TWI615485B - 具有改良之鎂橄欖石塗層性質的晶粒取向電氣鋼 - Google Patents

具有改良之鎂橄欖石塗層性質的晶粒取向電氣鋼 Download PDF

Info

Publication number
TWI615485B
TWI615485B TW103129599A TW103129599A TWI615485B TW I615485 B TWI615485 B TW I615485B TW 103129599 A TW103129599 A TW 103129599A TW 103129599 A TW103129599 A TW 103129599A TW I615485 B TWI615485 B TW I615485B
Authority
TW
Taiwan
Prior art keywords
electrical steel
coating
chromium
steel
forsterite coating
Prior art date
Application number
TW103129599A
Other languages
English (en)
Other versions
TW201514322A (zh
Inventor
傑瑞 威廉 史秋恩
期曼尼 提拉瓦 派汀
克里斯多福 馬克 威爾金斯
Original Assignee
Ak鋼鐵資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ak鋼鐵資產公司 filed Critical Ak鋼鐵資產公司
Publication of TW201514322A publication Critical patent/TW201514322A/zh
Application granted granted Critical
Publication of TWI615485B publication Critical patent/TWI615485B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

將電氣鋼基板之鉻含量增加至大於或等於約0.45重量百分比(wt%)之位準產生了具有優越且較均勻著色、厚度及黏著性之經極大改良之鎂橄欖石塗層。此外,如此形成之鎂橄欖石塗層提供可能減小任何二次塗層之相對重要性之較大張力。

Description

具有改良之鎂橄欖石塗層性質的晶粒取向電氣鋼 優先權
本申請案主張於2013年8月27日申請之題為「Method of Producing a High Permeability Grain Oriented Silicon Steel Sheet With Improved Forsterite Coating Characteristics」之美國臨時專利申請案第61/870,332號之優先權,該臨時專利申請案之揭示內容以引用之方式併入本文中。
在製造晶粒取向矽鐵電氣鋼之過程中,在高溫退火過程期間形成鎂橄欖石塗層。此等鎂橄欖石塗層係眾所周知的且廣泛用於先前技術方法中以用於晶粒取向電氣鋼之產生。此等塗層在此項技術中不同地被稱為「玻璃膜」、「軋製玻璃」、「軋後退火」塗層或其他相似術語且由ASTM規範A 976定義為C-2型絕緣塗層。
鎂橄欖石塗層自形成於電氣鋼條帶上之氧化物層與在高溫退火之前塗覆至該條帶之退火分離劑塗層之化學反應形成。退火分離劑塗層在此項技術中亦係眾所周知的且通常包括含有其他材料以增強其功能之水性氧化鎂漿液。
在退火分離劑塗層已乾燥之後,通常將該條帶纏繞成線圈且在其中該條帶經受高溫退火過程之批式箱式退火過程中進行退火。在此高溫退火過程期間,除形成鎂橄欖石塗層之外,亦形成鋼條帶中之立 方體對邊晶粒取向且使鋼純化。在此項技術中存在完善建立的此過程步驟之各種程序。在完成高溫退火過程之後,使鋼冷卻且藉由移除任何未反應或過量退火分離劑塗層之眾所周知之方法來清洗條帶表面。
在大多數情形中,然後將額外塗層塗覆至鎂橄欖石塗層上。此等額外塗層在ASTM規範A 976中闡述為C-5型塗層且通常闡述為「C-2上C-5(C-5 over C-2)」塗層。此外,C-5塗層(a)提供極高電壓電氣設備所需要之額外電氣絕緣,該額外電氣絕緣防止循環電流且藉此防止磁心內個別鋼薄片之間之較高核心損失;(b)將鋼條帶置於機械張力之狀態中,此降低鋼薄片之核心損失且改良減少成品電氣設備中之振動及雜訊之鋼薄片之磁伸縮性質。C-5型絕緣塗層在此項技術中不同地被稱為「高應力」、「張力效應」或「二次」塗層。由於其通常係透明或半透明的,此等眾所周知C-2上C-5塗層在晶粒取向電氣鋼薄片上使用時需要C-2塗層中之高度表面均勻性及高度實體黏著性。C-5與C-2塗層之組合提供高度張力至成品鋼條帶產品,從而改良鋼條帶之磁特性。因此,鎂橄欖石塗層及所塗覆二次塗層兩者之改良已在此項技術中引起極大關注。
將鋼基板之鉻含量增加至大於或等於約0.45重量百分比(wt%)之位準產生了具有優越且較均勻著色、厚度及黏著性之經極改良之鎂橄欖石塗層。此外,如此形成之鎂橄欖石塗層提供較大張力,因此減少C-5二次塗層之相對重要性。
圖1繪示在高溫退火以形成鎂橄欖石塗層之前之實驗室產生之電氣鋼組合物之表面氧化物及氧含量之顯微照片。
圖2繪示在高溫退火之前圖1之電氣鋼中之氧量變曲線之輝光放電光譜(GDS)分析圖。
圖3繪示在高溫退火之前圖1之電氣鋼中之鉻量變曲線之GDS分析圖。
圖4繪示在高溫退火之前圖1之電氣鋼中之矽量變曲線之GDS分析圖。
圖5繪示高溫退火之後形成於實驗室產生之電氣鋼組合物上之鎂橄欖石塗層之顯微照片。
圖6繪示在高溫退火之後圖5之電氣鋼中之氧量變曲線之GDS分析圖。
圖7繪示在高溫退火之後圖5之電氣鋼中之鉻量變曲線之GDS分析圖。
圖8繪示具有C-2上C-5塗層之實驗室產生之電氣鋼組合物之塗層附著性測試樣本之相片。
圖9繪示在1.7T下量測之具有C-2上C-5塗層之電氣鋼組合物之相對核心損失之圖。
圖10繪示在1.8T下量測之具有C-2上C-5塗層之電氣鋼組合物之相對核心損失之圖。
圖11繪示在1.7T下量測之具有C-2上C-5塗層之電氣鋼組合物之核心損失之相對改良之圖。
圖12繪示在1.8T下量測之具有C-2上C-5塗層之電氣鋼組合物之核心損失之相對改良之圖。
圖13繪示在高溫退火之前圖12之軋機產生之電氣鋼中之氧量變曲線之GDS分析圖。
圖14繪示在高溫退火之前圖12之軋機產生之電氣鋼中之鉻量變曲線之GDS分析圖。
圖15繪示在高溫退火之後圖12之軋機產生之電氣鋼中之氧量變曲線之GDS分析圖。
圖16繪示在高溫退火之後圖12之電氣鋼中之鉻量變曲線之GDS分析圖。
在晶粒取向電氣鋼之典型工業製造方法中,將鋼熔融成特定且通常專屬組合物。在大多數情形中,鋼熔體包含C、Mn、S、Se、Al、B及N連同Fe及Si之主要成分之小量合金添加物。通常將鋼熔體鑄造成板條。所鑄造板條可在軋製成1mm至4mm(通常1.5mm至3mm)條帶以用於進一步處理之前在一個或兩個步驟中經受板條再加熱及熱軋。可在經熱軋條帶冷軋至介於自0.15mm至0.50mm之範圍內(通常0.18mm至0.30mm)之最終厚度之前對其進行熱帶退火。通常在一或多個步驟中進行冷軋之過程。若使用兩個以上或更多冷軋步驟,則通常在每一冷軋步驟之間存在退火步驟。在完成冷軋步驟之後,對鋼進行脫碳退火以便(a)提供足夠低之碳位準以防止成品中之磁老化;及(b)使鋼薄片之表面充分氧化以促進鎂橄欖石之形成。
用氧化鎂或氧化鎂與其他添加物之混合物塗佈經脫碳退火條帶,在將該經脫碳退火條帶纏繞成線圈形式之前乾燥此塗層。然後,在H2-N2或H2氣氛中在高溫下(1100℃至1200℃)對經氧化鎂塗佈線圈進行長時間退火。在此高溫退火步驟期間,形成晶粒取向電氣鋼之特性。形成立方體對邊(或(110)[001])晶粒取向,在移除諸如S、Se及N之元素時使鋼純化,且形成鎂橄欖石。在完成高溫退火之後,將線圈冷卻且展開、進行清洗以移除來自氧化鎂分離劑塗層之任何殘餘物且通常將C-5絕緣塗層塗覆於鎂橄欖石塗層上方。
用於產生晶粒取向電氣鋼之鉻添加物之使用在發佈於1995年6月6日,題為「Regular Grain Oriented Electrical Steel Production Process」之美國專利第5,421,911號、發佈於1997年12月30日,題為「Method for Producing Silicon-Chromium Grain Oriented Electrical Steel」之美國專利第5,702,539號及發佈於2011年2月15日,題為「High Permeability Grain Oriented Electrical Steel」之美國專利第7,887,645號中教示。此等專利中之每一者之教示皆以引用之方式併入本文中。採用鉻添加物以在晶粒取向電氣鋼之製造中提供較高體積電阻率、增強奧斯田鐵之形成且提供其他有益性質。在商業實務中,已使用在0.10wt%至0.41wt%之範圍內(最通常介於0.20wt%至0.35wt%)之鉻。在此商業範圍中,對鎂橄欖石塗層之鉻之有益效應不明顯。事實上,其他先前技術已報導鉻使晶粒取向電氣鋼薄片上之鎂橄欖石塗層之形成降級。舉例而言,公開於2013年4月25日,題為「Grain Oriented Electrical Steel Sheet and Method for Manufacturing Same」之美國專利申請案第20130098508號教示由所形成之鎂橄欖石塗層提供之最佳張力需要不大於0.1wt%之鉻含量。
在特定實施例中,已發現在鋼熔體中具有大於或等於約0.45wt%鉻之電氣鋼組合物在高溫退火之後之成品電氣鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在再其他實施例中,發現在鋼熔體中具有約0.45wt%至約2.0wt%鉻之電氣鋼組合物在高溫退火之後之成品電氣鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在其他實施例中,發現在鋼熔體中具有大於或等於約0.7wt%鉻之電氣鋼組合物在高溫退火之後之成品電氣鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在再其他實施例中,發現在鋼熔體中具有約0.7wt%至約2.0wt%鉻之電氣鋼組合物在高溫退火之後之成品電氣鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在其他實施例中,發現在鋼熔體中具有大於或等於約1.2wt%鉻之電氣鋼組合物在高溫退火之後之成品電氣鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在再其他實施例中,發現在鋼熔體中具有約1.2wt%至約2.0wt%鉻之電氣鋼組合物在高溫退火之後之成品電氣 鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在每一情形中,除卻所增加鉻含量之外,該等電氣鋼組合物在使用於工業中之彼等電氣鋼組合物中便係典型的。
在特定實施例中,在高溫退火之前在距經脫碳退火鋼薄片之表面0.5μm至2.5μm之深度處具有大於或等於約0.7wt%之鉻濃度之電氣鋼在高溫退火之後之成品電氣鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在特定實施例中,在距經脫碳退火鋼薄片之表面0.5μm至2.5μm之深度處具有大於或等於約0.7wt%之鉻濃度及在經鎂橄欖石塗佈之電氣鋼薄片中在距經高溫退火鋼薄片之表面2μm至3μm之深度處具有大於或等於約7.0wt%之氧濃度之電氣鋼在高溫退火之後之成品電氣鋼產品中具有經改良鎂橄欖石塗層黏著性及較低核心損失。在每一情形中,除卻所增加鉻含量之外,該等電氣鋼組合物在使用於工業中之彼等電氣鋼組合物中便係典型的。
在特定實施例中,發現在脫碳退火之後及高溫退火之前所量測之鉻濃度在由距薄片之表面小於或等於2.5μm之深度界定之表面區域中比在由距表面大於2.5μm之深度界定之薄片之主體區域中大。令人驚訝地,判定此鉻富集(其係在高溫退火之前之處理期間之鉻之分區)在高溫退火之後不再存在。儘管不受任何理論限制,但鹹信較靠近表面處之此鉻濃度降低係與鎂橄欖石塗層相互作用之結果,此乃因其形成經改良鎂橄欖石塗層特性且在該等特性中發揮作用。
藉由此項技術中已知之方法製備含有在0.7wt%至2.0wt%之範圍內之鉻組合物之電氣鋼。評估此等組合物經以判定鉻濃度對脫碳退火、在脫碳退火中之氧化物層(「鐵橄欖石」)形成、在高溫退火之後之研磨玻璃形成及二次塗層附著性之效應。用氧化鎂塗佈、高溫退火經脫碳薄片且評估鎂橄欖石塗層。含有0.70%或更多鉻之鋼隨著熔融鉻位準增加而展示經改良二次塗層黏著性。
進行一系列測試。首先,檢查經脫碳氧化物層。金相分析展示氧化物層跨越鉻範圍之厚度係類似的,而化學分析展示在脫碳退火之後之總氧位準係相同至稍微較高。氧化物層之GDS分析展示在薄片表面之近表面(0.5μm至2.5μm)層中形成富鉻峰,該富鉻峰隨著熔融鉻位準上升而增加。其次,檢查鎂橄欖石塗層。金相分析展示隨著鋼薄片之鉻含量增加,形成於鋼表面上之鎂橄欖石塗層更厚、更連續、著色更均勻且形成更廣延次表面「根部」結構。已知經改良「根部」結構提供經改良塗層黏著性。再次,亦係最後,用CARLITE® 3塗料(商業上由俄亥俄州西切斯特市之AK Steel公司使用之高張力C-5二次塗料)塗佈樣本且測試其附著性。結果展示塗層黏著性隨著鉻位準增加而顯著改良。
實例1
做出針對先前技術之例示性組合物之實驗室規模熱(熱A及B)及針對本發明實施例之組合物之實驗室規模熱(熱C至I)。
Figure TWI615485BD00001
將鋼鑄造成錠、加熱至1050℃、為其提供25%熱壓縮且進一步加熱至1260℃並熱軋以產生具有2.3mm之厚度之經熱軋條帶。隨後,在1150℃之溫度下對該經熱軋條帶進行退火、在空氣中冷卻至950℃,後續接著以大於每秒50℃之速率將其快速冷卻至低於300℃之溫度。 然後,將該經熱軋及經退火條帶冷軋至0.23mm或0.30mm之最終厚度。然後,藉由以超過每秒500℃之速率快速加熱至740℃,後續接著在具有標稱0.40至0.45之H2O/H2比率之經濕潤氫-氮氣氛中加熱至815℃之溫度以減少鋼中之碳位準來對該經冷軋條帶進行脫碳退火。所允許之在815℃下之熱煉時間針對冷軋至0.23mm厚度之材料係90秒且針對冷軋至0.30mm厚度之材料係170秒。在完成脫碳退火步驟之後,取若干樣本以進行碳及表面氧之化學測試並使用輝光放電光譜法(GDS)進行表面組成分析以量測氧化物層之組成及深度。然後,用由含有4%氧化鈦之氧化鎂組成之退火分離劑塗料塗佈條帶。然後,藉由在75% N2 25% H2之氣氛中將經塗佈條帶加熱至1200℃之熱煉溫度而對該經塗佈條帶進行高溫退火,隨後將該條帶保持在100%乾燥H2中達至少15小時之時間。在冷卻之後,將條帶清洗且移除任何未反應之退火分離劑塗層。量測樣本之鎂橄欖石塗層之均勻性、厚度及組成。隨後,用張力效應C-5型二次塗料塗佈試樣且藉由使用19mm(0.75吋)成型輥之單程三輥彎曲測試程序對附著性進行測試程序。使用壓縮側條帶表面評估塗層之附著性。
圖1展示在進行高溫退火之前依據鉻含量之氧化物層之顯微照片。圖2、圖3及圖4分別展示發現於經退火表面氧化物層中之氧、鉻及矽之量(以重量百分比為單位)。圖2及圖3展示在薄片表面下方0.5μm與2.5μm之間之深度處之氧化物層中之氧及鉻含量之增加。圖5展示在高溫退火期間藉由氧化物層與退火分離劑塗層之反應形成之鎂橄欖石塗層之顯微照片。隨著鋼之鉻含量增加,經增強次表面鎂橄欖石塗層根部結構顯而易見。圖6展示用於量測鎂橄欖石塗層之厚度及密度之鎂橄欖石塗層之氧量變曲線之GDS分析。此資料展示鎂橄欖石塗層厚度及密度藉由將大於0.7wt%之鉻添加至基底金屬而增強。圖7展示鎂橄欖石塗層之鉻量變曲線之GDS分析。
圖8展示在二次塗層及塗層附著性測試之後之試樣之相片,該等相片展示黏著性隨著鉻含量增加而動態地改良。先前技術熱A及B之鋼展示塗層脫層,如藉由塗層已剝落處之線所證明。相比而言,熱C至F之鋼展示塗層之實質上減少之剝落,僅具有某些點狀斑紋。熱H及I展示塗層實質上無剝落或斑紋。
實例2
為演示對核心損失之益處,做出具有表Ⅱ中所展示之組合物之工業規模熱。熱J及K係先前技術之例示且熱L及M係本發明實施例之組成。
Figure TWI615485BD00002
將鋼連續地鑄造成具有200mm厚度之板條。將板條加熱至1200℃、為其提供25%熱壓縮以得到150mm之厚度、進一步加熱至1400℃並軋製以產生具有2.0mm厚度之經熱軋鋼條帶。隨後,在1150℃之溫度下對該經熱軋鋼條帶進行退火、在空氣中冷卻至950℃,後續接著以大於每秒50℃之速率快速冷卻至低於300℃之溫度。然後,將該鋼條帶直接冷軋至0.27mm之最終厚度,藉由以超過每秒500℃之速率快速加熱至740℃,後續接著在具有標稱0.40至0.45之H2O/H2比率之經濕潤H2-N2氣氛中加熱至815℃之溫度以將鋼中之碳位準減少至低於0.003%或更少來對該鋼條帶進行脫碳退火。作為評估之部分,保證對 樣本進行GDS分析以與實例1中之工作進行比較。
用主要由含有4%氧化鈦之氧化鎂組成之退火分離劑塗料塗佈條帶。在退火分離劑塗層乾燥之後,將條帶纏繞成線圈且藉由在H2-N2氣氛中將條帶加熱至標稱1200℃之熱煉溫度而對該條帶進行高溫退火,隨後將條帶在100%乾燥H2中熱煉達至少15小時之時間。在完成高溫退火之後,將線圈冷卻且進行清洗以移除任何未反應之退火分離劑塗層且保證測試材料評估於高溫退火中形成之鎂橄欖石塗層之磁特性及性質兩者。然後,使用張力效應ASTM C-5型塗層給該測試材料提供二次塗層。二次塗層之厚度介於自標稱4gm/m2至標稱16gm/m2之範圍內(塗覆至兩個表面之總計),該厚度量測係基於二次塗層經完全乾燥及燒結之後之試樣之重量增加。然後,量測該等試樣以判定磁特性之改變。
表Ⅲ概述在鎂橄欖石塗層上方塗覆二次塗層之前及之後之磁特性。在圖9及圖10中清晰地呈現改良,該等圖展示在塗覆張力效應二次塗層之後分別在1.7T及1.8T之磁感應下量測之60Hz核心損失。先前技術之熱J及K具有比係本發明之實施例之熱L及M顯著高之核心損失。此外,此等實施例之組成導致具有優越技術性質之鎂橄欖石塗層。如圖11及圖12展示,此等實施例產生優勝核心損失及在二次塗層重量之生產變化之範圍內核心損失之更大一致性。此外,減少二次塗層之重量之此能力導致經增加空間因數,已知此係電氣機器設計中之重要鋼性質。
圖13及圖14展示藉由高溫退火之前之軋製處理期間所得之熱L及M之樣本之GDS判定之氧及鉻之表面化學光譜。結果類似於在實例1中所論述之彼等結果,亦即,氧化物層之氧及鉻含量之增加係在鋼薄片之表面下方之特定深度處觀測而得。
Figure TWI615485BD00003
Figure TWI615485BD00004
Figure TWI615485BD00005
Figure TWI615485BD00006

Claims (9)

  1. 一種具有至少一個表面及在該至少一個表面上之鎂橄欖石塗層之電氣鋼薄片,其中該電氣鋼薄片包含在由距該至少一個表面約0.5μm至2.5μm之深度界定之一區域中之至少一個點處,在脫碳退火之後及高溫退火之前所量測約0.7wt%或更多之濃度之鉻,且其中該鎂橄欖石塗層包含超過0.2重量%之鉻。
  2. 如請求項1之電氣鋼薄片,其中該鎂橄欖石塗層包含在由距該至少一個表面約2μm至3μm之深度界定之一區域中之至少一個點處大於或等於7.0wt%之濃度之氧。
  3. 一種包括在其至少一個表面上之鎂橄欖石塗層及二次塗層之電氣鋼薄片,該電氣鋼薄片包括約0.45wt%或更大之濃度之鉻,其中該鎂橄欖石塗層及該二次塗層在塗層附著性測試之後展現實質上無脫層缺陷,且該鎂橄欖石塗層包含超過0.2重量%之鉻。
  4. 如請求項3之電氣鋼薄片,其中該鉻含量係約0.45wt%至約2.0wt%。
  5. 如請求項3之電氣鋼薄片,其中該鉻含量大於或等於約0.7wt%。
  6. 如請求項5之電氣鋼薄片,其中該鉻含量係約0.7wt%至約2.0wt%。
  7. 如請求項3之電氣鋼薄片,其中該鉻含量大於或等於約1.2wt%。
  8. 如請求項7之電氣鋼薄片,其中該鉻含量係約1.2wt%至約2.0wt%。
  9. 一種包括至少一個表面及在該至少一個表面上之鎂橄欖石塗層之電氣鋼薄片,該電氣鋼薄片包括由距該至少一個表面小於或等於2.5μm之深度界定之表面區域及由距該至少一個表面大於2.5μm之深度界定之主體區域,其中當在脫碳退火之後及高溫退火之前量測時,該表面區域之該鉻濃度大於該主體區域中之 該鉻濃度至少10%,且其中該鎂橄欖石塗層包含超過0.2重量%之鉻。
TW103129599A 2013-08-27 2014-08-27 具有改良之鎂橄欖石塗層性質的晶粒取向電氣鋼 TWI615485B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361870332P 2013-08-27 2013-08-27
US61/870,332 2013-08-27

Publications (2)

Publication Number Publication Date
TW201514322A TW201514322A (zh) 2015-04-16
TWI615485B true TWI615485B (zh) 2018-02-21

Family

ID=51539347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103129599A TWI615485B (zh) 2013-08-27 2014-08-27 具有改良之鎂橄欖石塗層性質的晶粒取向電氣鋼

Country Status (10)

Country Link
US (2) US9881720B2 (zh)
EP (1) EP3039164A1 (zh)
JP (2) JP6556135B2 (zh)
KR (1) KR101930705B1 (zh)
CN (2) CN105492634B (zh)
CA (1) CA2920750C (zh)
MX (1) MX2016002484A (zh)
RU (1) RU2643755C2 (zh)
TW (1) TWI615485B (zh)
WO (1) WO2015031377A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693516B1 (ko) * 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기강판 및 그 제조방법
CA3046434C (en) * 2016-12-14 2021-03-23 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
JP7106910B2 (ja) * 2018-03-20 2022-07-27 日本製鉄株式会社 方向性電磁鋼板の製造方法
CN111100978B (zh) * 2019-11-18 2021-09-21 武汉钢铁有限公司 一种能提高涂层附着性能的取向硅钢及其制备方法
US20230212720A1 (en) 2021-12-30 2023-07-06 Cleveland-Cliffs Steel Properties Inc. Method for the production of high permeability grain oriented electrical steel containing chromium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104507C (zh) * 1998-09-18 2003-04-02 川崎制铁株式会社 覆膜特性和磁特性优越的晶粒取向硅钢板及其制造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456812A (en) 1982-07-30 1984-06-26 Armco Inc. Laser treatment of electrical steel
US4554029A (en) 1982-11-08 1985-11-19 Armco Inc. Local heat treatment of electrical steel
US4545828A (en) 1982-11-08 1985-10-08 Armco Inc. Local annealing treatment for cube-on-edge grain oriented silicon steel
US4582118A (en) 1983-11-10 1986-04-15 Aluminum Company Of America Direct chill casting under protective atmosphere
CA1270728A (en) 1985-02-25 1990-06-26 Armco Advanced Materials Corporation Method of producing cube-on-edge oriented silicon steel from strand cast slabs
US4882834A (en) 1987-04-27 1989-11-28 Armco Advanced Materials Corporation Forming a laminate by applying pressure to remove excess sealing liquid between facing surfaces laminations
US4898626A (en) 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid heat treatment of grain oriented electrical steel
US4898627A (en) 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid annealing of nonoriented electrical steel
US5018267A (en) 1989-09-05 1991-05-28 Armco Inc. Method of forming a laminate
DE3933405A1 (de) 1989-10-06 1991-04-18 Josef Schiele Durchlauf-vakuum-auftragsvorrichtung
US5096510A (en) 1989-12-11 1992-03-17 Armco Inc. Thermal flattening semi-processed electrical steel
US5061326A (en) 1990-07-09 1991-10-29 Armco Inc. Method of making high silicon, low carbon regular grain oriented silicon steel
US5288736A (en) 1992-11-12 1994-02-22 Armco Inc. Method for producing regular grain oriented electrical steel using a single stage cold reduction
JP2786577B2 (ja) * 1993-05-28 1998-08-13 川崎製鉄株式会社 方向性けい素鋼板の製造方法
JP3498978B2 (ja) * 1993-08-24 2004-02-23 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
US5421911A (en) 1993-11-22 1995-06-06 Armco Inc. Regular grain oriented electrical steel production process
US5643370A (en) 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
JPH09118921A (ja) * 1995-10-26 1997-05-06 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
US5702539A (en) 1997-02-28 1997-12-30 Armco Inc. Method for producing silicon-chromium grain orieted electrical steel
JP3312000B2 (ja) 1998-09-18 2002-08-05 川崎製鉄株式会社 被膜特性および磁気特性に優れる方向性けい素鋼板の製造方法
JP3386751B2 (ja) 1999-06-15 2003-03-17 川崎製鉄株式会社 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
JP3885428B2 (ja) * 1999-10-28 2007-02-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2002194434A (ja) * 2000-12-26 2002-07-10 Kawasaki Steel Corp 高周波磁気特性および被膜特性に優れた低鉄損方向性電磁鋼板の製造方法
JP2002220642A (ja) 2001-01-29 2002-08-09 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板およびその製造方法
KR100553020B1 (ko) * 2001-04-23 2006-02-16 신닛뽄세이테쯔 카부시키카이샤 장력 부여성 절연 피막의 밀착성이 우수한 일방향성 규소강판과 그 제조 방법
US7887645B1 (en) * 2001-05-02 2011-02-15 Ak Steel Properties, Inc. High permeability grain oriented electrical steel
EP1436433B1 (en) 2001-09-13 2005-08-17 AK Properties, Inc. Method of producing (110) 001] grain oriented electrical steel using strip casting
DE60211542T2 (de) 2001-09-13 2007-05-03 AK Steel Properties, Inc., Middletown Verfahren zum kontinuierlichen giessen von elektrostahlband mit kontrollierter sprühkühlung
US7011139B2 (en) 2002-05-08 2006-03-14 Schoen Jerry W Method of continuous casting non-oriented electrical steel strip
US20050000596A1 (en) 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
JP2006144042A (ja) * 2004-11-17 2006-06-08 Jfe Steel Kk 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法
KR101070064B1 (ko) * 2006-05-24 2011-10-04 신닛뽄세이테쯔 카부시키카이샤 자속 밀도가 높은 방향성 전자기 강판의 제조 방법
CN101748259B (zh) * 2008-12-12 2011-12-07 鞍钢股份有限公司 一种低温加热生产高磁感取向硅钢的方法
JP4840518B2 (ja) * 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6084351B2 (ja) 2010-06-30 2017-02-22 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2014049770A1 (ja) 2012-09-27 2014-04-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104507C (zh) * 1998-09-18 2003-04-02 川崎制铁株式会社 覆膜特性和磁特性优越的晶粒取向硅钢板及其制造方法

Also Published As

Publication number Publication date
CA2920750C (en) 2018-06-26
RU2643755C2 (ru) 2018-02-05
JP2016536460A (ja) 2016-11-24
WO2015031377A9 (en) 2015-10-29
KR20160048151A (ko) 2016-05-03
CA2920750A1 (en) 2015-03-05
TW201514322A (zh) 2015-04-16
EP3039164A1 (en) 2016-07-06
US20180137958A1 (en) 2018-05-17
CN105492634A (zh) 2016-04-13
US11942247B2 (en) 2024-03-26
CN109321726A (zh) 2019-02-12
JP2018188733A (ja) 2018-11-29
CN105492634B (zh) 2018-12-14
MX2016002484A (es) 2016-05-31
RU2016111134A (ru) 2017-10-03
US9881720B2 (en) 2018-01-30
JP6556135B2 (ja) 2019-08-07
JP6995010B2 (ja) 2022-01-14
US20150064481A1 (en) 2015-03-05
KR101930705B1 (ko) 2018-12-19
WO2015031377A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
KR101763085B1 (ko) 자기 특성 및 피막 밀착성이 우수한 방향성 전기 강판
TWI615485B (zh) 具有改良之鎂橄欖石塗層性質的晶粒取向電氣鋼
JP6344490B2 (ja) 方向性電磁鋼板およびその製造方法
JP5737483B2 (ja) 方向性電磁鋼板の製造方法
EP3358041B1 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
EP2960352A1 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
CN107922987B (zh) 用于生产晶粒取向电工钢带的方法和晶粒取向电工钢带
JP2016145419A (ja) 方向性電磁鋼板とその製造方法
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
JP2019507242A (ja) 方向性電磁鋼板用絶縁被膜組成物、これを利用した方向性電磁鋼板の絶縁被膜形成方法、及び方向性電磁鋼板
JP2006241563A (ja) 磁気特性に優れた無方向性電磁鋼板およびその製造方法
JP2023509382A (ja) ホウロウ用鋼板およびその製造方法
JP5520086B2 (ja) 表面性状に優れた高Si含有鋼板およびその製造方法
JP2011068968A (ja) 方向性電磁鋼板の製造方法
JP6624028B2 (ja) 方向性電磁鋼板の製造方法
CN114402087B (zh) 方向性电磁钢板
JP5600991B2 (ja) 方向性電磁鋼板の製造方法
JP4626155B2 (ja) 低磁場磁気特性の経時安定性に優れた方向性電磁鋼板及びその製造方法
JP2000096149A (ja) 被膜特性および磁気特性に優れる方向性けい素鋼板の製造方法
JPH09291313A (ja) 磁気特性・被膜特性に優れる方向性けい素鋼板の製造方法
JP2002129235A (ja) 被膜特性に優れた方向性電磁鋼板の製造方法
JP2001254166A (ja) 高周波磁気特性に優れた高けい素鋼板の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees