CN111653648A - 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途 - Google Patents

基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途 Download PDF

Info

Publication number
CN111653648A
CN111653648A CN202010476967.2A CN202010476967A CN111653648A CN 111653648 A CN111653648 A CN 111653648A CN 202010476967 A CN202010476967 A CN 202010476967A CN 111653648 A CN111653648 A CN 111653648A
Authority
CN
China
Prior art keywords
electron beam
transition metal
substrate
metal sulfide
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010476967.2A
Other languages
English (en)
Inventor
颜晓红
罗壮
王权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010476967.2A priority Critical patent/CN111653648A/zh
Publication of CN111653648A publication Critical patent/CN111653648A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本发明属于探测器技术领域,提供了一种基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途,通过将作为等离激元阵列的金纳米圆盘阵列蒸镀至二维二硫化钼光探测器的沟道中,实现了不同背栅电压下的二硫化钼激子与等离激元之间相互作用的动态调控,克服了二维半导体量子效率低的问题,改善了二维光探测器光吸收及发光效率低的问题。

Description

基于表面等离激元电调制过渡金属硫化物激子束缚能的光探 测器、制备方法及用途
技术领域
本发明涉及探测器技术领域,特别二硫化钼光探测器,为一种基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途。
背景技术
随着光电信息化日益发达的今天,传统探测器构型难以突破光学衍射极限,因此突破衍射极限光场的片上集成的需求已迫在眉睫。
二维半导体材料层间通过范德华力接触,面内呈完美单晶,电子态完备,载流子类似在高速公路上运输,具有较高的响应速度,在光电探测器等诸多领域具有广泛的应用前景。然而以二硫化钼为代表的过渡金属硫化物的光吸收及量子发光效率低,限制了在原子尺度平面材料的光电器件领域的应用,本文提出了一种基于表面等离激元电调制二硫化钼激子束缚能的器件,通过调节背栅电压获得二硫化钼激子与等离激元之间相互作用的动态调控,进而增强二硫化钼的激子束缚能并提升其量子效率。
发明内容
针对基于二维过渡金属硫化物光吸收效率低、量子效率低的问题,本发明提出了一种基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法,以提高检测灵敏度。
本发明是通过以下技术措施构成的技术方案实现的。
基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器的制备方法,其特征在于,包括以下步骤:
步骤1:使用丙酮、异丙醇(IPA)和去离子水依次对SiO2/Si基板表面进行超声清洗;
步骤2:通过微机械剥离法将过渡金属硫化物直接转移至SiO2/Si基板上;
步骤3:在SiO2/Si基板上面旋涂一层电子束光刻胶;
步骤4:采用电子束光刻直写机在电子束光刻胶上刻蚀出呈正方形阵列排列的十字标记阵列,用于对待蚀刻电极图案进行精确定位;之后分别在AR 600-546及异丙醇(IPA)中完成电子束光刻后的显影和定影操作,得到后续套刻所需的标记图形;
步骤5:利用无掩模激光直写机完成对套刻区域的位置标定,接着利用L-edit或Auto CAD完成所需套刻的金属电极的图形绘制,之后再次采用电子束光刻法在单层过渡金属硫化物区域刻蚀出源-漏电极图案,并完成显影及定影操作;再通过超高真空多功能多腔室电子束蒸发镀膜系统(JEB2-ADV)先沉积一层黏附层,再沉积一层电极材料;沉积完成后,利用脱膜液去除掉剩余的电子束光刻胶,得到的金属块作为源-漏金属电极;
步骤6:再次在基板上旋涂电子束光刻胶,运用电子束光刻直写机在器件的沟道中套刻出周期性的纳米圆盘阵列,之后完成显影定影操作;
步骤7:通过JEB2-ADV沉积一层Au做为等离激元;沉积完成后,利用脱膜液去除掉剩余的电子束光刻胶,得到基于表面等离激元电调制过渡金属硫化物激子束缚能的器件。
进一步地,步骤2中,所述过渡金属硫化物为单层二硫化钼。
进一步地,步骤1中,所述超声功率为40W,清洗的时间为5分钟;步骤2中,所述清洗方式为洗瓶冲洗法,热台烘烤参数分别为:90℃,5~10min,60℃15~20s。
进一步地,步骤3中所述电子束光刻胶的旋涂转速为2500r/min,旋涂时间为60s,厚度为250nm;电子束光刻工艺参数为:束流大小为300pA,加速电压为125kV;“十字”标记的参数:深度为250nm,长度为1mm,宽度为5μm。
进一步地,步骤5中,所述JEB2-ADV的镀膜速率为
Figure BDA0002516160410000021
黏附层为Ti,厚度为5nm;电极材料为Au,厚度为4 5nm;蒸镀完成后立即将基板置于脱膜液中。
进一步地,步骤6中,所述电子束光刻胶的旋涂转速为:2500r/min,旋涂时间为:60s,厚度为:250nm;电子束光刻工艺参数为:束流大小:300pA,加速电压:125kV;刻蚀的纳米圆盘阵列参数为:周期为:400nm,半径为:100nm。
进一步地,步骤7中,所述JEB2-ADV的蒸镀速率为
Figure BDA0002516160410000022
等离激元的厚度为40nm;蒸镀完成后立即将基板置于脱膜液中。
进一步地,步骤3、步骤6中的电子束光刻胶型号为AR-P 6200.09;步骤5、步骤7中脱膜液为AR 600-71。
所述制备方法用于制备基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器。
所述的光探测器用于探测可见光。
本发明的有益效果为:
由于二维半导体材料层间是范德华力接触,面内呈完美单晶,电子态完备,载流子类似在高速公路上运输,具有较高的响应速度,在光电探测器方面具有广泛的应用前景。然而以二硫化钼为代表的过渡金属硫化物的光吸收及量子发光效率低,限制了在原子尺度平面材料的光电器件领域的应用,本发明提出了一种基于表面等离激元电调制二硫化钼激子束缚能的光探测器。利用金属纳米圆盘阵列的表面等离激元共振实现了不同偏压下对单层二硫化钼的电荷掺杂以及对材料激子束缚能的动态调控,相比于本征二硫化钼,表面等离激元使二硫化钼的激子束缚能提升了15meV,能够有效提升所述光探测器的检测灵敏度。
附图说明
图1在SiO2/Si基板上直接转移单层二硫化钼样品的结构示意图。
图2在SiO2/Si基板上旋涂AR-P 6200.09的结构示意图。
图3在AR-P 6200.09上光刻“十字”标记阵列的结构示意图。
图4在AR-P 6200.09上光刻源-漏金属电极的结构示意图。
图5器件完成lift-off后的结构示意图。
图6在SiO2/Si基板上再次旋涂AR-P 6200.09的结构示意图。
图7在金属电极中间光刻纳米圆盘阵列的结构示意图。
图8负载金纳米圆盘阵列的器件结构示意图。
图中:
1-Si;2-SiO2介质层;3-单层二硫化钼;4-AR-P 6200.09;5-“十字”标记;6-漏极电极;7-纳米圆盘阵列。
具体实施方法
下面通过具体实施实例进一步说明本发明的实质性特点和显著的进步,但本发明绝非仅仅限于所述的实施例。
实施例1:
步骤1:使用丙酮、异丙醇(IPA)和去离子水依次对SiO2/Si基板表面进行超声清洗,其中:超声功率为40W,清洗的时间为5分钟。之后使用氮气气枪干燥衬底,并置于热台上90℃烘烤5~10min,关闭热台。
步骤2:剪取长度为5~6cm的胶带作为母带,并用平头镊夹取天然二硫化钼块体置于胶带上,轻轻按压块体二硫化钼后,用镊子夹取放回样品盒;重复剪取5~6cm长度胶带作为目标带,采用“十字交叉法”与母带进行贴合,保证胶带贴合良好,并用手匀速撕开重合母带和目标带,并重复6~8次并观察目标带上块体透明度变化,直至目标带表面块体二硫化钼的金属光泽变淡。最后,将目标胶带置于操作台上,用镊子夹持硅片衬底“倒扣”在胶带上;轻轻用手对硅片匀速施加力,持续大概10~15s,直至胶带和SiO2/Si基板完全贴合后置于热台上加热15~20s,关闭热态并剥离目标带,使单层二硫化钼被转移到SiO2/Si基板上,结果如图1所示。
步骤3:在SiO2/Si基板上面旋涂一层电子束光刻胶ARP-6200.09:旋涂机的转速为2500r/min,旋涂时间为60s,最终在SiO2/Si基板上获得厚度为250nm的AR-P 6200.09。在涂敷光刻胶后,使用丙酮将基板背面清洁干净以防止残胶污染热板及曝光机样品台,并影响曝光精度。之后将基板放置于150℃的热板上烘烤60s以清除光刻胶中的残留水分,如图2所示,在SiO2/Si基板与二硫化钼上覆盖一层电子束光刻胶4。
步骤4:采用电子束光刻直写机在电子束光刻胶上刻蚀出5行*5列的十字标记阵列,用于对待蚀刻电极图案进行精确定位;之后分别在AR 600-546及异丙醇(IPA)中完成电子束光刻后的显影和定影操作,得到后续套刻所需的标记图形。电子束光刻工艺参数为:束流大小为300pA,加速电压为125kV。显影参数为:显影剂采用AR 600-546,浸泡时间为50s;定影参数为:定影剂选用IPA,浸泡时间为15s。显影后所得的“十字”标记的参数:深度为250nm,长度为1mm,宽度为5μm,如图3所示。
步骤5:利用无掩模激光直写机完成对套刻区域的位置标定,接着利用L-edit或Auto CAD完成所需套刻的金属电极的图形绘制。之后再次采用电子束光刻法在单层二硫化钼区域区域刻蚀出源-漏电极图案,并完成显影及定影操作。
利用电子束光刻法在单层二硫化钼区域刻蚀源-漏电极图案,结果如图4所示。
再通过超高真空多功能多腔室电子束蒸发镀膜系统(JEB2-ADV)先沉积一层Ti材料作为黏附层,再沉积一层Au材料作为电极材料;沉积的Ti材料厚度为5nm,Au材料厚度为45nm。沉积完成后,将基板置于脱膜液AR 600-71中浸泡,至金属层表面发生褶皱,利用脱膜液去除掉剩余的电子束光刻胶,利用注射器抽取干净的脱膜液吹拭表面金属层,得到的金属块作为源-漏金属电极,如图5所示。
步骤6:再次在基板上旋涂电子束光刻胶ARP-6200.09,利用电子束光刻法在单层二硫化钼区域内刻蚀纳米圆盘阵列图案,工艺参数为:束流大小300pA,加速电压125kV;阵列参数为:周期为400nm,半径为100nm,如图6所示。
步骤7:通过JEB2-ADV直接在二硫化钼区域沉积40nm厚的Au做为等离激元;之后将基板置于去胶液AR 600-71中浸泡至金属层表面发生褶皱后,利用注射器抽取干净的去胶液吹拭表面金属层,得到了用于调控二硫化钼激子束缚能的器件,如图7所示。
首先将完成步骤5所得的器件接入电路中,确定其背栅电压施加范围为:-100~100V,然后通过差分反射光谱及光致发光光谱获取单一电压下二硫化钼的吸收谱及荧光光谱,接着通过拟合计算判断二硫化钼中的激子峰位置。接着完成步骤6及步骤7后,再次在相同电压范围内扫描器件的吸收谱及荧光光谱。若本征二硫化钼光探测器中激子束缚能为Eb1,负载金纳米圆盘阵列的二硫化钼激子束缚能为Eb2,则表面等离激元增强的激子束缚能为ΔEb=Eb2-Eb1。制备的器件在10K温度下可以使二硫化钼的负电激子束缚能得到30meV的增强,对比这种负电激子的束缚能在本征状态下的60meV的束缚能,增强了一半。
采用场效应晶体管模型,以Si为背栅电极,SiO2为栅氧,将源-漏电极引出接地,检测本发明在目标环境中二硫化钼激子束缚能的变化,最终使目标环境中二硫化钼的量子发光效率提升了3倍以上。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

1.基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器的制备方法,其特征在于,包括以下步骤:
步骤1:使用丙酮、异丙醇(IPA)和去离子水依次对SiO2/Si基板表面进行超声清洗;
步骤2:通过微机械剥离法将过渡金属硫化物直接转移至SiO2/Si基板上;
步骤3:在SiO2/Si基板上面旋涂一层电子束光刻胶;
步骤4:采用电子束光刻直写机在电子束光刻胶上刻蚀出呈正方形阵列排列的十字标记阵列,用于对待蚀刻电极图案进行精确定位;之后分别在AR 600-546及异丙醇(IPA)中完成电子束光刻后的显影和定影操作,得到后续套刻所需的标记图形;
步骤5:利用无掩模激光直写机完成对套刻区域的位置标定,接着利用L-edit或AutoCAD完成所需套刻的金属电极的图形绘制,之后再次采用电子束光刻法在单层过渡金属硫化物区域刻蚀出源-漏电极图案,并完成显影及定影操作;再通过超高真空多功能多腔室电子束蒸发镀膜系统(JEB2-ADV)先沉积一层黏附层,再沉积一层电极材料;沉积完成后,利用脱膜液去除掉剩余的电子束光刻胶,得到的金属块作为源-漏金属电极;
步骤6:再次在基板上旋涂电子束光刻胶,运用电子束光刻直写机在器件的沟道中套刻出周期性的纳米圆盘阵列,之后完成显影定影操作;
步骤7:通过JEB2-ADV沉积一层Au做为等离激元;沉积完成后,利用脱膜液去除掉剩余的电子束光刻胶,得到基于表面等离激元电调制过渡金属硫化物激子束缚能的器件。
2.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述过渡金属硫化物为单层二硫化钼。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述超声功率为40W,清洗的时间为5分钟;步骤2中,所述清洗方式为洗瓶冲洗法,热台烘烤参数分别为:90℃,5~10min,60℃15~20s。
4.根据权利要求1所述的制备方法,其特征在于,步骤3中所述电子束光刻胶的旋涂转速为2500r/min,旋涂时间为60s,厚度为250nm;电子束光刻工艺参数为:束流大小为300pA,加速电压为125kV;“十字”标记的参数:深度为250nm,长度为1mm,宽度为5μm。
5.根据权利要求1所述的制备方法,其特征在于,步骤5中,所述JEB2-ADV的镀膜速率为
Figure FDA0002516160400000011
黏附层为Ti,厚度为5nm;电极材料为Au,厚度为45nm;蒸镀完成后立即将基板置于脱膜液中。
6.根据权利要求1所述的制备方法,其特征在于,步骤6中,所述电子束光刻胶的旋涂转速为:2500r/min,旋涂时间为:60s,厚度为:250nm;电子束光刻工艺参数为:束流大小:300pA,加速电压:125kV;刻蚀的纳米圆盘阵列参数为:周期为:400nm,半径为:100nm。
7.根据权利要求1所述的制备方法,其特征在于,步骤7中,所述JEB2-ADV的蒸镀速率为
Figure FDA0002516160400000021
等离激元的厚度为40nm;蒸镀完成后立即将基板置于脱膜液中。
8.根据权利要求1所述的制备方法,其特征在于,步骤3、步骤6中的电子束光刻胶型号为AR-P 6200.09;步骤5、步骤7中脱膜液为AR 600-71。
9.将权利要求1~8任一项所述制备方法用于制备基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器。
10.权利要求9所述的光探测器用于探测可见光。
CN202010476967.2A 2020-05-29 2020-05-29 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途 Pending CN111653648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010476967.2A CN111653648A (zh) 2020-05-29 2020-05-29 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010476967.2A CN111653648A (zh) 2020-05-29 2020-05-29 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途

Publications (1)

Publication Number Publication Date
CN111653648A true CN111653648A (zh) 2020-09-11

Family

ID=72352730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010476967.2A Pending CN111653648A (zh) 2020-05-29 2020-05-29 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途

Country Status (1)

Country Link
CN (1) CN111653648A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410317A (zh) * 2021-06-22 2021-09-17 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN113528120A (zh) * 2021-07-19 2021-10-22 东南大学 基于双共振效应实现在非共振波长处的激子谷极化方法
CN113937618A (zh) * 2021-11-18 2022-01-14 西北工业大学 基于少层二维半导体材料形成布拉格激子极化激元的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565301A (zh) * 2018-04-08 2018-09-21 哈尔滨工业大学 基于金属表面等离子诱导双波段响应的光电探测器及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565301A (zh) * 2018-04-08 2018-09-21 哈尔滨工业大学 基于金属表面等离子诱导双波段响应的光电探测器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINSHUI MIAO,ET AL.: "Surface Plasmon-Enhanced Photodetection in Few Layer MoS 2 Phototransistors with Au Nanostructure Arrays", pages 2 - 8 *
LEE B ETAL.,: "Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice", NANO LETTERS, vol. 17, pages 4541 - 4547 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410317A (zh) * 2021-06-22 2021-09-17 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN113410317B (zh) * 2021-06-22 2023-02-07 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN113528120A (zh) * 2021-07-19 2021-10-22 东南大学 基于双共振效应实现在非共振波长处的激子谷极化方法
CN113528120B (zh) * 2021-07-19 2022-11-15 东南大学 基于双共振效应实现在非共振波长处的激子谷极化方法
CN113937618A (zh) * 2021-11-18 2022-01-14 西北工业大学 基于少层二维半导体材料形成布拉格激子极化激元的方法
CN113937618B (zh) * 2021-11-18 2024-04-09 西北工业大学 基于少层二维半导体材料形成布拉格激子极化激元的方法

Similar Documents

Publication Publication Date Title
CN111653648A (zh) 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途
CN103943513B (zh) 一种柔性衬底上制备石墨烯器件的方法
CN110850688B (zh) 一种铌酸锂薄膜表面制作光学微纳图形的方法
KR101265321B1 (ko) 스탬프 제조 방법, 그를 이용한 박막트랜지스터 및액정표시장치의 제조 방법
CN109801739A (zh) 一种高精度图案化可拉伸电极及其制备方法
JP2010522358A (ja) Ito電子ビームレジストの合成方法及びこれを利用したitoパターンの形成方法
CN101430503A (zh) 用于电子束光刻剥离的去除双层胶的方法
CN109437091A (zh) 一种在弹性衬底上制备微纳结构的方法
CN111220821A (zh) 一种金刚石afm探针系统及制作方法
CN113410317A (zh) 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN108281357A (zh) 基于Al2O3介质栅衬底制备二维材料场效应管的方法
CN111987173B (zh) 一种可集成的二维光电突触器件阵列及其制备方法
CN106505148A (zh) 一种基于迭片电极的有机薄膜场效应晶体管及其制备方法
CN111916524A (zh) 一种仿视网膜成像的硫化钼光探测器及其制备方法
CN111024016B (zh) 一种膜厚样片及膜厚样片的制备方法
CN111403485B (zh) 一种新型铁电晶体管及其制备方法
CN115207152A (zh) 硅光原位探测与调制一体化器件及其制备方法和应用
Amalathas et al. Enhancing the performance of solar cells with inverted nanopyramid structures fabricated by UV nanoimprint lithography
CN116230811B (zh) 一种基于铁电半导体材料的光电响应突触器件制备方法
US20200033656A1 (en) Method for forming pattern for liquid crystal orientation of zenithal bi-stable liquid crystal panel, liquid crystal orientation substrate including pattern formed thereby, and mask substrate used for forming pattern
Mizuno et al. Integration of light trapping silver nanostructures in hydrogenated microcrystalline silicon solar cells by transfer printing
Aidil et al. Fabrication and characterization of poly-Si nanowire with Thin Film of Ni/Au contact pad using conventional photolithography
CN108630759B (zh) 基于黑磷的具有高开关比低亚阀值摆幅的场效应晶体管
Cao et al. Recoverable Patterning of Macro-assembled Graphene Nanofilms
CN117737297A (zh) 基于二硫化钨场效应晶体管的核酸检测传感器及其在新冠病毒检测中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200911

RJ01 Rejection of invention patent application after publication