物中含有约0.45重量%至约2.0重量%铬的电工钢组合物在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在其他实施方式中,发现在钢熔化物中含有大于或等于约0.7重量%铬的电工钢组合物在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在又一些实施方式中,发现在钢熔化物中含有约0.7重量%至约2.0重量%铬的电工钢组合物在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在其他实施方式中,发现在钢熔化物中含有大于或等于约1.2重量%铬的电工钢组合物在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在又一些实施方式中,发现在钢熔化物中含有约1.2重量%至约2.0重量%铬的电工钢组合物在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在各种情况下,除增加的铬含量以外,电工钢组合物是通常工业中使用的那些。
在某些实施方式中,在高温退火之前在距离脱碳退火钢板表面0.5-2.5μm的深度处具有大于或等于约0.7重量%的铬浓度的电工钢在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在某些实施方式中,在距离脱碳退火钢板表面0.5-2.5μm的深度处具有大于或等于约0.7重量%的铬浓度和在距离高温退火钢板表面2-3μm的深度处具有大于或等于约7.0重量%的镁橄榄石涂布电工钢板中的氧浓度的电工钢在高温退火之后在成品电工钢产品中具有改善的镁橄榄石涂层粘附和较低的磁芯损耗。在各种情况下,除增加的铬含量以外,电工钢组合物是通常工业中使用的那些。
在某些实施方式中,如在脱碳退火之后和高温退火之前测量的,发现铬浓度在由距离板表面小于或等于2.5μm的深度限定的表面区域中大于在由距离表面大于2.5μm的深度限定的板的体区域中。令人惊奇的是,确定了这种铬富集(其是在高温退火之前铬在加工期间的分配)在高温退火之后不再存在。虽然不受限于任何理论,但据信这种较接近表面处的铬浓度降低是与镁橄榄石涂层的相互作用的结果,因为它在改善的镁橄榄石涂层性质中形成并起作用。
含有在0.7重量%至2.0重量%范围内的铬组成的电工钢通过本领域已知的方法制备。这些组成被评估以测定铬浓度对脱碳退火、脱碳退火中的氧化层(“铁橄榄石”)形成、高温退火之后的轧机玻璃形成以及二次涂层粘附的影响。脱碳板涂布氧化镁、在高温下退火,并评估镁橄榄石涂层。含有0.70%或更多铬的钢显示出随熔化物铬水平上升的改善的二次涂层粘附。
进行了一系列测试。首先,检查了脱碳(as-decarburized)氧化物层。金相分析显示出氧化物层在整个铬范围内厚度相似,而化学分析显示出脱碳退火之后的总氧水平相同或略微更高。氧化物层的GDS分析显示,在板表面的近表面(0.5-2.5μm)层生长出富铬峰,其随熔化物铬水平上升而增加。其次,检查了镁橄榄石涂层。金相分析显示,随着钢板的铬含量增加,钢表面上形成的镁橄榄石涂层更厚、更连续、染色更均匀、并生长出更广泛的表面下的“根(root)”结构。已知改善的“根”结构提供改善的涂层粘附。第三也是最后,样品用3涂层(AKSteelCorporation,WestChester,Ohio的商用高张力C-5二次涂层)涂布并测试粘附。结果显示出随着铬水平增加,涂层粘附明显改善。
实施例1
使用现有技术的示例性组成(热测试A和B)与本实施方式的组成(热测试C到I)进行实验室规模热测试(heat)。
表I
在MgO涂布之前、在熔化后和在脱碳退火后的热测试组成的总结
将钢铸成铸块,加热到1050℃,提供25%热减少并进一步加热至1260℃,并且进行热轧以产生厚度为2.3mm的热轧带。热轧带随后在1150℃温度下退火,空气中冷却至950℃,之后以大于50℃/秒的速率快速冷却至低于300℃的温度。然后热轧且退火的带冷轧至0.23mm或0.30mm的最终厚度。然后冷轧带通过以超过500℃/秒的速率快速加热至740℃、接着在标称为0.40-0.45的H2O/H2比率的湿润氢-氮气氛中加热至815℃温度来进行脱碳退火,以降低钢中的碳水平。815℃下允许的浸泡时间对于冷轧至0.23mm厚度的材料为90秒,对冷轧至0.30mm厚度的材料为170秒。在脱碳退火步骤完成后,使用辉光放电光谱(GDS)对样品进行碳和表面氧的化学测试和表面组成分析,以测量组成和氧化物层深度。然后所述带用由含有4%氧化钛的氧化镁组成的退火隔离涂层涂布。涂布的带然后通过在75%N2、25%H2的气氛下加热至1200℃的浸泡温度来高温退火,之后所述带在100%干燥的H2中保持至少15小时的时间。冷却后,清洁所述带并除去任何未反应的退火隔离涂层。取样检测镁橄榄石涂层的均匀性、厚度及组成。样品随后用张力效应C-5型二次涂层涂布,并利用使用19mm(0.75英寸)成形辊的单程三辊弯曲试验(singlepassthree-rollbendtesting)程序测试粘附。涂层的粘附使用受压侧(compression-side)带表面进行评估。
图1示出了进行高温退火之前,根据铬含量的氧化物层的显微照片。图2、3和4分别显示出退火的表面氧化物层中发现的氧、铬和硅的量(按重量%)。图2和3显示出在板表面之下0.5和2.5μm之间的深度处的氧化物层中的氧与铬含量增加。图5显示出通过氧化物层与退火隔离涂层的反应在高温退火期间形成的镁橄榄石涂层的显微照片。随着钢的铬含量增加,增强的表面下镁橄榄石涂层根结构是明显的。图6显示出镁橄榄石涂层的氧分布的GDS分析,其被用于测量镁橄榄石涂层的厚度和密度。该数据表明镁橄榄石涂层厚度和密度通过添加大于0.7重量%的铬到基体金属而得到提高。图7显示出镁橄榄石涂层的铬分布的GDS分析。
图8显示出在二次涂层和涂层粘附测试之后的样品照片,其表明粘附随铬含量增加而显著地改善。如涂层剥落处的线所证实的,现有技术的钢(热测试A和B)显示出涂层分层。相比之下,(热测试C至F)的钢显示出涂层的实质性减少的剥落以及一些斑点(spotflecking)。热测试H和I显示出基本上没有涂层的剥落或斑点。
实施例2
为证实对磁芯损耗的益处,进行具有如表II中所示的组成的工业规模热测试。热测试J和K是现有技术的示例,而热测试L和M是本实施方式的组成。
表II
热测试组成的总结
将钢连续地铸成厚度为200mm的板坯。将板坯加热到1200℃,提供25%热减少至150mm厚度,进一步加热至1400℃并进行轧制以产生厚度为2.0mm的热轧钢带。热轧钢带随后在1150℃的温度下退火,空气中冷却至950℃,之后以大于50℃/秒的速率快速冷却至低于300℃的温度。然后将钢带直接冷轧至0.27mm的最终厚度,通过以超过500℃/秒的速率快速加热至740℃,接着在标称为0.40-0.45的H2O/H2比率的湿润H2-N2气氛中加热至815℃温度来进行脱碳退火,以将钢中的碳水平降低至低于0.003%或更低。作为评估的一部分,获得样品以进行GDS分析,以与实施例1中的工作进行比较。
所述带用主要由含有4%氧化钛的氧化镁组成的退火隔离涂层涂布。在退火隔离涂层干燥后,将所述带缠成线圈,并通过在H2-N2气氛中加热至标称1200℃的浸泡温度来高温退火,之后将所述带在100%干燥的H2中浸泡至少15小时的时间。在高温退火完成后,冷却和清洁线圈以除去任何未反应的退火隔离涂层,并且获得测试材料以评估高温退火中形成的镁橄榄石涂层的磁性质和特征二者。然后向测试材料提供使用张力效应ASTMC-5型涂层的二次涂层。二次涂层的厚度在标称4gm/m2至标称16gm/m2范围内(施加于两个表面的总和),其基于样品在二次涂层完全干燥和灼烧之后的重量增加而测量。然后测量样品以测定磁性质的变化。
表III总结了在镁橄榄石涂层上施加二次涂层之前和之后的磁性质。改善在图9和10中清楚地展示,图9和10显示出在施加张力效应二次涂层之后,在1.7T和1.8T的磁感应强度下分别测量的60Hz磁芯损耗。现有技术的热测试J和K具有比本发明实施方式的热测试L和M明显更高的磁芯损耗。而且,这些实施方式的组成导致具有更佳技术特性的镁橄榄石涂层。如图11和12所示,这些实施方式在整个二次涂层重量的生产变化范围中产生了更佳的磁芯损耗和好得多的磁芯损耗一致性。而且,这种减少二次涂层重量的能力导致增加的占空系数,其已知是电机设计中的重要钢特性。
图13和14显示出在高温退火之前,在轧机加工过程中取的热测试L和M样品通过GDS测定的氧与铬的表面化学谱。该结果与在实施例1中讨论的那些结果相似,也就是在钢板表面之下的某个深度处观察到氧化物层的氧与铬含量增加。
表III
在施加二次涂层之前和之后的磁性质

Claims (9)

1.一种具有至少一个表面的电工钢板,其中如在脱碳退火之后和高温退火之前所测量的,所述电工钢板在由距离所述至少一个表面约0.5-2.5μm的深度限定的区域中的至少一个位置点处包含浓度为约0.7重量%或更高的铬。
2.权利要求1所述的电工钢板,其还包含在所述至少一个表面上的镁橄榄石涂层,其中所述镁橄榄石涂层在由距离所述至少一个表面约2-3μm的深度限定的区域中的至少一个位置点处包含浓度大于或等于约7.0重量%的氧。
3.一种电工钢板,其包含在至少一个表面上的镁橄榄石涂层和二次涂层,所述电工钢板包含浓度为约0.45重量%或更高的铬,其中所述镁橄榄石涂层和所述二次涂层在涂层粘附测试后表现出基本上没有分层缺陷。
4.根据权利要求3所述的电工钢板,其中所述铬的含量为约0.45重量%至约2.0重量%。
5.根据权利要求3所述的电工钢板,其中所述铬的含量为大于或等于约0.7重量%。
6.根据权利要求5所述的电工钢板,其中所述铬的含量为约0.7重量%至约2.0重量%。
7.根据权利要求3所述的电工钢板,其中所述铬的含量为大于或等于约1.2重量%。
8.根据权利要求7所述的电工钢板,其中所述铬的含量为约1.2重量%至约2.0重量%。
9.一种包含至少一个表面的电工钢板,所述电工钢板包含由距离所述至少一个表面小于或等于2.5μm的深度限定的表面区域和由距离所述至少一个表面大于2.5μm的深度限定的体区域,其中在脱碳退火之后和高温退火之前测量时,所述表面区域的铬浓度大于所述体区域中的铬浓度。
CN201480047190.0A 2013-08-27 2014-08-26 具有改善的镁橄榄石涂层特性的晶粒取向电工钢 Active CN105492634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811378307.XA CN109321726A (zh) 2013-08-27 2014-08-26 具有改善的镁橄榄石涂层特性的晶粒取向电工钢

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361870332P 2013-08-27 2013-08-27
US61/870,332 2013-08-27
PCT/US2014/052731 WO2015031377A1 (en) 2013-08-27 2014-08-26 Grain oriented electrical steel with improved forsterite coating characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201811378307.XA Division CN109321726A (zh) 2013-08-27 2014-08-26 具有改善的镁橄榄石涂层特性的晶粒取向电工钢

Publications (2)

Publication Number Publication Date
CN105492634A true CN105492634A (zh) 2016-04-13
CN105492634B CN105492634B (zh) 2018-12-14

Family

ID=51539347

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480047190.0A Active CN105492634B (zh) 2013-08-27 2014-08-26 具有改善的镁橄榄石涂层特性的晶粒取向电工钢
CN201811378307.XA Pending CN109321726A (zh) 2013-08-27 2014-08-26 具有改善的镁橄榄石涂层特性的晶粒取向电工钢

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201811378307.XA Pending CN109321726A (zh) 2013-08-27 2014-08-26 具有改善的镁橄榄石涂层特性的晶粒取向电工钢

Country Status (10)

Country Link
US (2) US9881720B2 (zh)
EP (1) EP3039164B1 (zh)
JP (2) JP6556135B2 (zh)
KR (1) KR101930705B1 (zh)
CN (2) CN105492634B (zh)
CA (1) CA2920750C (zh)
MX (1) MX2016002484A (zh)
RU (1) RU2643755C2 (zh)
TW (1) TWI615485B (zh)
WO (1) WO2015031377A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073019A (zh) * 2016-12-14 2019-07-30 杰富意钢铁株式会社 方向性电磁钢板及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693516B1 (ko) * 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP7106910B2 (ja) * 2018-03-20 2022-07-27 日本製鉄株式会社 方向性電磁鋼板の製造方法
CN111100978B (zh) * 2019-11-18 2021-09-21 武汉钢铁有限公司 一种能提高涂层附着性能的取向硅钢及其制备方法
US20230212720A1 (en) 2021-12-30 2023-07-06 Cleveland-Cliffs Steel Properties Inc. Method for the production of high permeability grain oriented electrical steel containing chromium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254021A (zh) * 1998-09-18 2000-05-24 川崎制铁株式会社 覆膜特性和磁特性优越的晶粒取向硅钢板及其制造方法
EP0743370B1 (en) * 1995-05-16 2001-11-21 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
WO2002090603A1 (en) * 2001-05-02 2002-11-14 Ak Properties, Inc. Method for producing a high permeability grain oriented electrical steel
CN1461357A (zh) * 2001-04-23 2003-12-10 新日本制铁株式会社 赋予张力性绝缘皮膜的粘合性优异的单取向硅钢板及其制造方法
EP1227163B1 (en) * 2001-01-29 2008-07-16 JFE Steel Corporation Grain oriented electrical steel sheet with low iron loss and production method for same
CN101748259A (zh) * 2008-12-12 2010-06-23 鞍钢股份有限公司 一种低温加热生产高磁感取向硅钢的方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456812A (en) 1982-07-30 1984-06-26 Armco Inc. Laser treatment of electrical steel
US4554029A (en) 1982-11-08 1985-11-19 Armco Inc. Local heat treatment of electrical steel
US4545828A (en) 1982-11-08 1985-10-08 Armco Inc. Local annealing treatment for cube-on-edge grain oriented silicon steel
US4582118A (en) 1983-11-10 1986-04-15 Aluminum Company Of America Direct chill casting under protective atmosphere
CA1270728A (en) 1985-02-25 1990-06-26 Armco Advanced Materials Corporation Method of producing cube-on-edge oriented silicon steel from strand cast slabs
US4882834A (en) 1987-04-27 1989-11-28 Armco Advanced Materials Corporation Forming a laminate by applying pressure to remove excess sealing liquid between facing surfaces laminations
US4898626A (en) 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid heat treatment of grain oriented electrical steel
US4898627A (en) 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid annealing of nonoriented electrical steel
US5018267A (en) 1989-09-05 1991-05-28 Armco Inc. Method of forming a laminate
DE3933405A1 (de) 1989-10-06 1991-04-18 Josef Schiele Durchlauf-vakuum-auftragsvorrichtung
US5096510A (en) 1989-12-11 1992-03-17 Armco Inc. Thermal flattening semi-processed electrical steel
US5061326A (en) 1990-07-09 1991-10-29 Armco Inc. Method of making high silicon, low carbon regular grain oriented silicon steel
US5288736A (en) 1992-11-12 1994-02-22 Armco Inc. Method for producing regular grain oriented electrical steel using a single stage cold reduction
JP2786577B2 (ja) * 1993-05-28 1998-08-13 川崎製鉄株式会社 方向性けい素鋼板の製造方法
JP3498978B2 (ja) * 1993-08-24 2004-02-23 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
US5421911A (en) 1993-11-22 1995-06-06 Armco Inc. Regular grain oriented electrical steel production process
JPH09118921A (ja) * 1995-10-26 1997-05-06 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
US5702539A (en) 1997-02-28 1997-12-30 Armco Inc. Method for producing silicon-chromium grain orieted electrical steel
JP3312000B2 (ja) 1998-09-18 2002-08-05 川崎製鉄株式会社 被膜特性および磁気特性に優れる方向性けい素鋼板の製造方法
JP3386751B2 (ja) * 1999-06-15 2003-03-17 川崎製鉄株式会社 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
JP3885428B2 (ja) * 1999-10-28 2007-02-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2002194434A (ja) * 2000-12-26 2002-07-10 Kawasaki Steel Corp 高周波磁気特性および被膜特性に優れた低鉄損方向性電磁鋼板の製造方法
PL197123B1 (pl) 2001-09-13 2008-03-31 Properties Ak Sposób wytwarzania taśmy ze stali elektrotechnicznej o zorientowanym ziarnie
RU2285058C2 (ru) * 2001-09-13 2006-10-10 Ак Стил Пропертиз, Инк. Способ производства электротехнической стали с зерном, ориентированным в плоскостях (110) [001], с использованием непрерывного литья полосы
US7011139B2 (en) 2002-05-08 2006-03-14 Schoen Jerry W Method of continuous casting non-oriented electrical steel strip
US20050000596A1 (en) 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
JP2006144042A (ja) * 2004-11-17 2006-06-08 Jfe Steel Kk 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法
KR101070064B1 (ko) * 2006-05-24 2011-10-04 신닛뽄세이테쯔 카부시키카이샤 자속 밀도가 높은 방향성 전자기 강판의 제조 방법
JP4840518B2 (ja) * 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6084351B2 (ja) * 2010-06-30 2017-02-22 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
IN2015DN02841A (zh) 2012-09-27 2015-09-11 Jfe Steel Corp

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743370B1 (en) * 1995-05-16 2001-11-21 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
CN1254021A (zh) * 1998-09-18 2000-05-24 川崎制铁株式会社 覆膜特性和磁特性优越的晶粒取向硅钢板及其制造方法
EP1227163B1 (en) * 2001-01-29 2008-07-16 JFE Steel Corporation Grain oriented electrical steel sheet with low iron loss and production method for same
CN1461357A (zh) * 2001-04-23 2003-12-10 新日本制铁株式会社 赋予张力性绝缘皮膜的粘合性优异的单取向硅钢板及其制造方法
WO2002090603A1 (en) * 2001-05-02 2002-11-14 Ak Properties, Inc. Method for producing a high permeability grain oriented electrical steel
CN101748259A (zh) * 2008-12-12 2010-06-23 鞍钢股份有限公司 一种低温加热生产高磁感取向硅钢的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073019A (zh) * 2016-12-14 2019-07-30 杰富意钢铁株式会社 方向性电磁钢板及其制造方法

Also Published As

Publication number Publication date
TW201514322A (zh) 2015-04-16
TWI615485B (zh) 2018-02-21
JP6556135B2 (ja) 2019-08-07
JP6995010B2 (ja) 2022-01-14
US20150064481A1 (en) 2015-03-05
US20180137958A1 (en) 2018-05-17
CN105492634B (zh) 2018-12-14
EP3039164B1 (en) 2024-06-26
CA2920750A1 (en) 2015-03-05
WO2015031377A9 (en) 2015-10-29
CN109321726A (zh) 2019-02-12
RU2643755C2 (ru) 2018-02-05
US11942247B2 (en) 2024-03-26
KR20160048151A (ko) 2016-05-03
EP3039164A1 (en) 2016-07-06
WO2015031377A1 (en) 2015-03-05
JP2018188733A (ja) 2018-11-29
CA2920750C (en) 2018-06-26
MX2016002484A (es) 2016-05-31
RU2016111134A (ru) 2017-10-03
US9881720B2 (en) 2018-01-30
JP2016536460A (ja) 2016-11-24
KR101930705B1 (ko) 2018-12-19

Similar Documents

Publication Publication Date Title
JP5672273B2 (ja) 方向性電磁鋼板の製造方法
JP5737483B2 (ja) 方向性電磁鋼板の製造方法
JP6995010B2 (ja) 改良されたフォルステライト被膜特性を有する方向性珪素鋼の製造方法
JP6808734B2 (ja) 方向性電磁鋼板用絶縁被膜組成物、これを利用した方向性電磁鋼板の絶縁被膜形成方法、及び方向性電磁鋼板
JP2014152392A (ja) 方向性電磁鋼板の製造方法
CN107849656A (zh) 取向性电磁钢板及其制造方法
US20170081740A1 (en) Method for producing grain-oriented electrical steel sheet
JP6801412B2 (ja) 方向性電磁鋼板、及び、その製造方法
JP2023508029A (ja) 方向性電磁鋼板およびその製造方法
JP7352108B2 (ja) 方向性電磁鋼板
JPH06200325A (ja) 高磁性の珪素鋼板の製造法
JP2016156069A (ja) 方向性電磁鋼板の製造方法
JP3896786B2 (ja) 方向性電磁鋼板の製造方法
JP7168134B1 (ja) 方向性電磁鋼板の仕上げ焼鈍条件の決定方法およびその決定方法を用いた方向性電磁鋼板の製造方法
JP7414145B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板用熱延鋼板
JPH09291313A (ja) 磁気特性・被膜特性に優れる方向性けい素鋼板の製造方法
US20240136095A1 (en) Method of manufacturing grain-oriented electrical steel sheet
US20240233992A9 (en) Method of manufacturing grain-oriented electrical steel sheet
JP2002275534A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant