CN105470132B - 鳍式场效应管的形成方法 - Google Patents

鳍式场效应管的形成方法 Download PDF

Info

Publication number
CN105470132B
CN105470132B CN201410445807.6A CN201410445807A CN105470132B CN 105470132 B CN105470132 B CN 105470132B CN 201410445807 A CN201410445807 A CN 201410445807A CN 105470132 B CN105470132 B CN 105470132B
Authority
CN
China
Prior art keywords
fin
barrier layer
layer
field effect
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410445807.6A
Other languages
English (en)
Other versions
CN105470132A (zh
Inventor
禹国宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201410445807.6A priority Critical patent/CN105470132B/zh
Priority to US14/837,370 priority patent/US9613868B2/en
Publication of CN105470132A publication Critical patent/CN105470132A/zh
Application granted granted Critical
Publication of CN105470132B publication Critical patent/CN105470132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种鳍式场效应管的形成方法,包括:提供衬底,所述衬底表面形成有若干分立的鳍部;在所述衬底表面形成隔离层,所述隔离层顶部低于所述鳍部顶部且覆盖于鳍部的部分侧壁表面;形成覆盖于所述隔离层表面、鳍部的顶部和侧壁表面的阻挡层;采用氧化处理,将部分厚度的阻挡层转化为钝化层;回刻蚀所述钝化层,形成覆盖于鳍部侧壁表面的阻挡层表面的钝化侧墙;以所述钝化侧墙为掩膜,采用湿法刻蚀工艺刻蚀去除位于鳍部顶部表面的阻挡层,且保留位于鳍部侧壁表面的阻挡层作为阻挡侧墙。本发明在提高形成的应力层的质量的同时,避免在鳍部侧壁表面进行应力层的生长,提高鳍式场效应管的性能。

Description

鳍式场效应管的形成方法
技术领域
本发明涉及半导体制作领域技术,特别涉及一种鳍式场效应管的形成方法。
背景技术
随着半导体工艺技术的不断发展,半导体工艺节点遵循摩尔定律的发展趋势不断减小。为了适应工艺节点的减小,不得不不断缩短MOSFET场效应管的沟道长度。沟道长度的缩短具有增加芯片的管芯密度,增加MOSFET场效应管的开关速度等好处。
然而,随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,这样一来栅极对沟道的控制能力变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阈值漏电(subthreshold leakage)现象,即所谓的短沟道效应(SCE:short-channeleffects)更容易发生。
因此,为了更好的适应器件尺寸按比例缩小的要求,半导体工艺逐渐开始从平面MOSFET晶体管向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应管(FinFET)。FinFET中,栅极至少可以从两侧对超薄体(鳍部)进行控制,具有比平面MOSFET器件强得多的栅对沟道的控制能力,能够很好的抑制短沟道效应;且FinFET相对于其他器件,具有更好的现有的集成电路制作技术的兼容性。
随着半导体技术的不断发展,载流子迁移率增强技术获得了广泛的研究和应用,提高沟道区的载流子迁移率能够增大鳍式场效应管的驱动电流,提高鳍式场效应管的性能。
现有半导体器件制作工艺中,由于应力可以改变硅材料的能隙和载流子迁移率,因此通过应力来提高鳍式场效应管的性能成为越来越常用的手段。具体地,通过适当控制应力,可以提高载流子(NMOS鳍式场效应管中的电子,PMOS鳍式场效应管中的空穴)迁移率,进而提高驱动电流,以极大地提高鳍式场效应管的性能。
然而,现有技术形成的应力层质量差,导致鳍式场效应管的电学性能低下。
发明内容
本发明解决的问题是提供一种鳍式场效应管的形成方法,提高形成的鳍式场效应管的性能。
为解决上述问题,本发明提供一种鳍式场效应管的形成方法,包括:提供衬底,所述衬底表面形成有若干分立的鳍部;在所述衬底表面形成隔离层,所述隔离层顶部低于所述鳍部顶部且覆盖于鳍部的部分侧壁表面;形成覆盖于所述隔离层表面、鳍部的顶部和侧壁表面的阻挡层;采用氧化处理,将部分厚度的阻挡层转化为钝化层;回刻蚀所述钝化层,形成覆盖于鳍部侧壁表面的阻挡层表面的钝化侧墙;以所述钝化侧墙为掩膜,采用湿法刻蚀工艺刻蚀去除位于鳍部顶部表面的阻挡层,且保留位于鳍部侧壁表面的阻挡层作为阻挡侧墙。
可选的,同一刻蚀工艺对阻挡层的刻蚀速率与对钝化层的刻蚀速率不同。
可选的,所述阻挡层的材料为氮化硅。
可选的,所述钝化层的材料为氮氧化硅或氧化硅
可选的,在所述氧化处理后,剩余的阻挡层内的氮原子浓度大于氧化处理前阻挡层内的氮原子浓度。
可选的,所述阻挡层的材料为氮氧化硅。
可选的,所述钝化层的材料为氧化硅。
可选的,在所述氧化处理后,剩余的阻挡层内的氮原子浓度大于氧化处理前阻挡层内的氮原子浓度。
可选的,所述氧化处理的工艺包括:原位现场水汽生成氧化法或氧等离子体注入氧化法。
可选的,所述原位现场水汽生成氧化法的工艺参数为:反应气体包括H2,反应气体还包括O2或N2O,H2流量为10sccm至1000sccm,O2或N2O流量为20sccm至2000sccm,沉积腔室压强为0.1托至20托,沉积腔室温度为450度至1100度。
可选的,回刻蚀所述钝化侧墙的工艺参数为:刻蚀腔室的等离子体源输出功率为200瓦至2000瓦,衬底温度为20度至80度,刻蚀腔室压强为5毫托至50毫托,刻蚀气体包括含氟气体或氯气,并且向刻蚀腔室内通入氖气或氩气作为保护气体,刻蚀气体和保护气体的流量之和为40sccm至80sccm。
可选的,所述湿法刻蚀工艺的刻蚀溶液为氢氧化铵与过氧化氢的水溶液、硫酸与过氧化氢的水溶液或磷酸溶液。
可选的,所述阻挡层的厚度为
可选的,所述钝化层的厚度为
可选的,在刻蚀去除位于鳍部顶部表面的阻挡层后,还包括步骤:去除所述钝化侧墙;在所述鳍部顶部表面形成应力层。
可选的,采用湿法刻蚀工艺去除所述钝化侧墙。
可选的,采用选择性外延工艺形成所述应力层。
可选的,所述应力层的材料为SiGe、SiGeB、SiC或SiCP。
可选的,在刻蚀去除位于鳍部顶部表面的阻挡层后,还包括步骤:去除所述钝化侧墙;对所述暴露出的鳍部顶部表面进行刻蚀,在相邻阻挡侧墙之间形成凹槽;在所述凹槽内形成应力层。
可选的,在形成所述阻挡层之前,在所述隔离层表面形成横跨至少一个所述鳍部的栅极结构,且所述栅极结构覆盖鳍部的部分顶部表面和侧壁表面;形成所述阻挡层,所述阻挡层覆盖于鳍部顶部和侧壁表面、隔离层表面以及栅极结构顶部和侧壁表面。
与现有技术相比,本发明的技术方案具有以下优点:
本发明的技术方案中,在鳍部的顶部表面和侧壁表面形成阻挡层后,采用氧化处理将部分厚度的阻挡层转化为钝化层;回刻蚀所述钝化层,形成覆盖于鳍部侧壁表面的阻挡层表面的钝化侧墙;然后以所述钝化侧墙为掩膜,采用湿法刻蚀工艺刻蚀去除位于鳍部顶部表面的阻挡层,保留位于鳍部侧壁表面的阻挡层作为阻挡侧墙。由于鳍部的侧壁表面具有阻挡侧墙对其起到保护作用,鳍部顶部表面的阻挡层只能从鳍部顶部往下刻蚀,直至暴露出鳍部的顶部表面。并且,在湿法刻蚀工艺过程中,位于鳍部顶部表面的阻挡层充分接触刻蚀溶液,且钝化侧墙对所述阻挡层接触刻蚀溶液的能力无影响,因此所述湿法刻蚀工艺对阻挡层的刻蚀速率均匀。同时,由于湿法刻蚀工艺具有较高的选择性,对鳍部顶部表面的刻蚀损伤小,使得暴露出的鳍部顶部表面平坦,有利于后续在所述鳍部顶部表面形成高质量的应力层,提高鳍式场效应管的电学性能。
同时,本发明采用氧化处理将部分厚度的阻挡层转化为钝化层,使得阻挡层与钝化层之间的界面性能优良,防止阻挡层和钝化层之间出现孔洞;因此在钝化层的基础上形成的钝化侧墙与阻挡层之间也将紧密接触,防止钝化侧墙与阻挡层的界面处出现孔洞;当以钝化侧墙为掩膜刻蚀位于鳍部顶部表面的阻挡层时,避免刻蚀液体通过所述孔洞与位于鳍部侧壁表面的阻挡层接触,防止对鳍部侧壁表面的阻挡层造成刻蚀,从而防止鳍部侧壁表面被暴露出来,进而防止后续在所述暴露出的鳍部侧壁表面进行应力层的生长,提高鳍式场效应管的电学性能。
进一步,所述阻挡层的材料中含有氮原子,例如阻挡层的材料为氮化硅或氮氧化硅,在对部分厚度的阻挡层进行氧化处理时,由于硅原子与氧原子之间比硅原子与氮原子之间更容易结合,因此部分厚度的阻挡层内氮硅键断裂形成游离的氮原子,且断裂的硅键与硅原子重组形成硅氧键;所述游离的氮原子在硅氧键的排挤下扩散至未形成有硅氧键的阻挡层内;也就是说,本发明在氧化处理后,剩余阻挡层内氮原子浓度高于氧化处理前氮原子浓度。由于剩余阻挡层内氮原子浓度较高,当采用无掩模刻蚀工艺刻蚀所述钝化层时,所述刻蚀工艺对剩余阻挡层的刻蚀速率非常低,所述刻蚀工艺完成后,位于鳍部顶部表面的阻挡层未受到刻蚀损伤,所述鳍部顶部表面的阻挡层厚度均匀。采用湿法刻蚀工艺刻蚀去除位于鳍部顶部表面的阻挡层时,由于阻挡层厚度均匀,因此位于鳍部顶部表面的阻挡层在同一时刻被完全刻蚀去除,从而进一步防止对鳍部顶部表面造成刻蚀损伤,进一步提高鳍部顶部表面质量,进一步提高鳍式场效应管的电学性能。
进一步,若所述阻挡层的厚度过厚,则在形成阻挡层时容易导致相邻鳍部之间的顶部区域发生闭合,影响形成的阻挡层的质量;若阻挡层的厚度过薄,后续氧化处理的工艺难度增加,且容易造成剩余阻挡层的厚度相应过薄,难以起到保护鳍部侧壁的作用。为此,所述阻挡层的厚度为既能保证形成的阻挡层的质量较高,又能保证在形成钝化层后,位于鳍部侧壁的阻挡层仍具有较强的保护作用。
更进一步,本发明中钝化层的厚度为50埃至50埃。若钝化层的厚度过厚,则剩余阻挡层的厚度过薄,位于鳍部侧壁表面的剩余阻挡层起到的保护作用小,且氧化处理的工艺难度较大;若钝化层的厚度过薄,后续形成的钝化侧墙对位于鳍部侧壁表面的剩余阻挡层的保护作用过小,后续在刻蚀去除位于鳍部顶部表面的剩余阻挡层时,所述刻蚀工艺容易刻蚀去除钝化侧墙,从而对位于鳍部侧壁表面的剩余阻挡层造成刻蚀,导致在形成应力层之前,鳍部的侧壁表面被暴露出来。
附图说明
图1至图2为一实施例提供的鳍式场效应管的剖面结构示意图;
图3至图12为本发明另一实施例提供的鳍式场效应管形成过程的结构示意图。
具体实施方式
由背景技术可知,现有技术形成的应力层的质量较差,导致鳍式场效应管的性能低下。
请参考图1,在一个实施例中,提供具有鳍部101的衬底100,在相邻鳍部101之间的衬底100表面形成隔离层102,所述隔离层102覆盖于鳍部101的部分侧壁表面,且所述隔离层102顶部表面低于鳍部101顶部表面;形成覆盖于隔离层102表面、鳍部101侧壁和顶部表面的阻挡层103。
请参考图2,采用无掩模刻蚀工艺,刻蚀去除位于鳍部101顶部表面以及隔离层102表面的阻挡层103(请参考图1),形成位于鳍部101侧壁表面的侧墙层104,暴露出鳍部101的顶部表面。
所述侧墙层104的作用在于:若直接在鳍部101的侧壁和顶部表面形成外延层,会导致相邻鳍部101之间的间距减小,进而导致相邻鳍部101之间发生桥连问题,并且会造成后续在相邻鳍部101之间填充层间介质层材料的难度过大,造成层间介质层中形成孔洞等问题;为了避免上述问题,通常仅在鳍部101的顶部表面外延形成应力层。因此需要在鳍部101的侧壁表面形成侧墙层104,以避免在鳍部101的侧壁表面外延形成应力层。
然而,在实际工艺中发现,在形成侧墙层104后,鳍部101顶部表面形成V型的沟槽105,所述V型的沟槽105影响后续外延形成的应力层的质量,造成形成的应力层的质量差。
经研究发现,导致鳍部101顶部表面形成V型的沟槽105的主要原因在于:在去除鳍部101顶部表面的阻挡层103暴露出鳍部101的顶部表面时,由于刻蚀工艺的刻蚀停止位置难以精确控制,所述刻蚀工艺通常会对鳍部101的顶部表面造成过刻蚀。而由于鳍部101的侧壁表面具有侧墙层104,导致鳍部101靠近侧墙层104处的刻蚀气体受到侧墙层104的阻挡作用,从而使得在过刻蚀的过程中,鳍部101的刻蚀速率沿中心区域向侧墙层104方向逐渐减小,进而在鳍部101顶部形成V型的沟槽105。
为解决上述问题,提出一种鳍式场效应管的形成方法,在形成阻挡层后,采用氧化处理,将部分厚度的阻挡层转化为钝化层;采用无掩模刻蚀工艺刻蚀所述钝化层,形成覆盖于鳍部侧壁表面的阻挡层表面的钝化侧墙;以所述钝化侧墙为掩膜,采用湿法刻蚀工艺刻蚀去除位于鳍部顶部表面的阻挡层,且保留位于鳍部侧壁表面的阻挡层作为阻挡侧墙。所述湿法刻蚀工艺具有较高的刻蚀选择性,能够避免对鳍部顶部表面造成损伤,使得鳍部的顶部表面平坦;并且,即使所述湿法刻蚀工艺对鳍部的顶部表面具有一定的刻蚀速率,由于所述湿法刻蚀工艺对鳍部顶部表面的刻蚀速率受到钝化侧墙的影响非常小,仍然会得到表面平坦的鳍部,从而提高形成的鳍式场效应管的性能。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图3至图12为本发明实施例提供的鳍式场效应管形成过程的结构示意图。
请参考图3,提供衬底200,所述衬底200表面形成有若干分立的鳍部201。
所述衬底200可以是硅或者绝缘体上硅(SOI),所述衬底200也可以是锗、锗硅、砷化镓或者绝缘体上锗,本实施例中所述衬底200的材料为硅。采用体硅衬底作为衬底200可以降低形成鳍式场效应晶体管的成本,并且与现有的平面晶体管的制作工艺兼容。
在所述衬底200内形成有P阱或N阱。待形成的鳍式场效应管为NMOS器件时,在所述衬底200内形成P阱;待形成的鳍式场效应管为PMOS器件时,在所述衬底200内形成N阱。还可以对所述衬底200进行阈值调整注入,以调节后续形成的鳍式场效应晶体管的阈值电压。并且对所述衬底200进行退火,以激活所述衬底200内的掺杂离子。
本实施例中,所述鳍部201为采用干法刻蚀法刻蚀一初始衬底形成的,在衬底200表面形成凸起的鳍部201。
在本发明其他实施例中,也可以在衬底表面形成半导体外延层后,再刻蚀所述半导体外延层形成鳍部,所述半导体外延层可以为单晶硅层。
作为一个实施例,所述鳍部201的形成步骤为:提供初始衬底;在所述初始衬底表面形成图形化的掩膜层,所述图形化的掩膜层定义出后续形成鳍部201的位置;以图形化的掩膜层为掩膜,采用反应离子刻蚀工艺,刻蚀部分厚度的初始衬底至形成衬底200,在衬底200表面形成若干分立的鳍部201。
在其他实施例中,也可以采用双重图形曝光方法形成鳍部,具体的,形成鳍部的工艺步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的牺牲层;形成覆盖于所述牺牲层表面以及初始衬底表面的初始侧墙膜;回刻蚀所述初始侧墙膜,在牺牲层侧壁形成初始侧墙层;去除所述牺牲层;以所述初始侧墙层为掩膜,刻蚀去除部分厚度的初始衬底形成衬底,在衬底表面形成若干分立的鳍部。
本实施例以在衬底200表面形成两个鳍部201作为示例,在本发明其他实施例中,衬底表面也可以形成有1个或多个分立的鳍部。
请参考图4,在所述衬底200表面形成隔离层202,所述隔离层202顶部低于所述鳍部201顶部,且覆盖于鳍部201的部分侧壁表面。
所述隔离层202的材料可以是氧化硅、氮化硅或碳氧化硅等绝缘介质材料,所述隔离层202作为相邻鳍部201之间的隔离结构,以及后续形成的栅极结构与衬底200之间的隔离结构。
所述隔离层202的形成方法包括:在所述衬底200上沉积隔离材料,所述隔离材料覆盖鳍部201,并且填充满相邻所述鳍部201之间的凹槽;以所述鳍部201顶部作为研磨停止层,采用化学机械研磨工艺对所述隔离材料进行平坦化处理,形成与鳍部201顶部表面齐平的隔离材料层;然后,对所述隔离材料层进行回刻蚀,使所述隔离材料层的表面高度下降,形成表面低于鳍部201顶部表面的隔离层202。
请参考图5,在所述隔离层202表面形成横跨至少一个所述鳍部201的栅极结构,所述栅极结构覆盖鳍部201的部分顶部表面和侧壁表面。
所述栅极结构包括栅介质层203和位于所述栅介质层203表面的栅导电层204。
本实施例中,以所述栅极结构为金属栅极结构为例做示范性说明。所述栅介质层203的材料为氧化铪、氧化锆、氧化铝、硅氧化铪或硅氧化锆等高K介质材料(高K介质材料指:相对介电常数大于氧化硅相对介电常数的材料),所述栅导电层204的材料为铝、钨、钛、氮化钛、钽或碳化钽等栅极金属材料,所述栅极结构作为最终形成的鳍式场效应管的栅极结构。
在其他实施例中,所述栅极结构可以为多晶硅栅极结构,其中,栅介质层的材料为氧化硅,栅导电层的材料为多晶硅或掺杂的多晶硅。
所述栅极结构还可以为伪栅极结构,伪栅极结构包括栅介质层以及位于栅介质层表面的伪栅,所述栅介质层和伪栅的材料可以相同也可以不同;作为一个示例,所述栅介质层的材料为氧化硅,所述伪栅的材料为多晶硅。后续采用后栅工艺,去除伪栅极结构后形成金属栅极结构。
本实施例中,所述栅极结构横跨了两个鳍部201,从而可以增加栅极结构下方的沟道区域的面积。在其他实施例中,根据实际的工艺需求,栅极结构可以横跨一个或多个鳍部。
作为一个实施例,所述栅极结构的形成步骤包括:在所述隔离层202表面形成栅介质材料层,所述栅介质材料层覆盖所述隔离层202表面、鳍部201顶部表面和侧壁表面;在所述栅介质材料层表面形成栅导电材料层;在所述栅导电材料层表面形成图形化的掩膜层;以所述图形化的掩膜层为掩膜,图形化所述栅导电材料层以及栅介质材料层,形成横跨鳍部201的栅极结构;去除所述图形化的掩膜层。
请参考图6及图7,图7为图6沿切割线AA1方向的剖面结构示意图,形成覆盖于所述隔离层202表面、鳍部201的顶部和侧壁表面的阻挡层205,所述阻挡层205还覆盖于栅极结构的顶部和侧壁表面。
后续在形成应力层之前,去除位于鳍部201顶部表面的阻挡层205,暴露出鳍部201的顶部表面,以在鳍部201顶部表面进行应力层的生长;并且保留位于鳍部201侧壁表面的阻挡层205,从而防止在鳍部201的侧壁表面进行应力层的生长,避免应力层之间发生桥连。
后续还包括步骤:采用氧化处理,将部分厚度的阻挡层转化为钝化层,且同一刻蚀工艺对阻挡层的刻蚀速率与对钝化层的刻蚀速率不同。因此本实施例提供的阻挡层205的材料应该较容易被氧化。
本实施例中,所述阻挡层205的材料为氮化硅,后续在对阻挡层205进行氧化处理时,由于硅原子与氧原子的结合能力强于硅原子与氮原子的结合能力,因此容易将部分厚度的阻挡层205转化为钝化层,钝化层的材料为氧化硅或氮氧化硅,同一刻蚀工艺对氮化硅的刻蚀速率与对氧化硅、氮氧化硅的刻蚀速率不同。
在其他实施例中,所述阻挡层的材料也可以为氮氧化硅。同样的,硅原子与氧原子的结合能力强于硅原子与氮原子的结合能力,因此容易将部分厚度的阻挡层转化为钝化层,钝化层的材料为氧化硅,同一刻蚀工艺对氮氧化硅的刻蚀速率与对氧化硅的刻蚀速率不同。
采用化学气相沉积、物理气相沉积或原子层沉积工艺形成所述阻挡层205。本实施例中,所述阻挡层205的材料为氮化硅,采用化学气相沉积工艺形成所述阻挡层205。
随着半导体结构尺寸的不断缩小,相邻鳍部201之间的间距也越来越小,阻挡层205的填充难度较大,若阻挡层205的厚度过厚,则容易导致相邻鳍部201之间的顶部区域发生闭合,影响形成的阻挡层205的质量;若阻挡层205的厚度过薄,则后续在将部分厚度的阻挡层205转化为钝化层的工艺难度过高,且剩余的阻挡层205的厚度过薄,则难以对鳍部201的侧壁提供足够的保护作用。
综合上述因素考虑,本实施例中所述阻挡层205的厚度为
后续工艺步骤提供的结构示意图均以图7为基础。
请参考图8,采用氧化处理,将部分厚度的阻挡层205(请参考图7)转化为钝化层206。
同一刻蚀工艺对阻挡层205的刻蚀速率与对钝化层206的刻蚀速率不同,后续在刻蚀钝化层206形成钝化侧墙时,避免所述刻蚀工艺对阻挡层205造成刻蚀损伤。
所述钝化层206用于后续形成位于鳍部201侧壁表面的剩余阻挡层205a表面的钝化侧墙。
将部分厚度的阻挡层205转化为钝化层206后,同一刻蚀工艺对剩余阻挡层205a的刻蚀速率与对钝化层206的刻蚀速率不同,即所述剩余阻挡层205a与钝化层206之间具有较高的刻蚀选择比,以确保后续在刻蚀钝化层206以形成钝化侧墙的过程中,所述刻蚀工艺不会对剩余阻挡层205a造成刻蚀损伤。
例如,后续在刻蚀去除位于鳍部201顶部上的钝化层206后,会暴露出位于鳍部201顶部表面的剩余阻挡层205a;由于剩余阻挡层205a与钝化层206之间具有较高的刻蚀选择比,因此所述刻蚀工艺不会对钝化层206造成刻蚀损伤,使鳍部201顶部表面的剩余阻挡层205a表面平坦,防止由于位于鳍部201顶部表面剩余阻挡层205a厚度不均而导致后续对鳍部201造成刻蚀。
所述氧化处理的工艺包括:原位现场水汽生成氧化法(ISSG:In-situ SteamGeneration Oxidation)、氧等离子体注入氧化法(Oxygen Plasma Doping Oxidation)或SPA氧化法(Slot Plane Antenna Oxidation)。
作为一个实施例,所述原位现场水汽氧化生成氧化法的工艺参数为:反应气体包括H2,反应气体还包括O2或N2O,H2流量为10sccm至1000sccm,O2或N2O流量为20sccm至2000sccm,沉积腔室压强为0.1托至20托,沉积腔室温度为450度至1100度。
作为另一实施例,所述氧等离子体注入氧化法的工艺参数为:反应腔室温度为0度至300度,压强为5毫托至20毫托,射频功率为200瓦至3500瓦,O2流量为50sccm至1000sccm。
若钝化层206的厚度过厚,则剩余阻挡层205a的厚度过薄,位于鳍部201侧壁表面的剩余阻挡层205a起到的保护作用小,且氧化处理的工艺难度较大;若钝化层206的厚度过薄,后续形成的钝化侧墙对位于鳍部201侧壁表面的剩余阻挡层205a的保护作用过小,后续在刻蚀去除位于鳍部201顶部表面的剩余阻挡层205a时,所述刻蚀工艺容易刻蚀去除钝化侧墙,从而对位于鳍部201侧壁表面的剩余阻挡层205a造成刻蚀,导致在形成应力层之前,鳍部201的侧壁表面被暴露出来。
为此,本实施例中所述钝化层206的厚度为
本实施例中,所述阻挡层205的材料为氮化硅,在进行氧化处理后,部分厚度的阻挡层205转化为钝化层206;由于硅原子与氧原子的结合能力比硅原子与氮原子的结合能力强,因此部分厚度的阻挡层205中的氮硅键断裂重组为硅氧键,氮原子从所述氮硅键中脱离成为游离态;所述游离态的氮原子受到硅氧键的排挤后朝向未形成有硅氧键的阻挡层205内扩散,因此在氧化处理后,剩余阻挡层205a内氮原子浓度大于氧化处理前阻挡层205内氮原子浓度,刻蚀钝化层206的工艺对剩余阻挡层205a的刻蚀速率更低。
综合上述分析可知,本实施例在氧化处理后,进一步提高了剩余阻挡层205a与钝化层206的刻蚀选择比,进一步防止了刻蚀钝化层206的工艺对剩余阻挡层205a造成刻蚀损伤,进一步提高了鳍部201顶部表面的剩余阻挡层205a表面平坦度。
当阻挡层205的材料为氮化硅时,所述钝化层206的材料为氧化硅或氮氧化硅;本实施例中,所述阻挡层205的材料为氮化硅,所述钝化层206的材料为氧化硅。
在其他实施例中,所述阻挡层205的材料为氮氧化硅时,所述钝化层206的材料为氧化硅。同样的,在氧化处理后,剩余阻挡层205a内氮原子浓度大于氧化处理前阻挡层205内氮原子浓度,因此剩余阻挡层205a与钝化层206之间的刻蚀选择比得到进一步提高。
同时,本实施例采用在形成阻挡层205后,将部分厚度的阻挡层205转化为钝化层206的方法,剩余阻挡层205a与钝化层206界面接触紧密,从而提高后续形成的钝化侧墙的质量,使得钝化侧墙与剩余阻挡层205a之间接触紧密,钝化侧墙对剩余阻挡层205a的保护能力得到提高;后续在刻蚀去除位于鳍部201顶部表面的剩余阻挡层205a时,鳍部201侧壁表面的剩余阻挡层205a由于钝化侧墙的保护作用而不会被刻蚀,从而避免鳍部201侧壁表面被暴露出来。
若直接在阻挡层205(请参考图7)表面沉积钝化层,则由于在形成阻挡层205之后,相邻鳍部201之间的距离更小,在所述阻挡层205表面沉积钝化层时,相邻鳍部201之间的开口顶部区域容易发生闭合,影响形成的钝化层的质量;并且,在阻挡层205表面沉积钝化层时,所述钝化层与阻挡层205之间的界面处容易出现孔洞,特别是在阻挡层205的拐角处,钝化层与阻挡层205之间的界面出现孔洞的概率更高,进而造成后续形成的钝化侧墙与阻挡层205之间的界面具有孔洞;后续刻蚀去除位于鳍部201顶部表面的阻挡层205时,所述孔洞的存在容易导致对位于鳍部201侧壁表面的阻挡层205造成刻蚀。
请参考图9,采用无掩模刻蚀工艺,回刻蚀所述钝化层206(请参考图8),形成覆盖于鳍部201侧壁表面的剩余阻挡层205a表面的钝化侧墙207,暴露出位于鳍部201顶部表面的剩余阻挡层205a表面。
所述钝化侧墙207覆盖鳍部201侧壁上的剩余阻挡层205a,在后续刻蚀去除位于鳍部201顶部表面的剩余阻挡层205a的工艺过程中,所述钝化侧墙207起到保护鳍部201侧壁表面的剩余阻挡层205a的作用,从而防止后续在鳍部201顶部表面形成应力层的过程中,在鳍部201侧壁表面进行应力层的生长。
所述无掩模刻蚀工艺为干法刻蚀。作为一个具体实施例,采用反应离子刻蚀工艺进行所述干法刻蚀,若刻蚀腔室的等离子体源输出功率过低,则产生的等离子体含量以及等离子体能量过低,无掩模刻蚀工艺的刻蚀时间过长;若等离子体源输出功率过高,则产生的等离子体含量以及等离子体能量过高,反应离子刻蚀工艺对钝化层206的刻蚀速率过快,容易造成形成的钝化侧墙207宽度过窄,并且还容易对位于鳍部201顶部表面的剩余阻挡层205a造成刻蚀损伤;若衬底温度过低或刻蚀腔室压强过低,等离子体能量过低,刻蚀速率过慢,不利于提高生产效率;若衬底温度过高或刻蚀腔室压强过高,则容易造成刻蚀速率过快,容易对鳍部201顶部表面的剩余阻挡层205a造成不良影响。
为此,提供的反应离子刻蚀工艺中,刻蚀腔室的等离子体源输出功率为200瓦至2000瓦,衬底200温度为20度至80度,刻蚀腔室压强为5毫托至50毫托,刻蚀气体包括含氟气体(例如,CF4或CHF3)或氯气,还可以包括氧气或氦气,并且向刻蚀腔室内通入氖气或氩气作为保护气体,刻蚀气体和保护气体的流量之和为40sccm至80sccm。
上述干法刻蚀工艺对氧化硅具有较高的刻蚀速率,而对氮化硅的刻蚀速率较小,从而使得钝化层206与剩余阻挡层205a之间具有较高的选择比。
特别的,本实施例中采用氧化工艺将部分厚度的阻挡层205(请参考图7)转化为钝化层206后,剩余阻挡层205a内的氮原子浓度高于氧化处理前阻挡层205内氮原子浓度;因此上述干法刻蚀工艺对本实施例中剩余阻挡层205a的刻蚀速率非常小,甚至可以忽略不计,进一步避免所述干法刻蚀工艺对位于鳍部201顶部表面的剩余阻挡层205a造成刻蚀损伤,使得位于鳍部201顶部表面的剩余阻挡层205a表面平坦。
通过无掩模刻蚀工艺,刻蚀去除位于隔离层202表面的剩余阻挡层205a表面的钝化层206、鳍部201顶部表面的剩余阻挡层205a表面的钝化层206、以及栅极结构顶部表面的剩余阻挡层205a表面的钝化层206,形成位于鳍部201侧壁表面的剩余阻挡层205a表面的钝化侧墙207,所述钝化侧墙207还位于栅极结构侧壁表面的剩余阻挡层205a表面。
若所述干法刻蚀工艺对位于鳍部顶部表面的剩余阻挡层205a造成刻蚀,受到钝化侧墙207的影响,所述干法刻蚀工艺对鳍部201顶部表面的刻蚀速率不同,导致在干法刻蚀工艺完成后,位于鳍部201顶部表面的剩余阻挡层205a厚度不均匀;后续在刻蚀去除位于鳍部201顶部表面的剩余阻挡层205a时,由于所述剩余阻挡层205a厚度不均匀,容易导致到鳍部201顶部表面造成刻蚀。
而本实施例中,剩余阻挡层205a内具有较高浓度的氮原子,使得干法刻蚀工艺对剩余阻挡层205a的刻蚀速率可以忽略不计,进一步防止干法刻蚀工艺对剩余阻挡层205a表面造成刻蚀损伤,进一步后续鳍部201顶部表面质量。
请参考图10,以所述钝化侧墙207为掩膜,采用湿法刻蚀工艺刻蚀位于鳍部201顶部表面的剩余阻挡层205a(请参考图9),暴露出鳍部201的顶部表面,且保留位于鳍部201侧壁表面的剩余阻挡层205a作为阻挡侧墙208。
本实施例中,还保留位于栅极结构侧壁表面的剩余阻挡层205a作为阻挡侧墙208。
所述湿法刻蚀工艺为各向异性刻蚀工艺,对剩余阻挡层205a的刻蚀速率较为均匀,并且湿法刻蚀工艺对鳍部201顶部表面的剩余阻挡层205a的刻蚀速率不会受到钝化侧墙207的影响,进一步提高对剩余阻挡层205a刻蚀速率的一致性。
所述湿法刻蚀工艺采用的刻蚀液体为氢氧化铵与过氧化氢的水溶液、硫酸与过氧化氢的水溶液、盐酸与过氧化氢的水溶液或磷酸溶液。可以根据钝化侧墙207和剩余阻挡层205a的材料选择合适的刻蚀溶液,使所述剩余阻挡层205a与钝化侧墙207相比具有高刻蚀选择性。
本实施例中,所述剩余阻挡层205a的材料为氮化硅,所述钝化侧墙207的材料为氧化硅,因此可以采用磷酸溶液作为刻蚀剩余阻挡层205a的刻蚀溶液。
以所述鳍部201的顶部表面作为刻蚀停止位置,当暴露出鳍部201的顶部表面时,停止对剩余阻挡层205a进行湿法刻蚀。在湿法刻蚀过程中,所述剩余阻挡层205a表面能够充分的接触刻蚀溶液,且钝化侧墙207对位于鳍部201顶部表面的剩余阻挡层205a表面接触刻蚀溶液的能力无影响,使得位于鳍部201顶部表面的剩余阻挡层205a的刻蚀速率均匀;并且由于钝化侧墙207的保护作用,鳍部201顶部表面的剩余阻挡层205a只能从鳍部201顶部往下刻蚀,直至暴露出鳍部201的顶部表面。而由于湿法刻蚀工艺具有较高的选择性,对鳍部201顶部表面的损伤较少。综合上述优势,本实施例中暴露出的鳍部201顶部表面平坦,有利于后续在所述鳍部201顶部表面形成质量较高的应力层。
并且,由于前述在刻蚀形成钝化侧墙207的过程中,由于剩余阻挡层205a内氮原子浓度较高,因此刻蚀钝化侧墙207的工艺对剩余阻挡层205a的刻蚀速率非常小;在形成钝化侧墙207后,位于鳍部201顶部表面的剩余阻挡层205a表面平坦,因此刻蚀去除位于鳍部201顶部表面的剩余阻挡层205a的刻蚀停止位置基本一致,这也有利于提高鳍部201顶部表面的平坦度。
本实施例中,在刻蚀去除位于鳍部201顶部表面的剩余阻挡层205a的同时,刻蚀去除位于隔离层202表面的剩余阻挡层205a以及栅极结构顶部表面的剩余阻挡层205a,暴露出隔离层202的表面。在其他实施例中,在刻蚀去除位于鳍部顶部表面的阻挡层后,隔离层表面和栅极结构表面还可以剩余部分厚度的剩余阻挡层。
请参考图11,去除所述钝化侧墙207(请参考图10)。
采用湿法刻蚀工艺去除所述钝化侧墙207,所述湿法刻蚀工艺采用的刻蚀液体为氢氟酸溶液、氢氧化铵与过氧化氢的水溶液或硫酸与过氧化氢的水溶液。
可以根据阻挡侧墙208与钝化侧墙207的材料选择合适的刻蚀溶液,使得钝化侧墙207与阻挡侧墙208相比具有较高的刻蚀选择性,避免在去除钝化侧墙208的过程中,损伤位于鳍部201侧壁表面的阻挡侧墙208。
本实施例中,所述阻挡侧墙208的材料为氮化硅,所述钝化侧墙207的材料为氧化硅,采用氢氟酸溶液作为刻蚀液体刻蚀所述钝化侧墙207。
请参考图12,在所述栅极结构两侧的鳍部201顶部表面形成应力层209。
作为一个实施例,待形成的鳍式场效应管为PMOS器件时,所述应力层209的材料为SiGe或SiGeB,所述应力层209能够对栅极结构下方的作为沟道区域的鳍部201产生压应力作用,从而提高沟道区域内的空穴迁移率,提高P型鳍式场效应管的性能。
作为另一实施例,待形成的鳍式场效应管为NMOS器件时,所述应力层209的材料为SiC或SiCP,所述应力层209能够对栅极结构下方的作为沟道区域的鳍部201产生拉应力作用,从而提高沟道区域内的电子迁移率,提高N型鳍式场效应管的性能。
采用选择性外延工艺在鳍部201的顶部表面形成应力层209。本实施例以所述应力层209的材料为SiGe为例做示范性说明,所述选择性外延工艺的反应温度为600℃~1100℃,压强为1托~500托,采用硅源和锗源气体反应形成SiGe,其中,硅源气体是SiH4或SiH2Cl2,锗源气体为GeH4,还包括HCl气体以及H2,其中硅源气体、锗源气体、HCl的流量均为1sccm~1000sccm,H2的流量是0.1slm~50slm。
由于锗硅晶体在各个方向上的生长速率不同,所以最终形成的应力层209的剖面形状近似为五边形。由于所述鳍部201的顶部表面平坦,所以形成的应力层209具有较高的沉积质量。
在本发明的其他实施例中,在刻蚀去除位于鳍部顶部表面的剩余阻挡层后,也可以包括步骤:去除钝化侧墙;对所述暴露出的鳍部顶部表面进行刻蚀,在相邻阻挡侧墙之间形成凹槽;在所述凹槽内形成应力层。可以减少应力层与栅极结构下方的沟道区域之间的距离,提高所述沟道区域受到的应力,进一步提高形成的鳍式场效应晶体管的性能。
形成所述应力层209之后,可以对所述应力层209进行掺杂离子注入,本实施例中,所述掺杂离子作为P型离子,例如B、Ga或In。在本发明的其他实施例中,也可以在形成所述应力层209的过程中,采用原位掺杂工艺,在外延过程中通入掺杂气体,形成具有掺杂离子的应力层209。
在本发明的其他实施例中,所述应力层的材料也可以是SiC,所述应力层可以具有N型掺杂离子,例如P、As或Sb。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (18)

1.一种鳍式场效应管的形成方法,其特征在于,包括:
提供衬底,所述衬底表面形成有若干分立的鳍部;
在所述衬底表面形成隔离层,所述隔离层顶部低于所述鳍部顶部且覆盖于鳍部的部分侧壁表面;
形成覆盖于所述隔离层表面、鳍部的顶部和侧壁表面的阻挡层;
采用氧化处理,将部分厚度的阻挡层转化为钝化层;
回刻蚀所述钝化层,形成覆盖于鳍部侧壁表面的阻挡层表面的钝化侧墙;
以所述钝化侧墙为掩膜,采用湿法刻蚀工艺刻蚀去除位于鳍部顶部表面的阻挡层,且保留位于鳍部侧壁表面的阻挡层作为阻挡侧墙;
在刻蚀去除位于鳍部顶部表面的阻挡层后,还包括步骤:去除所述钝化侧墙;在所述鳍部顶部表面形成应力层;或者,
在刻蚀去除位于鳍部顶部表面的阻挡层后,还包括步骤:去除所述钝化侧墙;对暴露出的鳍部顶部表面进行刻蚀,在相邻阻挡侧墙之间形成凹槽;在所述凹槽内形成应力层。
2.如权利要求1所述鳍式场效应管的形成方法,其特征在于,同一刻蚀工艺对阻挡层的刻蚀速率与对钝化层的刻蚀速率不同。
3.如权利要求2所述鳍式场效应管的形成方法,其特征在于,所述阻挡层的材料为氮化硅。
4.如权利要求3所述鳍式场效应管的形成方法,其特征在于,所述钝化层的材料为氮氧化硅或氧化硅。
5.如权利要求3所述鳍式场效应管的形成方法,其特征在于,在所述氧化处理后,剩余的阻挡层内的氮原子浓度大于氧化处理前阻挡层内的氮原子浓度。
6.如权利要求2所述鳍式场效应管的形成方法,其特征在于,所述阻挡层的材料为氮氧化硅。
7.如权利要求6所述鳍式场效应管的形成方法,其特征在于,所述钝化层的材料为氧化硅。
8.如权利要求6所述鳍式场效应管的形成方法,其特征在于,在所述氧化处理后,剩余的阻挡层内的氮原子浓度大于氧化处理前阻挡层内的氮原子浓度。
9.如权利要求1所述鳍式场效应管的形成方法,其特征在于,所述氧化处理的工艺包括:原位现场水汽生成氧化法或氧等离子体注入氧化法。
10.如权利要求9所述鳍式场效应管的形成方法,其特征在于,所述原位现场水汽生成氧化法的工艺参数为:反应气体包括H2,反应气体还包括O2或N2O,H2流量为10sccm至1000sccm,O2或N2O流量为20sccm至2000sccm,沉积腔室压强为0.1托至20托,沉积腔室温度为450度至1100度。
11.如权利要求1所述鳍式场效应管的形成方法,其特征在于,回刻蚀所述钝化层的工艺参数为:刻蚀腔室的等离子体源输出功率为200瓦至2000瓦,衬底温度为20度至80度,刻蚀腔室压强为5毫托至50毫托,刻蚀气体包括含氟气体或氯气,并且向刻蚀腔室内通入氖气或氩气作为保护气体,刻蚀气体和保护气体的流量之和为40sccm至80sccm。
12.如权利要求1所述鳍式场效应管的形成方法,其特征在于,所述湿法刻蚀工艺的刻蚀溶液为氢氧化铵与过氧化氢的水溶液、硫酸与过氧化氢的水溶液或磷酸溶液。
13.如权利要求1所述鳍式场效应管的形成方法,其特征在于,所述阻挡层的厚度为
14.如权利要求13所述鳍式场效应管的形成方法,其特征在于,所述钝化层的厚度为
15.如权利要求1所述鳍式场效应管的形成方法,其特征在于,采用湿法刻蚀工艺去除所述钝化侧墙。
16.如权利要求1所述鳍式场效应管的形成方法,其特征在于,采用选择性外延工艺形成所述应力层。
17.如权利要求16所述鳍式场效应管的形成方法,其特征在于,所述应力层的材料为SiGe、SiGeB、SiC或SiCP。
18.如权利要求1所述鳍式场效应管的形成方法,其特征在于,在形成所述阻挡层之前,在所述隔离层表面形成横跨至少一个所述鳍部的栅极结构,且所述栅极结构覆盖鳍部的部分顶部表面和侧壁表面;形成所述阻挡层,所述阻挡层覆盖于鳍部顶部和侧壁表面、隔离层表面以及栅极结构顶部和侧壁表面。
CN201410445807.6A 2014-09-03 2014-09-03 鳍式场效应管的形成方法 Active CN105470132B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410445807.6A CN105470132B (zh) 2014-09-03 2014-09-03 鳍式场效应管的形成方法
US14/837,370 US9613868B2 (en) 2014-09-03 2015-08-27 Fin field-effect transistors and fabrication methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410445807.6A CN105470132B (zh) 2014-09-03 2014-09-03 鳍式场效应管的形成方法

Publications (2)

Publication Number Publication Date
CN105470132A CN105470132A (zh) 2016-04-06
CN105470132B true CN105470132B (zh) 2018-08-10

Family

ID=55403396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410445807.6A Active CN105470132B (zh) 2014-09-03 2014-09-03 鳍式场效应管的形成方法

Country Status (2)

Country Link
US (1) US9613868B2 (zh)
CN (1) CN105470132B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391200B2 (en) * 2014-06-18 2016-07-12 Stmicroelectronics, Inc. FinFETs having strained channels, and methods of fabricating finFETs having strained channels
KR20160143942A (ko) * 2015-06-04 2016-12-15 삼성전자주식회사 반도체 소자의 제조 방법
US9847330B2 (en) * 2016-02-05 2017-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor and method for fabricating the same
CN107591436B (zh) * 2016-07-07 2020-07-10 中芯国际集成电路制造(上海)有限公司 鳍式场效应管及其形成方法
CN107731686A (zh) * 2016-08-12 2018-02-23 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
US9806078B1 (en) * 2016-11-02 2017-10-31 Globalfoundries Inc. FinFET spacer formation on gate sidewalls, between the channel and source/drain regions
EP3539154A4 (en) * 2016-11-08 2020-06-03 Applied Materials, Inc. GEOMETRIC CONTROL OF PRESSURE COLUMNS FOR SAMPLE APPLICATIONS
US10134902B2 (en) * 2016-12-15 2018-11-20 Taiwan Semiconductor Manufacturing Company, Ltd. PMOS FinFET
CN109671777B (zh) * 2017-10-13 2021-10-15 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
KR102403031B1 (ko) * 2017-10-19 2022-05-27 삼성전자주식회사 반도체 장치
US10734238B2 (en) 2017-11-21 2020-08-04 Lam Research Corporation Atomic layer deposition and etch in a single plasma chamber for critical dimension control
US10515815B2 (en) * 2017-11-21 2019-12-24 Lam Research Corporation Atomic layer deposition and etch in a single plasma chamber for fin field effect transistor formation
US10658174B2 (en) 2017-11-21 2020-05-19 Lam Research Corporation Atomic layer deposition and etch for reducing roughness
US10373912B2 (en) 2018-01-05 2019-08-06 International Business Machines Corporation Replacement metal gate processes for vertical transport field-effect transistor
US10446394B2 (en) 2018-01-26 2019-10-15 Lam Research Corporation Spacer profile control using atomic layer deposition in a multiple patterning process
US10312150B1 (en) * 2018-03-13 2019-06-04 Globalfoundries Inc. Protected trench isolation for fin-type field-effect transistors
KR102376804B1 (ko) * 2018-03-26 2022-03-21 에스케이하이닉스 주식회사 저유전율스페이서를 구비한 반도체장치 및 그 제조 방법
US10672905B2 (en) 2018-08-21 2020-06-02 International Business Machines Corporation Replacement metal gate process for vertical transport field-effect transistor with self-aligned shared contacts
US10672670B2 (en) 2018-08-21 2020-06-02 International Business Machines Corporation Replacement metal gate process for vertical transport field-effect transistors with multiple threshold voltages
US10714399B2 (en) 2018-08-21 2020-07-14 International Business Machines Corporation Gate-last process for vertical transport field-effect transistor
CN110858544B (zh) * 2018-08-22 2023-11-21 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN111755515A (zh) * 2019-03-27 2020-10-09 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其形成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646599A (zh) * 2012-04-09 2012-08-22 北京大学 一种大规模集成电路中FinFET的制备方法
CN103383918A (zh) * 2012-05-04 2013-11-06 联华电子股份有限公司 具有金属栅极的半导体结构及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770516B2 (en) * 2002-09-05 2004-08-03 Taiwan Semiconductor Manufacturing Company Method of forming an N channel and P channel FINFET device on the same semiconductor substrate
KR100634372B1 (ko) * 2004-06-04 2006-10-16 삼성전자주식회사 반도체 소자들 및 그 형성 방법들
US8383503B2 (en) * 2009-08-05 2013-02-26 GlobalFoundries, Inc. Methods for forming semiconductor structures using selectively-formed sidewall spacers
US8664060B2 (en) * 2012-02-07 2014-03-04 United Microelectronics Corp. Semiconductor structure and method of fabricating the same
US20130270638A1 (en) * 2012-04-13 2013-10-17 International Business Machines Corporation Strained soi finfet on epitaxially grown box
US8796695B2 (en) * 2012-06-22 2014-08-05 United Microelectronics Corp. Multi-gate field-effect transistor and process thereof
US8980701B1 (en) * 2013-11-05 2015-03-17 United Microelectronics Corp. Method of forming semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646599A (zh) * 2012-04-09 2012-08-22 北京大学 一种大规模集成电路中FinFET的制备方法
CN103383918A (zh) * 2012-05-04 2013-11-06 联华电子股份有限公司 具有金属栅极的半导体结构及其制作方法

Also Published As

Publication number Publication date
CN105470132A (zh) 2016-04-06
US20160064379A1 (en) 2016-03-03
US9613868B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
CN105470132B (zh) 鳍式场效应管的形成方法
CN106684144B (zh) 半导体结构的制造方法
CN105280498B (zh) 半导体结构的形成方法
CN105719969B (zh) 鳍式场效应管的形成方法
CN104810368B (zh) Cmos晶体管及其形成方法
CN106486375B (zh) 半导体结构的形成方法
CN106847683B (zh) 提高鳍式场效应管性能的方法
CN109994547A (zh) 半导体器件及其形成方法
CN105448730B (zh) 半导体结构及其形成方法
CN106373924A (zh) 半导体结构的形成方法
CN107785266B (zh) 半导体结构的制造方法
CN109390235A (zh) 半导体结构及其形成方法
CN106486350A (zh) 半导体结构的形成方法
CN104241130B (zh) Pmos晶体管及其形成方法、半导体器件及其形成方法
CN106952908A (zh) 半导体结构及其制造方法
CN109979986B (zh) 半导体器件及其形成方法
CN105261566B (zh) 半导体结构的形成方法
CN108511523A (zh) 半导体结构及其形成方法
CN105226023A (zh) 半导体器件的形成方法
CN104681424B (zh) 晶体管的形成方法
CN106158638B (zh) 鳍式场效应晶体管及其形成方法
CN109148296A (zh) 半导体结构及其形成方法
CN109962014A (zh) 半导体结构及其形成方法
CN106206305B (zh) 半导体结构的形成方法
CN105336616B (zh) 半导体结构的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant