CN108281357A - 基于Al2O3介质栅衬底制备二维材料场效应管的方法 - Google Patents

基于Al2O3介质栅衬底制备二维材料场效应管的方法 Download PDF

Info

Publication number
CN108281357A
CN108281357A CN201711444604.5A CN201711444604A CN108281357A CN 108281357 A CN108281357 A CN 108281357A CN 201711444604 A CN201711444604 A CN 201711444604A CN 108281357 A CN108281357 A CN 108281357A
Authority
CN
China
Prior art keywords
dimensional material
silicon chip
pva
pdms
gate dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711444604.5A
Other languages
English (en)
Inventor
张学骜
杨航
郑晓明
张仁彦
彭刚
王广
罗威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201711444604.5A priority Critical patent/CN108281357A/zh
Publication of CN108281357A publication Critical patent/CN108281357A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其包括:利用氢氟酸溶液除去掉原始硅片上的SiO2层;利用原子层沉积方法将Al2O3薄膜沉积在已去除掉SiO2层的硅片上;利用定点转移方法将二维材料转移到新制备的具备Al2O3栅极介电层的硅片上;利用带有二维材料的Al2O3栅极介电层的硅片,并通过微电子加工方法制备出二维材料场效应晶体管。本发明制备的二维材料场效应管具有较高的信号放大能力,因而能够保证其具有更高的集成度。

Description

基于Al2O3介质栅衬底制备二维材料场效应管的方法
技术领域
本发明涉及半导体器件——场效应管,特别是一种基于Al2O3介质栅衬底制备二维材料场效应管的方法。
背景技术
随着集成晶体管数目的日益增长,摩尔定律预示着芯片的特征尺寸在不久的将来就有望达到原子分子量级。当半导体电子器件特征尺寸进入10纳米尺度范围,各种量子效应会凸现出来并最终成为该尺度下的普遍行为,导致器件功能的失效。信息技术的强大需求牵引必将使器件的特征尺寸快速逼近物理极限,从微电子到纳米电子,器件材料也从三维半导体材料到低维量子结构。
自从石墨烯在2004年被发现以来,二维材料(例如石墨烯、黑磷、过渡金属硫族化合物等)引起了科学界的广泛关注。二维材料在逻辑器件、光电探测器、柔性触摸屏、射频器件等方面有着广泛的应用前景。由于光学干涉效应,二维材料的层数信息可以很容易地在二氧化硅/硅衬底上得以分辨,所以目前大多数的研究仍然是采用传统的层厚为300纳米的二氧化硅(SiO2)作为栅极介电层。然而,利用300纳米层厚的SiO2会大大降低器件的信号放大能力这一重要参数。于是,在SiO2衬底上制造的器件需要更高的背向栅极电压才能调控二维材料的费米能级,这并不利于大规模逻辑电路的集成。因此,如何改善和提高二维材料场效应管的信号放大能力,从而保证其具有更高的集成度,成为亟待解决的问题。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,以此来改善和提高器件的信号放大能力。
为解决上述技术问题,本发明采用的技术方案是:一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其包括下列步骤:
1)将表面覆盖有SiO2的原始硅片浸泡在摩尔比为3%-9%的氢氟酸溶液里以除去原始硅片上的SiO2层,形成初处理硅片;
2)以三甲基铝和蒸馏水为源,反应温度为250℃,利用原子层沉积方法在初处理硅片上生长Al2O3栅极介电层;
3)利用定点转移方法将二维材料转移到步骤2)得到的生长有Al2O3栅极介电层的硅片上,形成二维材料场效应管制备硅片;
4)利用二维材料场效应管制备硅片,并运用微电子加工技术制备出二维材料场效应晶体管。
上述方法中,所述原始硅片的掺杂类型为n++,电导率为0.01-0.02Ω·cm,栅极介电层为厚度为300nm的SiO2
上述方法中,所述在初处理硅片上生长Al2O3栅极介电层的方法为:
(1)将初处理硅片放入反应腔内,并通入氮气清洗20分钟;
(2)加热反应腔至250℃,设定升温时长为半小时;
(3)在反应腔内通入三甲基铝和蒸馏水,并设定三甲基铝的通入时间为5s,蒸馏水的通入时间为5s,切换阀门时间为0.02s,以此为一个周期,反应进行1000个周期;
(4)待Al2O3栅极介电层生长完毕,取出Al2O3栅极介电层厚度为70nm的硅片,即得。
上述方法中,所述二维材料为石墨烯、黑磷或过渡金属硫族化合物。
上述方法中,所述定点转移方法包括下列步骤:
(1)利用机械剥离法将二维材料剥离至表面覆盖有SiO2的原始硅片上;
(2)利用PDMS/PVA聚合物层将二维材料从原始硅片上转移到PVA上;
(3)将粘贴有二维材料的PVA重新粘贴至PDMS上,并将粘贴有二维材料的PDMS/PVA聚合物层盖在生长有Al2O3栅极介电层的硅片上,再次进行加热使PVA从PDMS上脱落而粘贴在生长有Al2O3栅极介电层的硅片表面,同时将PDMS取走;
(4)利用去离子水去除掉覆盖在二维材料上的牺牲层PVA,即将二维材料转移到生长有 Al2O3栅极介电层的硅片上。
上述方法中,所述利用PDMS/PVA聚合物层将二维材料从原始硅片上转移到PVA上的方法为:首先,在显微镜下将PDMS/PVA聚合物层覆盖在原始硅片上的二维材料表面,并对PDMS/PVA 聚合物层进行加热使PVA从PDMS上脱落而覆盖在原始硅片上,然后停止加热,揭开PDMS,使PVA依然粘附在原始硅片上,最后揭开PVA,二维材料从原始硅片上分离而粘附在PVA上。
上述方法中,运用微电子加工技术制备出二维材料场效应晶体管的方法为常规的场效应管制备方法。
通过实验研究表明,在Al2O3栅极介电层上的单层石墨烯的光学衬度明显优于传统的SiO2衬底(实验数据如图1所示),由此表明石墨烯在具有Al2O3栅极介电层的硅片上可以更容易地被区分。并且,由于具有Al2O3栅极介电层的硅片具有更小的介质厚度和更高的介电常数,石墨烯场效应的跨导提高了近10倍(实验数据如图2所示)。此外,该具有Al2O3栅极介电层的硅片同样适用于其他二维材料(如WS2),并使其跨导提高了约61.3倍(实验数据如图3所示)。总而言之,利用具有Al2O3栅极介电层的硅片可以显著提高基于二维材料的场效应晶体管的电学特性,为今后纳米电子逻辑器件的性能优化提供了一种有效的方法。
附图说明
图1为石墨烯在SiO2/Si衬底和Al2O3/Si衬底上的白光衬度谱。
图2石墨烯在SiO2/Si衬底和Al2O3/Si衬底上跨导对比图。
图3为WS2在SiO2/Si衬底和Al2O3/Si衬底上的跨导对比图。
图4为利用Al2O3介质栅衬底制备二维材料场效应管的流程示意图。
图5为定点转移流程示意图。
具体实施方式
如图4所示,本发明基于Al2O3介质栅衬底制备二维材料场效应管的方法其包括下列步骤:
一、将原始硅片(掺杂类型:n++,电导率:0.01~0.02Ω·cm,栅极介电层:300nmSiO2) 放置在摩尔比为5%(优选)的氢氟酸(HF)溶液里,浸泡约20分钟左右,目的是为了除去原来硅片上层厚为300nm的SiO2层。在这里,HF溶液的浓度不宜太高(>10%),否则会导致刻蚀不均匀,使刻蚀后硅片的粗糙平整度严重下降,导致后续的实验难以进行。同时,HF溶液的浓度不宜过低(<2%),否则会导致刻蚀速率变慢,难以将SiO2层充分刻蚀。
二、利用原子层沉积技术,以三甲基铝和蒸馏水为源(反应温度:250℃),将70nmAl2O3薄膜沉积在去除掉300nmSiO2的硅片上。在这里,为了生长出更加致密的Al2O3薄膜,具体方法为:(1)将去除掉300nmSiO2的硅片放入反应腔内,尽量保证该硅片不要远离进气口,使三甲基铝能够充分吸附在该硅片表面。(2)先通氮气进入反应腔内,清洗约20分钟。(3)加热反应腔至250℃,设定升温时长为半小时。(4)设定三甲基铝的通气时间为5s,蒸馏水的通气时间为5s,切换阀门时间为0.02s,以此为一个周期,反应进行1000个周期。(5)待生长完毕,取出长好层厚为70nm的Al2O3薄膜的硅片。
在硅片上生长好Al2O3薄膜后,通过椭偏仪对具体层厚进行标定。同时,利用原子力显微镜对薄膜平整度进行测试,以表征薄膜生长质量。
三、如图5所示,利用定点转移技术将二维材料(可以是石墨烯、黑磷、过渡金属硫族化合物等)转移到新制备的Al2O3介质栅衬底(生长好70nm Al2O3的硅片)上。具体方法为:(1)利用机械剥离法将二维材料(石墨烯或WS2)剥离至原始硅片(SiO2/Si衬底)上。在这里,不能直接将二维材料直接剥离在Al2O3栅极介电层衬底上。因为70nm的Al2O3薄膜容易在机械剥离的过程中被破坏掉。(2)在转移过程中,需要利用PDMS/PVA聚合物层将二维材料从SiO2/Si衬底上首先转移到PVA上。在显微镜下,将PDMS/PVA聚合物层准确盖在材料表面,利用加热板对PDMS/PVA聚合物层进行加热(加热温度:80℃),此时PVA会从PDMS上脱落,并覆盖在衬底上。停止加热后,利用镊子揭开PDMS,由于范德瓦尔斯力的作用,此时PVA会依然粘附在衬底上。利用镊子揭开PVA,此时材料会从衬底上分离,而粘附在PVA上。整个过程中,主要是利用了PVA薄膜在加热时与PDMS和SiO2/Si衬底间粘附力(范德瓦尔斯力) 的变化。(3)将粘贴有二维材料的PVA重新粘贴至PDMS上,此时由于温度降低,PVA可以粘贴在PDMS表面。将PDMS/PVA聚合物层盖在新制备的Al2O3栅极介电层衬底上,再次进行加热, PVA会从PDMS上脱落并粘贴在Al2O3栅极介电层衬底表面。利用镊子将PDMS取走。(4)最后利用去离子水去除掉覆盖在材料上的牺牲层(PVA),即可得到在Al2O3栅极介电层衬底上的二维材料。
四、通过微电子技工技术制备出场效应晶体管。在这里,详细介绍下所需的实验步骤:
(一)电子束曝光:(1)利用含有坐标位移台的光学显微镜对样品(在Al2O3栅极介电层衬底上的二维材料)的位置进行定位,记录下横、纵坐标值。(2)旋涂电子束曝光胶(型号:PMMA 950K)至样品基底(Al2O3栅极介电层衬底)上,参数为前转600r,持续10s,后转4000r,持续40s。(3)确定好坐标后,曝光出所需要的电极图形(参数为高压:10kV,孔径尺寸: 30μm,束电流:217.1pA)。(4)曝光完后,取出样品:在显影液中静置30s,定影液中静置 30s。然后取出样品,用气枪将样品表面残留的液体冲干净。
(二)电子束镀膜:(1)将曝光后的样品放入电子束镀膜机的超高真空腔内,利用机械泵和分子泵对腔体进行抽真空,持续时间需在8小时以上,以保证腔内的压强只有1×10- 5Pa。 (2)根据所需要镀的金属(纯度为99.995%),调整好相应的坩埚,并将高压枪的光斑聚焦到坩埚正中央。此时必须用挡板保护好样品,否则金属会直接蒸镀上去,影响我们对镀膜厚度的判断。(3)本实验中都是先镀的Ti,后镀的Au。设置好镀膜参数(沉积厚度:Ti:10nm, Au:50nm,蒸发率:Ti:Au:),打开挡板,镀膜机便自动开始镀膜。(4) 镀膜完成后,破掉电子束镀膜机的真空,取出样品,便完成镀膜操作。
(三)剥离工艺:(1)将镀好的硅片放入热丙酮内(约65℃),盖好玻璃板,防止丙酮挥发,静置5分钟以上。(2)待硅片上的金膜出现气泡时,将装有热丙酮和硅片的烧杯放置在超声波清洗机里进行超声处理,大概持续1秒钟后取出。(3)将剥离好的硅片放入异丙醇溶液里进行清洗约1分钟,取出后用气枪将表面残留的液体去除,即可得到所需要的微电子器件。

Claims (6)

1.一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其特征在于包括下列步骤:
1)将表面覆盖有SiO2的原始硅片浸泡在摩尔比为3%-9%的氢氟酸溶液里以除去原始硅片上的SiO2层,形成初处理硅片;
2)以三甲基铝和蒸馏水为源,反应温度为250℃,利用原子层沉积方法在初处理硅片上生长Al2O3栅极介电层;
3)利用定点转移方法将二维材料转移到步骤2)得到的生长有Al2O3栅极介电层的硅片上,形成二维材料场效应管制备硅片;
4)利用二维材料场效应管制备硅片,并运用微电子加工技术制备出二维材料场效应晶体管。
2.根据权利要求1所述的一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其特征在于:所述原始硅片的掺杂类型为n++,电导率为0.01-0.02Ω·cm,栅极介电层为厚度为300nm的SiO2
3.根据权利要求1所述的一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其特征在于所述在初处理硅片上生长Al2O3栅极介电层的方法为:
(1)将初处理硅片放入反应腔内,并通入氮气清洗20分钟;
(2)加热反应腔至250℃,设定升温时长为半小时;
(3)在反应腔内通入三甲基铝和蒸馏水,并设定三甲基铝的通入时间为5s,蒸馏水的通入时间为5s,切换阀门时间为0.02s,以此为一个周期,反应进行1000个周期;
(4)待Al2O3栅极介电层生长完毕,取出Al2O3栅极介电层厚度为70nm的硅片,即得。
4.根据权利要求1所述的一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其特征在于:所述二维材料为石墨烯、黑磷或过渡金属硫族化合物。
5.根据权利要求1所述的一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其特征在于所述定点转移方法包括下列步骤:
(1)利用机械剥离法将二维材料剥离至表面覆盖有SiO2的原始硅片上;
(2)利用PDMS/PVA聚合物层将二维材料从原始硅片上转移到PVA上;
(3)将粘贴有二维材料的PVA重新粘贴至PDMS上,并将粘贴有二维材料的PDMS/PVA聚合物层盖在生长有Al2O3栅极介电层的硅片上,再次进行加热使PVA从PDMS上脱落而粘贴在生长有Al2O3栅极介电层的硅片表面,同时将PDMS取走;
(4)利用去离子水去除掉覆盖在二维材料上的牺牲层PVA,即将二维材料转移到生长有Al2O3栅极介电层的硅片上。
6.根据权利要求4所述的一种基于Al2O3介质栅衬底制备二维材料场效应管的方法,其特征在于所述利用PDMS/PVA聚合物层将二维材料从原始硅片上转移到PVA上的方法为:首先,在显微镜下将PDMS/PVA聚合物层覆盖在原始硅片上的二维材料表面,并对PDMS/PVA聚合物层进行加热使PVA从PDMS上脱落而覆盖在原始硅片上,然后停止加热,揭开PDMS,使PVA依然粘附在原始硅片上,最后揭开PVA,二维材料从原始硅片上分离而粘附在PVA上。
CN201711444604.5A 2017-12-27 2017-12-27 基于Al2O3介质栅衬底制备二维材料场效应管的方法 Withdrawn CN108281357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711444604.5A CN108281357A (zh) 2017-12-27 2017-12-27 基于Al2O3介质栅衬底制备二维材料场效应管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711444604.5A CN108281357A (zh) 2017-12-27 2017-12-27 基于Al2O3介质栅衬底制备二维材料场效应管的方法

Publications (1)

Publication Number Publication Date
CN108281357A true CN108281357A (zh) 2018-07-13

Family

ID=62802404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711444604.5A Withdrawn CN108281357A (zh) 2017-12-27 2017-12-27 基于Al2O3介质栅衬底制备二维材料场效应管的方法

Country Status (1)

Country Link
CN (1) CN108281357A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065258A (zh) * 2018-07-23 2018-12-21 华东师范大学 一种在二维材料上制备金属电极的方法
CN110702702A (zh) * 2019-09-06 2020-01-17 华东师范大学 一种定点转移二维材料到超薄低应力氮化硅悬空膜的方法
CN113200523A (zh) * 2021-03-25 2021-08-03 华南师范大学 一种大面积层状二维材料的剥离及其转移方法
CN114152857A (zh) * 2021-12-07 2022-03-08 华东师范大学 一种二维材料场效应晶体管失效样品的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931057A (zh) * 2012-11-16 2013-02-13 中国科学院上海微系统与信息技术研究所 一种基于栅介质结构的石墨烯场效应器件及其制备方法
US20140077161A1 (en) * 2011-03-02 2014-03-20 The Regents Of The University Of California High performance graphene transistors and fabrication processes thereof
CN103840003A (zh) * 2014-02-21 2014-06-04 西安电子科技大学 以三氧化二铝为栅介质的双栅石墨烯晶体管及其制备方法
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140077161A1 (en) * 2011-03-02 2014-03-20 The Regents Of The University Of California High performance graphene transistors and fabrication processes thereof
CN102931057A (zh) * 2012-11-16 2013-02-13 中国科学院上海微系统与信息技术研究所 一种基于栅介质结构的石墨烯场效应器件及其制备方法
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures
CN103840003A (zh) * 2014-02-21 2014-06-04 西安电子科技大学 以三氧化二铝为栅介质的双栅石墨烯晶体管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANG YANG,ETAL: "An Al2O3 Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials", 《NANOMATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065258A (zh) * 2018-07-23 2018-12-21 华东师范大学 一种在二维材料上制备金属电极的方法
CN110702702A (zh) * 2019-09-06 2020-01-17 华东师范大学 一种定点转移二维材料到超薄低应力氮化硅悬空膜的方法
CN110702702B (zh) * 2019-09-06 2021-11-19 华东师范大学 一种定点转移二维材料到超薄低应力氮化硅悬空膜的方法
CN113200523A (zh) * 2021-03-25 2021-08-03 华南师范大学 一种大面积层状二维材料的剥离及其转移方法
CN113200523B (zh) * 2021-03-25 2022-11-22 华南师范大学 一种大面积层状二维材料的剥离及其转移方法
CN114152857A (zh) * 2021-12-07 2022-03-08 华东师范大学 一种二维材料场效应晶体管失效样品的制备方法

Similar Documents

Publication Publication Date Title
CN108281357A (zh) 基于Al2O3介质栅衬底制备二维材料场效应管的方法
CN109727846B (zh) 大面积制备金属相与半导体相接触的二维碲化钼面内异质结的方法及应用
CN103151245B (zh) 薄膜图形化方法
CN110648922A (zh) 一种二维过渡金属硫属化合物薄膜大面积转移的方法及其应用
WO2013086686A1 (zh) 一种高速低功耗相变存储器的制备方法
CN101117208A (zh) 一种制备一维硅纳米结构的方法
CN105036106A (zh) 一种超高定向导热碳基复合材料的制备方法
CN107539976A (zh) 一种二氧化碳制备超洁净石墨烯的方法
CN110854013A (zh) 一种大面积连续超薄二维Ga2O3非晶薄膜的制备方法与应用
TW202021904A (zh) 石墨烯膠膜的製備方法及石墨烯的轉移方法
CN111362258A (zh) 一种蜂蜡作支撑层的石墨烯薄膜转移方法
CN109972087A (zh) 一种微电极沉积掩膜的制备方法
CN108732791A (zh) 一种极化率可控的可变波长二维旋光器件及其制备方法
CN111653648A (zh) 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途
US20190256998A1 (en) Location-specific growth and transfer of single crystalline tmd monolayer arrays
Zhang et al. Enhanced UV detection performance of a CdZnTe-based photodetector through surface polishing treatments
CN110676384A (zh) 一种氮化硼封装的二维有机-无机异质结及其制备方法
WO2024198252A1 (zh) 微晶硅薄膜沉积工艺的研究方法及其应用
CN109087849A (zh) 一种石墨烯辅助的定位生长钙钛矿薄膜的方法
CN108417475A (zh) 一种基于界面诱导生长的金属纳米结构阵列的制备方法
CN104882378A (zh) 一种基于氧等离子体工艺的纳米介质层制备方法
CN111206284B (zh) 一种硒化钯单晶及其制备和应用
JP2875984B2 (ja) 付着力のあるダイヤモンド薄膜の蒸着方法
CN107344730A (zh) 一种氧化锌纳米柱阵列的制备方法
Wang et al. Effect of the Different Substrates and the Film Thickness on the Surface Roughness of Step Structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180713