CN105452162A - 半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置 - Google Patents

半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置 Download PDF

Info

Publication number
CN105452162A
CN105452162A CN201480042945.8A CN201480042945A CN105452162A CN 105452162 A CN105452162 A CN 105452162A CN 201480042945 A CN201480042945 A CN 201480042945A CN 105452162 A CN105452162 A CN 105452162A
Authority
CN
China
Prior art keywords
graphene
lattice matching
matching material
semiconductor structure
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480042945.8A
Other languages
English (en)
Inventor
罗伊·E·米迪
苏密特·C·潘迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to CN201810775899.2A priority Critical patent/CN109166785A/zh
Publication of CN105452162A publication Critical patent/CN105452162A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/881Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being a two-dimensional material
    • H10D62/882Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/472High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having lower bandgap active layer formed on top of wider bandgap layer, e.g. inverted HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/822Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/8303Diamond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/685Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明揭示一种半导电石墨烯结构,其可包含石墨烯材料及所述石墨烯材料的至少一部分上方的石墨烯晶格匹配材料,其中所述石墨烯晶格匹配材料具有在所述石墨烯材料的晶格常数或键长的倍数的约5%内的晶格常数。所述半导电石墨烯结构可具有至少约0.5eV的能量带隙。本发明还揭示一种对石墨烯材料的能量带隙进行改质的方法,其可包含在石墨烯材料的至少一部分上方形成石墨烯晶格匹配材料,所述石墨烯晶格匹配材料具有在所述石墨烯材料的晶格常数或键长的倍数的约5%内的晶格常数。

Description

半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置
优先权主张
本申请案主张于2013年7月30日提出申请的标题为“半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置(SEMICONDUCTINGGRAPHENESTRUCTURES,METHODSOFFORMINGSUCHSTRUCTURESANDSEMICONDUCTORDEVICESINCLUDINGSUCHSTRUCTURES)”的第13/954,017号美国专利申请案的申请日期的权益。
技术领域
在各个实施例中,本发明一般来说涉及半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置。更具体来说,本发明的实施例涉及具有石墨烯材料及与所述石墨烯材料直接接触的石墨烯晶格匹配材料的半导电石墨烯结构,以及形成此类结构的方法。
背景技术
硅已用于制作各种半导体装置,包含场效应晶体管(FET)装置。硅的处理极限通常被认为约10nm线宽。随着持续要求在增加速度及整合密度的同时减小半导体装置的大小,硅半导体材料正逐渐接近其处理极限。
石墨烯为单个原子层(即,单层)的石墨。石墨烯具有二维结构且在平面方向上导电。石墨烯晶格包含以具有120度的碳-碳键角、的碳-碳键长(ro,g)及约的晶格常数的六方阵列布置的碳原子。石墨烯具有近似15,000cm2/Vs的高电荷迁移率、超过1×108A/cm2的高载流能力及卓越的导热性。因此,正在研究将石墨烯作为用于在各种半导体装置(包含FET装置)中替换硅的下一代材料。
石墨烯为零能量带隙材料(即,在石墨烯的导带与价带之间不存在能隙)。相反,半导体材料在导带与价带之间具有能量带隙。由于石墨烯的零能量带隙,因此石墨烯具有非常大的关断电流且因此具有非常小的操作电流的接通/关断比率(下文中为“接通/关断比率”)。此低接通/关断比率限制FET装置的大整合及高速操作。此外,由于石墨烯的非常大的关断电流,因此使用未改质石墨烯(即,大面积石墨烯)的FET装置无法被关断且不适合于逻辑应用。
已做出各种尝试来改质(即,打开)石墨烯的能量带隙结构。一种方法为通过将未改质石墨烯切割成小于数十纳米的窄带(被称为石墨烯纳米带)而在一个维度上限制所述未改质石墨烯。石墨烯纳米带的能量带隙与纳米带的宽度成反比。因此,为获得具有对常规FET装置有用的能量带隙的石墨烯,需要具有界限分明边缘的非常窄的石墨烯纳米带。迄今,制造具有均匀宽度的数纳米大小、减小的边缘粗糙度及卓越质量的石墨烯已成为挑战。因此,尽管石墨烯纳米带具有卓越特性,但将石墨烯纳米带整合到半导体装置(例如,FET装置)中仍受限制。
已研究将石墨烯-硅氢化物结构用于制作三极管装置,其中可通过调整栅极电压以控制石墨烯-硅肖特基(schottky)势垒来实现约105的接通/关断比率。尽管石墨烯具有零能量带隙,但在石墨烯与硅的界面处不存在费米(Fermi)能级钉扎允许势垒的高度变成0.2eVs。
第8,247,806号美国专利揭示一种具有石墨烯通道层的FET装置。尽管石墨烯具有零能量带隙,但通过将电压施加到栅极结构,借此改变费米表面的能级来增加FET装置的接通/关断比率。
需要对石墨烯的能量带隙进行改质以允许在半导体装置中使用石墨烯来替换硅基材料的方法。
此外,需要与标准互补金属氧化物半导体(CMOS)处理技术兼容且可以最小数目个处理动作制造的FET装置。
附图说明
图1A是具有六方晶体结构的碳酸镁(MgCO3)的结构的等角视图;
图1B是石墨烯晶格的结构的等角视图;
图1C是在六方MgCO3上具有石墨烯材料的半导电石墨烯结构的结构侧视图;
图2A是展示石墨烯(G)与石墨烯晶格匹配材料(GLM)之间的晶体对准的俯视图,其中石墨烯晶格匹配材料的单胞向量()与石墨烯晶格向量对准;
图2B是展示石墨烯(G)与石墨烯晶格匹配材料(GLM)之间的晶体对准的俯视图,其中石墨烯晶格匹配材料的单胞向量()与石墨烯键对准;
图3A展示未改质石墨烯的电子状态密度(EDOS),如将密度泛函理论(DFT)与平面波及杂化泛函(HSE06)一起使用所计算;
图3B展示块体六方MgCO3的电子状态密度(EDOS),如将密度泛函理论(DFT)与平面波及杂化泛函(HSE06)一起使用所计算;
图3C展示包含石墨烯及石墨烯上方的MgCO3石墨烯晶格匹配材料的半导电石墨烯结构的电子状态密度(EDOS),如将密度泛函理论(DFT)与平面波及杂化泛函(HSE06)一起使用所计算;
图4A是实施例的半导体装置的侧视图;
图4B是展示沿着图4A中所展示的半导体装置的侧视图的对应能带的图表;且
图5是另一实施例的半导体装置的侧视图。
具体实施方式
以下描述提供具体细节(例如,材料类型、材料厚度及处理条件),以便提供对本发明的实施例的透彻描述。然而,所属领域的技术人员将理解,可在不采用这些具体细节的情况下实践本发明的实施例。实际上,本发明的实施例可结合工业中所采用的常规制作技术来实践。
另外,本文中所提供的描述不形成用于形成半导体装置结构的完整过程流程,且下文所描述的半导体装置结构不形成完整半导体装置。下文仅详细地描述用于理解本发明的实施例所必需的所述过程动作及结构。可通过常规制作技术执行用于形成完整半导体装置的额外动作。申请案所附的图式也仅出于说明性目的,且因此不必按比例描绘。图之间共有的元件可保持相同的数字标示。
如本文中所使用,关于给定参数、性质或条件的术语“实质上”意指所属领域的技术人员将理解以小程度差异(例如,在可接受的制造公差内)符合给定参数、性质或条件的程度。
如本文中所使用,术语“衬底”意指且包含在其上形成额外材料的基底材料或构造。举例来说,衬底可为半导体衬底、支撑结构上的基底半导体材料、金属电极或者其上形成有一或多个材料、结构或区的半导体衬底。衬底可为常规硅衬底或包括半导电材料层的其它块体衬底。如本文中所使用,术语“块体衬底”不仅意指且包含硅晶片,而且还意指且包含绝缘体上硅(SOI)衬底(例如蓝宝石上硅(SOS)衬底及玻璃上硅(SOG)衬底)、基底半导体基础上的硅外延层,或其它半导体或光电子材料,例如硅-锗(Si1-xGex,其中x是(举例来说)介于0.2与0.8之间的摩尔分数)、锗(Ge)、砷化镓(GaAs)、氮化镓(GaN)或磷化铟(InP)以及其它。此外,当在以下说明中提及“衬底”时,可能已进行先前过程动作以在基底半导体结构或基础中形成材料、区或结。在一个实施例中,衬底为含硅材料,例如硅衬底。衬底可经掺杂或未经掺杂。在一个实施例中,衬底可为p掺杂多晶硅。在一个实施例中,衬底为经氧化Si材料(例如,举例来说常规100-mm氧化硅材料)上的经结晶Cu(111)材料。在另一实施例中,衬底为碳化硅。
半导电石墨烯结构可包含石墨烯材料及石墨烯材料的至少一部分上方的石墨烯晶格匹配材料,其中所述石墨烯晶格匹配材料具有在石墨烯的晶格常数或键长的倍数的约±5%内的晶格常数。石墨烯的晶格常数为约且其键长为约距离为石墨烯的键长的三倍。具有在此距离(其为约)的±5%内的晶格常数的六方材料将为相对于石墨烯键长匹配的石墨烯晶格。通过形成在石墨烯材料上方含氧的石墨烯晶格匹配材料(其中石墨烯晶格匹配材料的晶格常数在石墨烯材料的键长的5%内),将石墨烯材料从导电材料转化成半导电材料。在石墨烯晶格匹配材料与石墨烯材料之间的界面处将所述石墨烯晶格匹配材料键结到所述石墨烯材料。利用具有在此范围外部的晶格常数的石墨烯晶格匹配材料可在石墨烯与石墨烯晶格匹配材料的界面处导致显著应变,使晶体结构断裂,且增加晶格弛豫的可能性。晶体结构的此断裂可形成缺陷状态,此又使性能降级。可设想额外石墨烯晶格匹配材料,所述石墨烯晶格匹配材料包含不同整数倍数(例如,一倍、二倍、四倍等)且除匹配石墨烯的键长以外还匹配石墨烯的晶格常数。
在一些实施例中,石墨烯晶格匹配材料可具有拥有在石墨烯的晶格常数或键长的倍数的约±5%内的晶格常数的六方晶体结构。
具有六方晶体结构及在石墨烯的键长的倍数的约±5%内的晶格常数的石墨烯晶格匹配材料的非限制性实例包含碳酸镁(MgCO3)或硼酸铝。然而,如下文更详细地描述,其它材料也可用作石墨烯晶格匹配材料。
图1A是具有碳原子(C)、镁原子(Mg)及氧原子(O)标示的六方MgCO3结构的等角视图。MgCO3的单胞尺寸近似4.45(X轴)、4.45(Y轴)及13.71(Z轴)。由于六方MgCO3的晶格常数在石墨烯的键长的倍数的约±5%内,因此碳酸镁可用作石墨烯晶格匹配材料。石墨烯与MgCO3之间的键结是稳定的,其中与石墨烯接触的每氧原子具有0.8eV的键能。
图1B图解说明为单层石墨的石墨烯结构的等角视图。
图1C是半导电石墨烯结构的结构侧视图,其中六方MgCO3用作石墨烯晶格匹配材料且形成于石墨烯上方以对石墨烯的能量带隙进行改质。石墨烯晶格匹配材料键结到石墨烯。石墨烯晶格匹配材料可形成为足够厚的以防止泄漏或直接隧穿。在图1A及1C中,MgCO3展示为具有三个单层,其中一个单层为与石墨烯介接(即,反应)的外部单层。MgCO3的外部单层上的氧原子可键结到石墨烯的碳原子。
尽管图1A及1C展示具有三个单层的MgCO3,但应理解MgCO3可具有少于三个单层或多于三个单层。
在一些实施例中,半导电石墨烯材料可包含石墨烯晶格匹配材料单层。在一些实施例中,半导电石墨烯材料可包含多于三个石墨烯晶格匹配材料单层以防止可导致直接隧穿的非所要泄漏问题。
形成半导电石墨烯结构的方法可包含在石墨烯材料上方形成石墨烯晶格匹配材料,其中所述石墨烯晶格匹配材料具有在石墨烯材料的晶格常数或键长的倍数的约±5%内的晶格常数。
可使用任何常规方法在石墨烯材料上方形成石墨烯晶格匹配材料。以非限制性实例的方式,可使用原子层沉积(ALD)、化学气相沉积(CVD)、物理气相沉积(PVD)或外延生长过程在石墨烯材料上方形成石墨烯晶格匹配材料。在一些实施例中,石墨烯晶格匹配材料可键结到石墨烯材料。石墨烯晶格匹配材料与石墨烯材料可在所述两种材料的界面处反应。以非限制性实例的方式,可在石墨烯晶格匹配材料在石墨烯材料上生长期间通过退火或通过施加热量来将石墨烯晶格匹配材料键结到石墨烯材料。
石墨烯晶格匹配材料的周期性可影响石墨烯晶格匹配材料的单胞向量与石墨烯的叠对及对准。可在选择石墨烯晶格匹配材料时考虑以下两个因素以实现石墨烯与石墨烯晶格匹配材料之间的晶体对准:石墨烯晶格匹配材料的单胞向量的方向,以及单胞向量的量值。
单胞向量的方向可支配石墨烯晶格匹配材料相对于石墨烯的定向。图2A及2B展示在石墨烯(G)上方具有六方晶体结构的石墨烯晶格匹配材料(GLM)的两个不同定向。六方石墨烯晶格匹配材料(GLM,以虚线表示)覆叠于石墨烯(G)的二维晶体结构上方。石墨烯晶格匹配材料(GLM)的单胞向量可如在图2A中所展示与石墨烯晶格向量对准,或如在图2B中所展示与石墨烯键对准。图2A与2B之间的主要差异为石墨烯晶格匹配材料(GLM)的单胞与石墨烯晶格的相对定向。
在图2A中,石墨烯晶格匹配材料(GLM)的单胞向量与石墨烯晶格向量对准。向量展示石墨烯晶格匹配材料的单胞的适当定向,其中向量可定义如下:
a ^ d , 1 = 3 a g · x ^
a ^ d , 2 = 3 2 a g · x ^ - 3 2 a g · y ^
a g = 3 · r 0 , g
其中r0,g为石墨烯键长,ag为石墨烯晶格常数,x为x轴方向上的单位向量,且为y轴方向上的单位向量。
在图2B中,石墨烯晶格匹配材料(GLM)的单胞向量与石墨烯键对准。向量展示石墨烯晶格匹配材料(GLM)的单胞的适当定向,其中向量可定义如下:
a ^ d , 1 = - 3 a g · y ^
a ^ d , 2 = - 3 2 a g · x ^ - 3 2 a g · y ^
a g = 3 · r 0 , g
其中r0,g为石墨烯键长,ag为石墨烯晶格常数,x为x轴方向上的单位向量,且为y轴方向上的单位向量。
除单胞向量的方向(即,石墨烯晶格匹配材料相对于石墨烯晶格的定向)以外,向量的量值支配石墨烯材料与石墨烯晶格匹配材料之间的适当晶体对准。
为实现石墨烯与石墨烯晶格匹配材料之间的所要周期性对准(其中石墨烯晶格匹配材料的单胞向量与石墨烯晶格向量对准),所述石墨烯晶格匹配材料的单胞向量的量值可为石墨烯材料的晶格常数(ag)的m倍,如下文在方程式(1)中所展示:
ad=m.ag±5%m.ag———(1)
为实现石墨烯与石墨烯晶格匹配材料之间的所要周期性对准(其中石墨烯晶格匹配材料的单胞向量与石墨烯键对准),所述石墨烯晶格匹配材料的单胞向量的量值可为石墨烯材料的石墨烯键长(ro,g)的m倍,如下文在方程式(2)中所展示:
ad=m.ro,g±5%m.ro,g———(2)
石墨烯晶格匹配材料在石墨烯上的形成可对石墨烯材料的能量带隙进行改质而不实质上变更石墨烯材料的周期性。
半导电石墨烯结构可具有至少约0.5eV的能量带隙。在一些实施例中,半导电石墨烯结构可具有从约1eV到约2eV的能量带隙。
可将密度泛函理论(DFT)与平面波及杂化泛函(例如,HSE06、B3LYP等)一起使用来计算未改质石墨烯材料、石墨烯晶格匹配材料及半导电石墨烯结构的电子状态密度(EDOS)。图3A、3B及3C分别展示未改质石墨烯、块体六方MgCO3以及具有石墨烯及六方MgCO3的半导电石墨烯结构的EDOS。
如在图3A中所展示,未改质石墨烯的能量带隙为0。六方MgCO3的能量带隙为约7.27eV,如在图3B中所展示。具有石墨烯及作为石墨烯晶格匹配材料的六方MgCO3的半导电石墨烯结构具有约1.7eV的能量带隙,如在图3C中所展示。因此,可通过在石墨烯材料上形成六方MgCO3来将石墨烯的能量带隙从0eV增加到近似1.7eV。因此,半导电石墨烯结构可在各种半导体装置(包含但不限于FET、三极管、二极管或电阻性开关装置)中用作对基于硅的材料的替代方案。
此外,六方MgCO3具有约7.27eV的能量带隙(如在图3B中所展示)及约8.1的电容率。因此,其还可用作电介质材料(例如,FET装置的栅极电介质材料)。
除MgCO3以外,具有在石墨烯材料的晶格常数或键长的倍数的约±5%内的晶格常数的其它晶体结构也可用作石墨烯晶格匹配材料。石墨烯晶格匹配材料的进一步非限制性实例可为Ni3TeO6、Li2ReO3、LiNbO3、NiTiO3、MgTiO3、MgSiO3、FeTiO3、GeMnO3、LiAsO3、Al2O3、Ti2O3、Rh2O3、Fe2O3、Cr2O3、CaCO3、V2O3、LuBO3、MnCO3、FeCO3、Ga2O3、YbBO3或NaNO3
在一些实施例中,常规经氧化Si晶片(例如,100-mmSi晶片)上的经结晶Cu(111)可用作衬底。如在所属领域中已知的,可在常规经氧化100-mmSi晶片上的经结晶Cu(111)材料上生长石墨烯。在于经结晶Cu(111)结构上形成石墨烯之后,可在石墨烯上方形成石墨烯晶格匹配材料以产生半导电石墨烯结构。
所述半导电石墨烯结构可用于采用常规制作处理技术且可以最小数目个处理动作制造的各种半导体结构及装置的制作中。
在一个实施例中,半导电石墨烯结构用于采用用于FET装置的常规制作处理技术的FET装置的制作中,本文不对所述常规制作处理技术进行详细描述。
半导体装置(例如,FET装置)可包含源极、漏极、栅极结构以及邻近于源极及漏极中的至少一者的半导电石墨烯结构,其中所述半导电石墨烯结构可包含石墨烯材料及所述石墨烯材料的至少一部分上方的石墨烯晶格匹配材料,所述石墨烯晶格匹配材料具有在石墨烯材料的晶格常数或键长的倍数的约±5%内的晶格常数。
在一些实施例中,半导体装置的源极及漏极中的至少一者可包含未改质石墨烯。
在一些实施例中,半导电石墨烯结构的石墨烯晶格匹配材料可与栅极结构直接接触,且因此也用作栅极电介质材料。
在一些实施例中,FET装置可在石墨烯晶格匹配材料与栅极结构之间进一步包含栅极电介质材料。
图4A是一个实施例的半导体装置400的侧视图,其中所述装置包含源极(401)、漏极(402)、半导电石墨烯结构(403)、栅极结构(404)及衬底(410)。源极(401)及漏极(402)各自包含石墨烯材料(G)。半导电石墨烯结构(403)邻近于源极(401)及漏极(402)。半导电石墨烯结构(403)包含石墨烯材料(G)及所述石墨烯材料的至少一部分上方的石墨烯晶格匹配材料(GLM)。石墨烯晶格匹配材料(GLM)与栅极结构(404)直接接触;因此,半导电石墨烯结构(403)的石墨烯晶格匹配材料(GLM)也可用作栅极电介质材料。
图4B是展示沿着图4A中所展示的半导体装置的侧视图的对应能带的图表。源极(401)及漏极(402)中的每一者由未改质石墨烯制成;因此各自展现零能量带隙。位于源极(401)与漏极(402)之间的半导电石墨烯结构(403)展示约1.7eV的能量带隙。
图5是一个实施例的半导体装置500的侧视图,其中所述装置包含衬底(510)、源极(501)、漏极(502)、将源极(510)连接到漏极(502)且包含半导电石墨烯结构(503)的通道材料、栅极结构(504)以及半导电石墨烯结构(503)与栅极结构(504)之间的栅极电介质材料(505)。半导电石墨烯结构(503)可包含石墨烯材料(G)及所述石墨烯材料的至少一部分上方的石墨烯晶格匹配材料(GLM)。
尽管展示了图4A的半导体装置400及图5的半导体装置500,但应理解可形成半导体装置的其它结构。作为非限制性实例,所述半导体装置可具有如在图4A及5中所展示的上部栅极结构,其中所述栅极结构安置于半导电石墨烯结构、源极及漏极上方。另外,作为另一非限制性实例,所述半导体装置可具有下部栅极结构,其中所述栅极结构安置于半导电石墨烯结构、源极及漏极下方。
尽管本发明易于得出各种修改及替代形式,但已在图式中以实例方式展示且在本文中详细描述具体实施例。然而,本发明并不打算限制于所揭示的特定形式。而是,本发明将涵盖归属于由以上所附权利要求书及其合法等效形式定义的本发明范围内的所有修改、等效及替代形式。

Claims (20)

1.一种半导体结构,其包括:
石墨烯材料;及
石墨烯晶格匹配材料,其在所述石墨烯材料的至少一部分上方,所述石墨烯晶格匹配材料具有在所述石墨烯材料的晶格常数或键长的倍数的约±5%内的晶格常数。
2.根据权利要求1所述的半导体结构,其中所述半导体结构具有至少约0.5eV的能量带隙。
3.根据权利要求1所述的半导体结构,其中所述半导体结构具有从约1eV到约2eV的能量带隙。
4.根据权利要求1所述的半导体结构,其中所述石墨烯晶格匹配材料为石墨烯晶格匹配含氧材料。
5.根据权利要求1所述的半导体结构,其包括在所述石墨烯材料上方的多于三个单层或少于三个单层的所述石墨烯晶格匹配材料。
6.根据权利要求1所述的半导体结构,其包括在所述石墨烯材料上方的至少三个单层的所述石墨烯晶格匹配材料。
7.根据权利要求1所述的半导体结构,其中所述石墨烯晶格匹配材料为电介质材料。
8.根据权利要求1所述的半导体结构,其中所述石墨烯晶格匹配材料展现六方晶体结构。
9.根据权利要求1所述的半导体结构,其中所述石墨烯晶格匹配材料包括选自由以下各项组成的群组的材料:碳酸镁、硼酸铝、Ni3TeO6、Li2ReO3、LiNbO3、NiTiO3、MgTiO3、MgSiO3、FeTiO3、GeMnO3、LiAsO3、Al2O3、Ti2O3、Rh2O3、Fe2O3、Cr2O3、CaCO3、V2O3、LuBO3、MnCO3、FeCO3、Ga2O3、YbBO3及NaNO3
10.根据权利要求1所述的半导体结构,其进一步包括经氧化硅材料上的经结晶Cu(111)材料,所述石墨烯材料在所述经结晶Cu(111)材料上。
11.一种半导体装置,其包括:
源极;
漏极;
栅极结构;及
根据权利要求1到10中任一权利要求所述的半导体结构,所述半导体结构邻近于所述源极及所述漏极中的至少一者。
12.根据权利要求11所述的半导体装置,其中所述源极及所述漏极中的至少一者包括未改质石墨烯。
13.根据权利要求11所述的半导体装置,其中所述石墨烯晶格匹配材料与所述栅极结构直接接触。
14.根据权利要求11所述的半导体装置,其进一步包括上覆于所述半导电石墨烯结构的所述石墨烯晶格匹配材料上的栅极电介质材料,所述栅极结构上覆于所述栅极电介质材料上。
15.一种对石墨烯材料的能量带隙进行改质的方法,所述方法包括:
在石墨烯材料的至少一部分上方形成石墨烯晶格匹配材料,所述石墨烯晶格匹配材料具有在所述石墨烯材料的晶格常数或键长的倍数的约±5%内的晶格常数。
16.根据权利要求15所述的方法,其中在石墨烯材料的至少一部分上方形成石墨烯晶格匹配材料包括在所述石墨烯材料的所述至少一部分上方形成所述石墨烯晶格匹配材料而不使所述石墨烯材料的周期性交替。
17.根据权利要求15所述的方法,其中在石墨烯材料的至少一部分上方形成石墨烯晶格匹配材料包括将所述石墨烯晶格匹配材料键结到所述石墨烯材料。
18.根据权利要求15所述的方法,其中在石墨烯材料的至少一部分上形成石墨烯晶格匹配材料包括将所述石墨烯材料的能量带隙增加到约至少0.5eV。
19.根据权利要求15所述的方法,其中在石墨烯材料的至少一部分上方形成石墨烯晶格匹配材料包括将所述石墨烯晶格匹配材料的单胞向量与所述石墨烯材料的晶格向量对准。
20.根据权利要求15所述的方法,其中在石墨烯材料的至少一部分上方形成石墨烯晶格匹配材料包括将所述石墨烯晶格匹配材料的单胞向量与所述石墨烯材料的石墨烯键对准。
CN201480042945.8A 2013-07-30 2014-07-15 半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置 Pending CN105452162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810775899.2A CN109166785A (zh) 2013-07-30 2014-07-15 半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/954,017 US8901666B1 (en) 2013-07-30 2013-07-30 Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures
US13/954,017 2013-07-30
PCT/US2014/046611 WO2015017117A1 (en) 2013-07-30 2014-07-15 Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810775899.2A Division CN109166785A (zh) 2013-07-30 2014-07-15 半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置

Publications (1)

Publication Number Publication Date
CN105452162A true CN105452162A (zh) 2016-03-30

Family

ID=51948358

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480042945.8A Pending CN105452162A (zh) 2013-07-30 2014-07-15 半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置
CN201810775899.2A Pending CN109166785A (zh) 2013-07-30 2014-07-15 半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810775899.2A Pending CN109166785A (zh) 2013-07-30 2014-07-15 半导电石墨烯结构、形成此类结构的方法及包含此类结构的半导体装置

Country Status (7)

Country Link
US (2) US8901666B1 (zh)
EP (1) EP3027556B1 (zh)
JP (1) JP6043022B2 (zh)
KR (1) KR101817020B1 (zh)
CN (2) CN105452162A (zh)
TW (1) TWI488310B (zh)
WO (1) WO2015017117A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783997A (zh) * 2016-12-05 2017-05-31 北京大学 一种高迁移率晶体管及其制备方法
CN113193037A (zh) * 2021-04-01 2021-07-30 北京大学 Ga2O3基共振隧穿二极管及其制备方法
CN114946037A (zh) * 2020-03-27 2022-08-26 新电元工业株式会社 宽带隙半导体装置及宽带隙半导体装置的制造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures
WO2017022577A1 (ja) * 2015-08-06 2017-02-09 株式会社村田製作所 歪抵抗素子、圧力センサ、歪ゲージ、加速度センサおよび角速度センサ
KR102465353B1 (ko) 2015-12-02 2022-11-10 삼성전자주식회사 전계 효과 트랜지스터 및 이를 포함하는 반도체 소자
US10665799B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
US10665798B2 (en) 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
US10170702B2 (en) * 2017-01-12 2019-01-01 International Business Machines Corporation Intermetallic contact for carbon nanotube FETs
CN108281357A (zh) * 2017-12-27 2018-07-13 中国人民解放军国防科技大学 基于Al2O3介质栅衬底制备二维材料场效应管的方法
KR102483991B1 (ko) * 2018-02-13 2022-12-30 성균관대학교산학협력단 마이크로 버블 집적구조체 및 이의 제조방법
DE102018214302B4 (de) * 2018-08-23 2020-07-30 Infineon Technologies Ag Verfahren zum Herstellen eines graphenbasierten Sensors
US11257962B2 (en) 2019-05-02 2022-02-22 Micron Technology, Inc. Transistors comprising an electrolyte, semiconductor devices, electronic systems, and related methods
CN110038557B (zh) * 2019-05-20 2022-02-11 中国科学院海洋研究所 一种电催化GOx/MnCO3复合材料及其制备和应用
CN111640800B (zh) * 2020-04-30 2023-04-11 中国科学院微电子研究所 一种半导体器件及其制备方法
KR102768322B1 (ko) * 2022-06-29 2025-02-13 충남대학교산학협력단 메트리뷰진 검출용 복합체 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385126A (zh) * 2006-02-16 2009-03-11 卢森特技术有限公司 包括外延生长在单晶衬底上的石墨烯层的器件
CN102097461A (zh) * 2009-11-10 2011-06-15 宋健民 实质上具有晶格匹配的半导体材料及其制造方法
CN102184849A (zh) * 2011-04-27 2011-09-14 中国科学院上海微系统与信息技术研究所 石墨烯基场效应晶体管的制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732859B2 (en) 2007-07-16 2010-06-08 International Business Machines Corporation Graphene-based transistor
US7781061B2 (en) * 2007-12-31 2010-08-24 Alcatel-Lucent Usa Inc. Devices with graphene layers
JP2009277803A (ja) * 2008-05-13 2009-11-26 Fujitsu Ltd 半導体装置、半導体装置の製造方法およびトランジスタ
US8198707B2 (en) * 2009-01-22 2012-06-12 Board Of Regents, The University Of Texas System Establishing a uniformly thin dielectric layer on graphene in a semiconductor device without affecting the properties of graphene
KR101156620B1 (ko) 2009-04-08 2012-06-14 한국전자통신연구원 그라핀 채널층을 가지는 전계 효과 트랜지스터
US20120161098A1 (en) * 2009-08-20 2012-06-28 Nec Corporation Substrate, manufacturing method of substrate, semiconductor element, and manufacturing method of semiconductor element
WO2011025045A1 (ja) * 2009-08-31 2011-03-03 独立行政法人科学技術振興機構 グラフェン薄膜とその製造方法
FR2952471A1 (fr) * 2009-11-09 2011-05-13 Commissariat Energie Atomique Graphene epitaxie sur sic, ayant un gap ouvert et une mobilite comparable a celle du graphene standard a gap nul
US8344358B2 (en) * 2010-09-07 2013-01-01 International Business Machines Corporation Graphene transistor with a self-aligned gate
WO2012051597A2 (en) * 2010-10-15 2012-04-19 The Regents Of The University Of California Organometallic chemistry of extended periodic ii-electron systems
WO2012070385A1 (ja) * 2010-11-24 2012-05-31 富士電機株式会社 グラフェンを含む導電性薄膜および透明導電膜
TWI570809B (zh) * 2011-01-12 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US20120276718A1 (en) * 2011-04-27 2012-11-01 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Method of fabricating graphene-based field effect transistor
TWI550828B (zh) * 2011-06-10 2016-09-21 住友化學股份有限公司 半導體裝置、半導體基板、半導體基板之製造方法及半導體裝置之製造方法
WO2012174040A1 (en) 2011-06-17 2012-12-20 University Of North Texas Direct graphene growth on mgo (111) by physical vapor deposition: interfacial chemistry and band gap formation
TW201304104A (zh) 2011-07-11 2013-01-16 United Microelectronics Corp 矽穿孔結構以及形成矽穿孔結構的方法
US20140212671A1 (en) * 2011-07-14 2014-07-31 Jeffry Kelber Direct Growth of Graphene by Molecular Beam Epitaxy for the Formation of Graphene Heterostructures
TWI565062B (zh) * 2011-09-26 2017-01-01 聯華電子股份有限公司 半導體結構及其製程
US8878157B2 (en) * 2011-10-20 2014-11-04 University Of Kansas Semiconductor-graphene hybrids formed using solution growth
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385126A (zh) * 2006-02-16 2009-03-11 卢森特技术有限公司 包括外延生长在单晶衬底上的石墨烯层的器件
CN102097461A (zh) * 2009-11-10 2011-06-15 宋健民 实质上具有晶格匹配的半导体材料及其制造方法
CN102184849A (zh) * 2011-04-27 2011-09-14 中国科学院上海微系统与信息技术研究所 石墨烯基场效应晶体管的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEI LIAO,ET AL.: "Graphene–dielectric integration for graphene transistors", 《MATERIALS SCIENCE AND ENGINEERING R》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783997A (zh) * 2016-12-05 2017-05-31 北京大学 一种高迁移率晶体管及其制备方法
CN106783997B (zh) * 2016-12-05 2019-07-19 北京大学 一种高迁移率晶体管及其制备方法
CN114946037A (zh) * 2020-03-27 2022-08-26 新电元工业株式会社 宽带隙半导体装置及宽带隙半导体装置的制造方法
CN113193037A (zh) * 2021-04-01 2021-07-30 北京大学 Ga2O3基共振隧穿二极管及其制备方法

Also Published As

Publication number Publication date
TWI488310B (zh) 2015-06-11
US20150034908A1 (en) 2015-02-05
TW201513363A (zh) 2015-04-01
KR20160018872A (ko) 2016-02-17
WO2015017117A1 (en) 2015-02-05
EP3027556B1 (en) 2023-05-10
KR101817020B1 (ko) 2018-01-09
JP2016525790A (ja) 2016-08-25
EP3027556A1 (en) 2016-06-08
EP3027556A4 (en) 2017-04-12
JP6043022B2 (ja) 2016-12-14
CN109166785A (zh) 2019-01-08
US8901666B1 (en) 2014-12-02
US9349803B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
US9349803B2 (en) Semiconductor graphene structures, semiconductor devices including such structures, and related methods
Huyghebaert et al. 2D materials: roadmap to CMOS integration
US11031395B2 (en) Method of forming high performance MOSFETs having varying channel structures
Liu et al. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights
US8653599B1 (en) Strained SiGe nanowire having (111)-oriented sidewalls
CN101728427B (zh) 半导体晶体管
US9236474B2 (en) Method to form strained channel in thin box SOI structures by elastic strain relaxation of the substrate
JP5474175B2 (ja) 量子井戸デバイス、非平面型トランジスタおよび方法
US20140048774A1 (en) GRAPHENE NANORIBBONS AND CARBON NANOTUBES FABRICATED FROM SiC FINS OR NANOWIRE TEMPLATES
US9196730B1 (en) Variable channel strain of nanowire transistors to improve drive current
US9905421B2 (en) Improving channel strain and controlling lateral epitaxial growth of the source and drain in FinFET devices
Liu et al. Tuning the Schottky barrier height of the Pd–MoS 2 contact by different strains
TW201104867A (en) A vertical fin structure for a semiconductor transistor and method for fabricating the same
TW201730916A (zh) 用於製造奈米片堆疊結構的方法
TW202406095A (zh) 具有碳摻雜釋放層的單體互補場效電晶體
JP7164204B2 (ja) トンネル電界効果トランジスタおよび電子デバイス
CN110797387A (zh) 穿隧式场效晶体管
Yokoyama et al. High mobility metal S/D III–V-on-Insulator MOSFETs on a Si substrate using direct wafer bonding
Nishi et al. Thin body GaSb-OI P-mosfets on Si wafers fabricated by direct wafer bonding
TWI427785B (zh) 非平面鍺量子井裝置
Hui Novel III-V Device Architectures for Application in Advance CMOS Logic and Beyond

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160330

RJ01 Rejection of invention patent application after publication