CN113528120A - 基于双共振效应实现在非共振波长处的激子谷极化方法 - Google Patents

基于双共振效应实现在非共振波长处的激子谷极化方法 Download PDF

Info

Publication number
CN113528120A
CN113528120A CN202110811775.7A CN202110811775A CN113528120A CN 113528120 A CN113528120 A CN 113528120A CN 202110811775 A CN202110811775 A CN 202110811775A CN 113528120 A CN113528120 A CN 113528120A
Authority
CN
China
Prior art keywords
exciton
resonance
valley
polarization
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110811775.7A
Other languages
English (en)
Other versions
CN113528120B (zh
Inventor
崔一平
黄磊
胡国华
林霖霞
王均耀
恽斌峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110811775.7A priority Critical patent/CN113528120B/zh
Publication of CN113528120A publication Critical patent/CN113528120A/zh
Application granted granted Critical
Publication of CN113528120B publication Critical patent/CN113528120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polarising Elements (AREA)

Abstract

本发明公开了一种基于双共振效应实现在非共振波长处的激子谷极化方法,通过入射激光激发手性微结构衬底在入射波长处的共振,实现对覆盖层的过渡金属硫化物的吸收与荧光增强,再利用过渡金属硫化物所产生的荧光激发衬底在激子共振波长处的共振,从而实现激子在非共振波长处的谷极化。其采用的基于过渡金属硫化物的准三维手性微结构可通过聚焦离子束刻蚀配合金属溅射的方法构建,且衬底所激发的表面等离子体共振能够有效的延长激子寿命,使得室温谷极化操作成为可能。

Description

基于双共振效应实现在非共振波长处的激子谷极化方法
技术领域
本发明涉及材料科学以及纳米光学技术领域,具体为一种利用双共振效应实现在非共振波长处的激子谷极化的方法、以及其相应的制备工艺。
背景技术
能量-动量色散的极值被称为谷。通常,它被视为一种新的可类比于电子自旋与电荷自由度的信息载体。其在新型光电子设计与自旋电子器件研发等领域具有重大的应用前景。
通过操作能-谷自由度可以有效地降低电子的输运损耗,使得器件性能获得质的提高。然而,由于缺少谷依赖的物理量,在传统的半导体材料中还很难实现能-谷自由度的操控。近些年,随着光子晶体、石墨烯等新型二维原子晶体材料的出现,为解决以上问题提供了一条可行途径。典型地,在单层过渡金属硫化物中(TMD),由于晶格的空间反演对称性破缺,会产生谷依赖的光学选择性定则,这使得能-谷自由度的操控可以通过圆偏振光选择性激发的方式实现。此外,强烈自旋-轨道耦合的存在将导致有效的自旋谷锁定行为,从而使得各种鲁棒性的自旋-谷极化可以在TMD材料中实现。例如:谷霍尔效应、谷塞曼分裂、以及层间谷极化激子等。
尽管这些优势,缺乏室温谷极化仍然阻碍着谷电子学的发展(限制于超短的谷寿命与谷间散射)。最近,范德华异质结以及等离子共振辅助的TMD 结构已被证实支持室温谷极化操作。然而,受限于复杂的手加工工艺,这些策略仍然有待改进。此外,现有的谷极化操作只存在带边一个极小的波长范围内。而对于实际的器件应用,人们往往期望一个更宽的操作范围。因此,如何扩展谷的操纵范围,使得非带边波长谷极化成为可能,需要进一步探究。
发明内容
发明目的:针对上述现有技术瓶颈,提出一种基于双共振效应实现在非共振波长处的激子谷极化方法。
技术方案:基于双共振效应实现在非共振波长处的激子谷极化方法,通过入射激光激发手性微结构衬底在入射波长处的共振,实现对覆盖层的过渡金属硫化物的吸收与荧光增强,再利用过渡金属硫化物所产生的荧光激发衬底在激子共振波长处的共振,从而实现激子在非共振波长处的谷极化。
进一步的,所述过渡金属硫化物为单层或多层的二硫化钼薄膜、二硫化钨薄膜或二硒化钼薄膜。
进一步的,所述手性微结构衬底为准三维手性微结构、二维手性超表面或三维手性超材料。
进一步的,制备所述准三维手性微结构包括如下步骤:
步骤1:在ITO/SiO2衬底上刻蚀出矩形纳米孔阵列;
步骤2:在纳米孔阵列上溅射一层金属薄膜,溅射的金属将进入纳米孔阵列中形成金属纳米棒,纳米孔阵列中对应的沉积位置处的金属薄膜形成变窄的纳米孔阵列;
步骤3:将旋转45°的矩形纳米孔阵列刻蚀在相应的金属纳米孔阵列位置,形成准三维手性微结构。
进一步的,所述步骤1和步骤3中,所述刻蚀采用聚焦离子束刻蚀、电子束刻蚀或湿法刻蚀,刻蚀的阵列周期为500 nm。
进一步的,所述步骤2中,所述溅射采用磁控溅射、热蒸镀或电子束蒸发,溅射的金属薄膜厚度为200 nm,溅射的金属为金、银、铝或铜。
进一步的,ITO薄膜的厚度为180 nm,所述步骤1和步骤3中,刻蚀的深度为200 nm。
进一步的,步骤1中在ITO薄膜上刻蚀的纳米孔与步骤3中刻蚀的旋转的矩形纳米孔的长宽均为:长度300 nm;宽度150 nm。
进一步的,过渡金属硫化物薄膜的生长方式采用化学气相沉积法或机械剥离法,将所述渡金属硫化物薄膜采用干法转移或湿法转移到所述准三维手性微结构上。
有益效果:本发明基于双共振效应,通过在激光的入射波长与激子的辐射波长分别激发表面等离子体共振,实现了在非共振波长处(激发波长远离激子的辐射波长)的激子谷极化,解决了在非共振波长处激子谷极化的难题。且基于溅射与刻蚀的方法为复杂的三维手性结构的设计提供了一条新的加工方案。此外,该方法能够克服低温环境影响,实现在室温条件下的激子谷极化。
附图说明
图1为本发明实施例基于二硫化钼加载的准三维手性结构的结构示意图;
图2为本发明实施例基于二硫化钼加载的准三维手性结构的加工流程示意图;
图3为本发明实施例基于二硫化钼加载的准三维手性结构的反射光谱与室温谷极化荧光光谱;
图4 为本发明实施例基于二硫化钼加载的准三维手性结构的瞬态荧光光谱。
具体实施方式
下面结合附图对本发明做更进一步的解释。
一种基于双共振效应实现在非共振波长处的激子谷极化方法,通过入射激光激发手性微结构衬底在入射波长处的共振,实现对覆盖层的过渡金属硫化物的吸收与荧光增强,再利用过渡金属硫化物所产生的荧光激发衬底在激子共振波长处的共振,从而实现激子在非共振波长处的谷极化。
如图1所示,实现上述方法的一种基于二硫化钼加载的准三维手性微结构,包括SiO2层1、 ITO薄膜层2、溅射的金属薄膜层3、旋转的金属矩形槽4、覆盖层的单层二硫化钼薄膜5。如图2所示,其制备方法具体为:
步骤1:在ITO/SiO2复合衬底上刻蚀出矩形纳米孔阵列;
步骤2:在纳米孔阵列上溅射一层金属薄膜,溅射的金属将进入纳米孔阵列中形成金属纳米棒,纳米孔阵列中对应的沉积位置处的金属薄膜形成变窄的纳米孔阵列;
步骤3:将旋转45°的矩形纳米孔阵列刻蚀在相应的金属纳米孔阵列位置,形成准三维手性微结构;
步骤4:通过转移,将单层二硫化钼薄膜转移到上述结构的上表面,完成样品的制备。
其中,步骤1中,ITO薄膜的厚度为180 nm。步骤1和步骤3中,刻蚀采用聚焦离子束刻蚀、电子束刻蚀或湿法刻蚀,刻蚀的阵列周期为500 nm。步骤2中,溅射采用磁控溅射、热蒸镀或电子束蒸发,溅射的金属薄膜厚度为200 nm,溅射的金属为金、银、铝或铜。步骤1中在ITO薄膜上刻蚀的纳米孔与步骤3中刻蚀的旋转的矩形纳米孔的长宽均为:长度300 nm;宽度150 nm,刻蚀的深度为200 nm。单层二硫化钼薄膜的生长方式采用化学气相沉积法或机械剥离法,将单层二硫化钼薄膜采用干法转移或湿法转移到准三维手性微结构上。
图3的(a)给出了基于二硫化钼加载的准三维手性微结构的反射光谱测量结果。在图中能很明显的观察两个共振谷分别出现在波长532 nm与660 nm处,这表明了双共振效应的激发。进一步,图3的(b)给出了在相应的非共振波长532nm激光入射情况下的谷极化光谱。对于左右旋圆偏振的激发,该光谱明显呈现了不一样偏振荧光强度,表明了在非共振波长处的谷极化激发。其操作机理解释如下:入射的激光可激发衬底在入射波长处的共振,进而实现对覆盖层二硫化钼的吸收以及荧光的增强。反过来,覆盖层二硫化钼所产生的荧光会与衬底相互作用,激发衬底在激子共振波长处的共振,从而实现了激子在非共振波长处的谷极化。此外,以上这些测试结果都是在室温条件下进行,验证了室温操作的可行性。
图4给出了在室温条件下测试的二硫化钼在结构表面与银表面的时间分辨荧光光谱,通过测试结果可以看出,设计的结构能够极大的增强辐射的荧光寿命,约40个皮秒,进而增强了在室温下实现激子谷极化的可能。
本发明中,过渡金属硫化物还可为单层二硫化钨薄膜、单层二硒化钼薄膜或其它单层/多层过渡金属硫化物。手性微结构衬底为还可采用二维手性超表面或三维手性超材料。对比于二维手性超表面,准三维手性微结构能产生更强的光学手性,有利于延长激子的谷极化寿命,更易于实现室温谷极化操作。本发明有望在未来的自旋电子器件、谷电子器件以及TMD基础的全光网络集成中获得应用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,通过入射激光激发手性微结构衬底在入射波长处的共振,实现对覆盖层的过渡金属硫化物的吸收与荧光增强,再利用过渡金属硫化物所产生的荧光激发衬底在激子共振波长处的共振,从而实现激子在非共振波长处的谷极化。
2.根据权利要求1所述的基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,所述过渡金属硫化物为单层或多层的二硫化钼薄膜、二硫化钨薄膜或二硒化钼薄膜。
3.根据权利要求1所述的基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,所述手性微结构衬底为准三维手性微结构、二维手性超表面或三维手性超材料。
4.根据权利要求3所述的基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,制备所述准三维手性微结构包括如下步骤:
步骤1:在ITO/SiO2衬底上刻蚀出矩形纳米孔阵列;
步骤2:在纳米孔阵列上溅射一层金属薄膜,溅射的金属将进入纳米孔阵列中形成金属纳米棒,纳米孔阵列中对应的沉积位置处的金属薄膜形成变窄的纳米孔阵列;
步骤3:将旋转45°的矩形纳米孔阵列刻蚀在相应的金属纳米孔阵列位置,形成准三维手性微结构。
5.根据权利要求4所述的基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,所述步骤1和步骤3中,所述刻蚀采用聚焦离子束刻蚀、电子束刻蚀或湿法刻蚀,刻蚀的阵列周期为500 nm。
6.根据权利要求4所述的基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,所述步骤2中,所述溅射采用磁控溅射、热蒸镀或电子束蒸发,溅射的金属薄膜厚度为200 nm,溅射的金属为金、银、铝或铜。
7.根据权利要求6所述的基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,ITO薄膜的厚度为180 nm,所述步骤1和步骤3中,刻蚀的深度为200 nm。
8.根据权利要求7所述的基于双共振效应实现在非共振波长处的激子谷极化方法,其特征在于,步骤1中在ITO薄膜上刻蚀的纳米孔与步骤3中刻蚀的旋转的矩形纳米孔的长宽均为:长度300 nm;宽度150 nm。
9.根据权利要求1-8任一所述的实现在非共振波长处的激子谷极化方法,其特征在于,过渡金属硫化物薄膜的生长方式采用化学气相沉积法或机械剥离法,将所述渡金属硫化物薄膜采用干法转移或湿法转移到所述准三维手性微结构上。
CN202110811775.7A 2021-07-19 2021-07-19 基于双共振效应实现在非共振波长处的激子谷极化方法 Active CN113528120B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110811775.7A CN113528120B (zh) 2021-07-19 2021-07-19 基于双共振效应实现在非共振波长处的激子谷极化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110811775.7A CN113528120B (zh) 2021-07-19 2021-07-19 基于双共振效应实现在非共振波长处的激子谷极化方法

Publications (2)

Publication Number Publication Date
CN113528120A true CN113528120A (zh) 2021-10-22
CN113528120B CN113528120B (zh) 2022-11-15

Family

ID=78100110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110811775.7A Active CN113528120B (zh) 2021-07-19 2021-07-19 基于双共振效应实现在非共振波长处的激子谷极化方法

Country Status (1)

Country Link
CN (1) CN113528120B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891497A (zh) * 2022-05-20 2022-08-12 北京大学 利用等离激元微腔增强声子辅助激子上转换发光的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105853A1 (en) * 2009-11-10 2012-05-03 The Regents Of The University Of California Sensing devices and techniques using 3-d arrays based on surface plasmon excitations
US20140168651A1 (en) * 2012-12-15 2014-06-19 Junpeng Guo Nanostructure diffraction gratings for integrated spectroscopy and sensing
CN106681081A (zh) * 2017-03-09 2017-05-17 华中科技大学 一种基于超表面和二维材料的高效非线性光偏振调制器及其制备方法
CN109782455A (zh) * 2019-01-31 2019-05-21 华中科技大学 一种单层二维材料中能谷光子的分离方法及分离装置
CN110199395A (zh) * 2016-11-16 2019-09-03 阿卜杜拉国王科技大学 第一层与过渡金属二硫属化物的第二层之间的横向异质结
CN110289345A (zh) * 2019-06-17 2019-09-27 中国人民解放军军事科学院国防科技创新研究院 一种定向发射且可调控的极化激元发光器件及其制造方法
CN111029416A (zh) * 2019-10-30 2020-04-17 北京大学 一种圆偏振光探测器件及其制备方法
CN111653648A (zh) * 2020-05-29 2020-09-11 江苏大学 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途
CN111722310A (zh) * 2019-03-21 2020-09-29 中国科学院微电子研究所 一种调制二维晶体禁带荧光偏振性的装置和方法
CN111896500A (zh) * 2020-06-28 2020-11-06 北京大学 基于金属纳米结构和单层TMDs复合体系折射率传感器及方法
CN112630869A (zh) * 2020-12-30 2021-04-09 中国人民解放军军事科学院国防科技创新研究院 基于衍射手性超材料的偏振器件及制备方法和光电子器件
CN112799259A (zh) * 2019-11-13 2021-05-14 北京大学 一种激子谷极化与光子拓扑态间的信息转换器件及其方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105853A1 (en) * 2009-11-10 2012-05-03 The Regents Of The University Of California Sensing devices and techniques using 3-d arrays based on surface plasmon excitations
US20140168651A1 (en) * 2012-12-15 2014-06-19 Junpeng Guo Nanostructure diffraction gratings for integrated spectroscopy and sensing
CN110199395A (zh) * 2016-11-16 2019-09-03 阿卜杜拉国王科技大学 第一层与过渡金属二硫属化物的第二层之间的横向异质结
CN106681081A (zh) * 2017-03-09 2017-05-17 华中科技大学 一种基于超表面和二维材料的高效非线性光偏振调制器及其制备方法
CN109782455A (zh) * 2019-01-31 2019-05-21 华中科技大学 一种单层二维材料中能谷光子的分离方法及分离装置
CN111722310A (zh) * 2019-03-21 2020-09-29 中国科学院微电子研究所 一种调制二维晶体禁带荧光偏振性的装置和方法
CN110289345A (zh) * 2019-06-17 2019-09-27 中国人民解放军军事科学院国防科技创新研究院 一种定向发射且可调控的极化激元发光器件及其制造方法
CN111029416A (zh) * 2019-10-30 2020-04-17 北京大学 一种圆偏振光探测器件及其制备方法
CN112799259A (zh) * 2019-11-13 2021-05-14 北京大学 一种激子谷极化与光子拓扑态间的信息转换器件及其方法
CN111653648A (zh) * 2020-05-29 2020-09-11 江苏大学 基于表面等离激元电调制过渡金属硫化物激子束缚能的光探测器、制备方法及用途
CN111896500A (zh) * 2020-06-28 2020-11-06 北京大学 基于金属纳米结构和单层TMDs复合体系折射率传感器及方法
CN112630869A (zh) * 2020-12-30 2021-04-09 中国人民解放军军事科学院国防科技创新研究院 基于衍射手性超材料的偏振器件及制备方法和光电子器件

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKSHAY SINGH等: "Long-lived Valley Polarization of Intra-Valley Trions in Monolayer WSe2", 《PHYSICAL REVIEW LETTERS》, vol. 117, 16 December 2016 (2016-12-16) *
GLEB M. AKSELROD等: "Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors", 《NANO LETTERS》, vol. 15, no. 5, 27 April 2015 (2015-04-27) *
LIUYANG SUN等: "Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array", 《NATURE PHOTONICS》, 11 February 2019 (2019-02-11) *
SHAN WU等: "Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure", 《OPTICS LETTERS》, vol. 39, no. 22, 15 November 2014 (2014-11-15), XP001592562, DOI: 10.1364/OL.39.006426 *
TE WEN等: "Steering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas", 《SCIENCE ADVANCES》, 20 May 2020 (2020-05-20) *
XINGWANG ZHANG等: "Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances", 《NANO LETTERS》, 9 October 2017 (2017-10-09) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891497A (zh) * 2022-05-20 2022-08-12 北京大学 利用等离激元微腔增强声子辅助激子上转换发光的方法
CN114891497B (zh) * 2022-05-20 2023-11-21 北京大学 利用等离激元微腔增强声子辅助激子上转换发光的方法

Also Published As

Publication number Publication date
CN113528120B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
Liu et al. Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WS e 2
Zhou et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons
Caldwell et al. Photonics with hexagonal boron nitride
Sheng et al. Raman spectroscopy of two-dimensional borophene sheets
Ahmadivand et al. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator
Li et al. Review of anisotropic 2D materials: controlled growth, optical anisotropy modulation, and photonic applications
Sun et al. Optical control of room-temperature valley polaritons
Jiang et al. Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface
Kianinia et al. Quantum emitters in 2D materials: Emitter engineering, photophysics, and integration in photonic nanostructures
Zhu et al. Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating
Sreekanth et al. Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Zhao et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition
Abid et al. Resonant surface plasmon–exciton interaction in hybrid MoSe 2@ Au nanostructures
Jiang et al. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe 2
Yan et al. Long valley relaxation time of free carriers in monolayer WSe 2
Han et al. Polarized resonant emission of monolayer WS2 coupled with plasmonic sawtooth nanoslit array
Lorchat et al. Room-temperature valley polarization and coherence in transition metal dichalcogenide–graphene van der Waals heterostructures
Behura et al. Moiré physics in twisted van der Waals heterostructures of 2D materials
Wang et al. High-fidelity transfer of chemical vapor deposition grown 2D transition metal dichalcogenides via substrate decoupling and polymer/small molecule composite
Al-Ani et al. Recent advances on strong light-matter coupling in atomically thin TMDC semiconductor materials
CN113528120B (zh) 基于双共振效应实现在非共振波长处的激子谷极化方法
Goh et al. Toward valley‐coupled spin qubits
Yu et al. Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO 2 nanodiodes based on Tamm plasmons
Grande et al. Fabrication of doubly resonant plasmonic nanopatch arrays on graphene
Wei et al. Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant