CN111362258A - 一种蜂蜡作支撑层的石墨烯薄膜转移方法 - Google Patents

一种蜂蜡作支撑层的石墨烯薄膜转移方法 Download PDF

Info

Publication number
CN111362258A
CN111362258A CN202010088334.4A CN202010088334A CN111362258A CN 111362258 A CN111362258 A CN 111362258A CN 202010088334 A CN202010088334 A CN 202010088334A CN 111362258 A CN111362258 A CN 111362258A
Authority
CN
China
Prior art keywords
graphene
beeswax
layer
graphene film
transfer method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010088334.4A
Other languages
English (en)
Inventor
徐明生
肖涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010088334.4A priority Critical patent/CN111362258A/zh
Publication of CN111362258A publication Critical patent/CN111362258A/zh
Priority to PCT/CN2020/103301 priority patent/WO2021159663A1/en
Priority to US17/478,931 priority patent/US20220002156A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2420/00Indexing scheme corresponding to the position of each layer within a multilayer coating relative to the substrate
    • B05D2420/02Indexing scheme corresponding to the position of each layer within a multilayer coating relative to the substrate second layer from the substrate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种金属基底石墨烯薄膜的转移方法,包括如下步骤:(1)将蜂蜡溶液旋涂至金属基底的石墨烯薄膜表面上,形成作为支撑层的蜂蜡层,得到蜂蜡层/石墨烯薄膜/金属基底;(2)用腐蚀液去除金属基底得到蜂蜡层/石墨烯薄膜,再将蜂蜡层/石墨烯薄膜转移至目标基底并干燥;(3)采用有机溶剂除去蜂蜡层,实现石墨烯薄膜的转移。该采用自然无毒无害的蜂蜡作为支撑层材料,可获得表面干净完整且面电阻低的单层石墨烯薄膜。

Description

一种蜂蜡作支撑层的石墨烯薄膜转移方法
技术领域
本发明涉及二维纳米材料技术领域,具体涉及一种蜂蜡作支撑层的石墨烯薄膜转移方法。
背景技术
近年来,芯片逐步向小型化、多功能化发展,这也对相关的光、电子器件及其材料提出了更高要求。以石墨烯为代表的二维(2D)材料,以纳米线(NWs)为代表的一维(1D)材料,以及以量子点(QDs)为代表的零维(0D)材料都因为在光电器件中具有极大的应用前景而受到学术界和工业界的广泛关注。
石墨烯是一种二维的单层碳材料,具有出色的电,光,机械和热学性能,同时还具有稳定的可调控性,已引起全球科学和工业界的极大关注。这些特性使石墨烯具备广泛的应用前景,尤其是在电子和光电设备中,例如光电探测器和光调制器。
现有的用于石墨烯薄膜大规模合成的方法有,化学气相沉积和在碳化硅衬底上外延生长等。其中,通常认为在催化金属基底(例如铜,镍)上进行化学气相沉积是制备高质量和高产量石墨烯薄膜的最可靠方法。为了将化学气相沉积合成的石墨烯薄膜集成到现代电子,光电子,传感器以及能量存储设备中去,有必要开发一种干净和完整地将石墨烯薄膜转移到目标基底上的方法。
由于石墨烯薄膜透明且易碎,因此必须引入聚合物支撑层以保护石墨烯薄膜,并使其在转移过程中可见。公开号为CN103449418A的专利说明书公开了一种采用聚甲基丙烯酸甲酯(PMMA)作为支撑层的石墨烯薄膜转移方法,PMMA固化后通过过硫酸铵溶液腐蚀除去金属基底,捞起干燥后选用乙酸溶剂溶解PMMA层,最后通过高温退火方式进一步除去石墨烯薄膜表面残留PMMA。该方法的不足在于,PMMA与石墨烯薄膜结合力较强,不能通过有机溶剂完全除去而需要后续退火,所需温度较高且耗时较长。
另根据最近文献报道,有学者使用樟脑作为支撑材料用于石墨烯薄膜转移(Bananakere Nanjegowda Chandrashekar等,《Journal of Colloid and InterfaceScience》,2019年546卷,11-19)。原因是樟脑与石墨烯薄膜之间的表面吸附能仅为0.09eV,远小于其他支撑层材料,如PMMA与石墨烯的表面吸附能为1.45eV,松香为1.04eV。樟脑作为石墨烯转移支撑层的优点是与石墨烯作用较小,易于除去。但是所得石墨烯完整性不佳,因而限制了这种方法的大规模实际应用。
根据用聚合物支撑层进行的石墨烯薄膜转移的基本原理,理想的支撑层必须满足以下要求。首先,聚合物必须在特定化学溶剂中具有足够的溶解度,以便旋涂到石墨烯表面上并从石墨烯表面完全去除。其次,支撑层必须与石墨烯形成足够牢固的相互作用,以避免在转移过程中发生结构破坏。
发明内容
针对本领域存在的不足之处,本发明提供了一种采用蜂蜡为支撑层材料的石墨烯薄膜转移方法。蜂蜡转移的石墨烯更加完整和干净,转移得到的石墨烯薄膜具有更好的质量。
一种蜂蜡作支撑层的石墨烯薄膜转移方法,所述方法包括:
(1)将蜂蜡溶液旋涂至金属基底的石墨烯薄膜表面上,形成作为支撑层的蜂蜡层,得到蜂蜡层/石墨烯薄膜/金属基底;
(2)用腐蚀液去除金属基底,再将蜂蜡层/石墨烯薄膜转移至目标基底并干燥;
(3)采用有机溶剂除去蜂蜡层,实现石墨烯薄膜的转移。
在本发明中,蜂蜡是一种从蜂窝中提取的天然物质,对环境友好且成本低廉。其主要成分是棕榈酸酯等,化学式近似为C15H31COOC30H61
本发明所用的石墨烯薄膜是采用化学气相沉积法在金属铜基底上合成的单层石墨烯,但也可以是在其它金属衬底上制备的石墨烯薄膜。石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是只有一个碳原子厚度的二维材料,又可称为单层石墨烯。本发明所述的石墨烯薄膜为1-10层的石墨烯薄膜。
在步骤(1)中,所述旋涂的环境温度高于或等于60℃;旋涂后静置形成蜂蜡层。
所述旋涂时伴随温度高于或等于60℃的热风。
在步骤(1)中,所述蜂蜡溶液的浓度小于或等于1g·mL-1。最优浓度为0.2g·mL-1
在步骤(1)中,所述蜂蜡层的厚度小于或等于10μm。最优厚度为约1μm。
在步骤(2)中,腐蚀金属的溶液包括但不限于过硫酸铵溶液和氯化铁溶液;优选的,所述腐蚀液选自过硫酸铵溶液或/和氯化铁溶液。
在步骤(3)中,所述有机溶剂包括但不限于氯仿,乙醚和苯;优选的,所述有机溶剂选自氯仿、乙醚或苯中的一种或多种。
本发明与现有技术相比,主要优点包括:本发明的石墨烯薄膜完整性好,表面残留杂质少,转移得到的石墨烯薄膜面电阻低,石墨烯薄膜质量高。所用支撑层材料蜂蜡成本低廉,根据国药试剂网信息,相同质量的蜂蜡价格仅为传统支撑层材料PMMA的6.35%,且对环境友好,操作简便。
附图说明
图1为本发明的石墨烯薄膜转移过程示意图;
图2为实施例1转移得到的石墨烯薄膜的光学显微镜照片;
图3为实施例1和比例1转移得到的石墨烯薄膜的X-射线光电子能谱(XPS);
图4为实施例1和对比例1转移得到的石墨烯薄膜的面电阻平面分布图;
图5为实施例1转移得到的石墨烯薄膜的拉曼(Raman)图谱;
图6为对比例1转移得到的石墨烯薄膜的光学显微镜照片;
图7为对比例2转移得到的石墨烯薄膜的光学显微镜照片。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。
下述实施例1的石墨烯转移方法基本步骤如图1所示,石墨烯薄膜样品用胶带粘在玻璃片上,蜂蜡溶液在60摄氏度以上的热风下均匀旋涂于石墨烯样品上,在过硫酸铵腐蚀液中除去铜基底,去离子水清洗后用目标基底将其捞起并晾干,在有机溶剂氯仿中除去蜂蜡并用氮气吹干。其他实施例的基本操作步骤相同,只是所用的支撑层材料与有机溶剂有差异。
实施例1
1.将生长后的石墨烯薄膜样品(石墨烯/铜基底)用胶带粘贴于玻璃片上后,用0.2g mL-1的蜂蜡溶液以4000转每分钟的转速均匀旋涂于石墨烯样品上,并将样品在常温下静置10分钟,得到蜂蜡层/石墨烯/铜基底,蜂蜡层的厚度约1μm(厚度可以通过改变旋涂参数比如浓度、转速、时间、旋涂次数而调节);
2.将原有胶带撕下,另一面朝上重新固定于玻璃片上,放入氧气等离子体清洗器中,无蜂蜡旋涂一面朝上,处理20分钟以去除背面的石墨烯;
3.将样品取下,有蜂蜡旋涂一面朝上放入腐蚀液过硫酸铵溶液中,静置1小时左右,待铜箔完全除去后,将样品用去离子水清洗数次,得到蜂蜡层/石墨烯;
4.将带有300nm氧化层的硅片切成1cm×1cm的若干正方形小块,清洗后作为目标衬底备用;
5.用经氧气等离子体处理过的硅片将蜂蜡层/石墨烯捞起晾干;
6.样品置于40摄氏度的有机溶剂氯仿中除去蜂蜡层。
图2为实施例1转移得到的石墨烯的光学显微镜图像。图3中的(a)为实施例转移得到的石墨烯的X-射线光电子能谱(XPS)。图4中的(a)为实施例1转移得到的石墨烯的面电阻平面分布图。图5为实施例1转移得到的石墨烯薄膜的拉曼(Raman)图谱。
对比例1
1.将生长后的石墨烯薄膜样品(石墨烯/铜基底)用胶带粘贴于玻璃片上后,用质量分数4%的PMMA(聚甲基丙烯酸甲酯溶于苯甲醚中)以3000转每分钟的转速均匀旋涂于石墨烯样品上,并将样品放在加热台上70摄氏度加热10分钟;
2.将原有胶带撕下,另一面朝上重新固定于玻璃片上,放入氧气等离子体清洗器中,无PMMA旋涂一面朝上,处理20分钟以去除背面的石墨烯;
3.将样品取下,有PMMA旋涂一面朝上放入腐蚀液过硫酸铵溶液中,静置1小时左右,待铜箔完全除去后,将样品用去离子水清洗数次;
4.将带有300nm氧化层的硅片切成1cm×1cm的若干正方形小块,清洗后备用;
5.用经氧气等离子体处理过的硅片将石墨烯捞起晾干,并将样品放在加热台上40摄氏度加热30分钟;
6.样品置于70摄氏度有机溶剂丙酮中30分钟除去PMMA层。
图3中的(b)为对比例1转移得到的石墨烯的X-射线光电子能谱(XPS)。图4中的(b)为对比例1转移得到的石墨烯的面电阻平面分布图。图6是对比例1转移得到的石墨烯薄膜的光学显微镜图,可以看到该方法虽然保证了石墨烯的完整性,但由于PMMA与石墨烯之间结合力较强,难以通过有机溶剂一步除去,表面残留PMMA颗粒较多。从图4中的(b),X-射线光电子能谱图中检测到的PMMA特征信号也证明了该结论。
对比例2
1.将生长后的石墨烯样品用胶带粘贴于玻璃片上后,用质量分数50%的松香的乙酸乙酯溶液以1200转每分钟的转速均匀旋涂于石墨烯样品上,并将样品放在常温下固化30分钟;
2.将原有胶带撕下,另一面朝上重新固定于玻璃片上,放入氧气等离子体清洗器中,无松香旋涂一面朝上,处理20分钟以去除背面的石墨烯;
3.将样品取下,有松香旋涂一面朝上放入腐蚀液过硫酸铵溶液中,静置1小时左右,待铜箔完全除去后,将样品用去离子水清洗数次;
4.将带有300nm氧化层的硅片切成1cm×1cm的若干正方形小块,清洗后备用;
5.用经氧气等离子体处理过的硅片将石墨烯捞起晾干,并将样品放在加热台上40摄氏度加热30分钟;
6.样品置于有机溶剂乙酸异戊酯中20分钟除去松香层。
图7是对比例2转移得到的石墨烯薄膜的光学显微镜图,可以看出该方法转移得到的石墨烯表面颗粒比PMMA转移的更少。这是由于松香的分子量远小于PMMA,因此与石墨烯的结合力更小,易于除去。但是结合力太弱也导致松香支撑层无法对石墨烯薄膜提供足够的支撑,因此导致结构破坏,转移得到的石墨烯薄膜不完整。
与对比例1,2转移得到的石墨烯相比,实施例1转移的到的石墨烯表面上既没有高聚物残留,也不存在破损的现象,兼顾了石墨烯的干净和完整性。此外,还可以清晰地看到生长过程中由于石墨烯和铜基底热膨胀系数不同而产生的褶皱。由于石墨烯褶皱处与支撑层材料的结合力更强,残留的高聚物颗粒通常倾向于沿着石墨烯褶皱分布。在图2中,即使是在石墨烯褶皱处也无颗粒残留,进一步说明该转移方法可获得高质量石墨烯。
图3中的(a)和图3中的(b)分别为实施例1和对比例1转移得到的石墨烯薄膜在SiO2/Si基底上的X-射线光电子能谱图。对比可知,只有PMMA转移所得石墨烯表面检测到了对应支撑层材料的信号,这进一步表明在通过PMMA转移的石墨烯上残留了许多将损害石墨烯的电子性能的PMMA颗粒。为验证上述观点,使用完全相同的颜色标尺在图4中的(a)和(b)中绘制了实施例1和对比例1转移得到的石墨烯的面电阻分布。对于每个样品,使用四探针电阻率测量系统在20×20mm2的面积上以2mm为采样间距共测量了100组面电阻值。据统计,PMMA转移石墨烯的面电阻值分布在526到914Ω·□-1之间,平均值为753Ω·□-1。由图4(b)可知,PMMA转移石墨烯表面具有多处随机分布的、异常高的面电阻值,这可能是由于转移过程中的机械损伤和PMMA颗粒残留引起的。与之形成鲜明对比的是,蜂蜡转移的石墨烯薄膜面电阻值显示出非常窄的波动区间和较小的平均,其面电阻分布在在520至632Ω·□-1之间且在20×20mm2的区域内显示出均匀的分布,平均值为603Ω·□-1。尽管边缘电阻略有增加,但较低且均匀的面电阻仍然表明,蜂蜡转移的石墨烯在电子器件的应用中更具潜力。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (7)

1.一种蜂蜡作支撑层的石墨烯薄膜转移方法,其特征在于,所述方法包括:
(1)将蜂蜡溶液旋涂至金属基底的石墨烯薄膜表面上,形成作为支撑层的蜂蜡层,得到蜂蜡层/石墨烯薄膜/金属基底;
(2)用腐蚀液去除金属基底得到蜂蜡层/石墨烯,再将蜂蜡层/石墨烯薄膜转移至目标基底并干燥;
(3)采用有机溶剂除去蜂蜡层,实现石墨烯薄膜的转移。
2.根据权利要求1所述的石墨烯薄膜转移方法,其特征在于,在步骤(1)中,所述旋涂的环境温度高于或等于60℃;旋涂后静置形成蜂蜡层。
3.根据权利要求2所述的石墨烯薄膜转移方法,其特征在于,所述旋涂时伴随温度高于或等于60℃的热风。
4.根据权利要求1所述的石墨烯薄膜转移方法,其特征在于,在步骤(1)中,所述蜂蜡溶液的浓度小于或等于1g·mL-1
5.根据权利要求1所述的石墨烯薄膜转移方法,其特征在于,在步骤(1)中,所述蜂蜡层的厚度小于或等于10μm。
6.根据权利要求1所述的石墨烯薄膜转移方法,其特征在于,在步骤(2)中,所述腐蚀液选自过硫酸铵溶液或/和氯化铁溶液。
7.根据权利要求1所述的石墨烯薄膜转移方法,其特征在于,在步骤(3)中,所述有机溶剂选自氯仿、乙醚或苯中的一种或多种。
CN202010088334.4A 2020-02-12 2020-02-12 一种蜂蜡作支撑层的石墨烯薄膜转移方法 Pending CN111362258A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010088334.4A CN111362258A (zh) 2020-02-12 2020-02-12 一种蜂蜡作支撑层的石墨烯薄膜转移方法
PCT/CN2020/103301 WO2021159663A1 (en) 2020-02-12 2020-07-21 Method for transferring graphene film
US17/478,931 US20220002156A1 (en) 2020-02-12 2021-09-19 Method for transferring graphene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010088334.4A CN111362258A (zh) 2020-02-12 2020-02-12 一种蜂蜡作支撑层的石墨烯薄膜转移方法

Publications (1)

Publication Number Publication Date
CN111362258A true CN111362258A (zh) 2020-07-03

Family

ID=71202183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010088334.4A Pending CN111362258A (zh) 2020-02-12 2020-02-12 一种蜂蜡作支撑层的石墨烯薄膜转移方法

Country Status (3)

Country Link
US (1) US20220002156A1 (zh)
CN (1) CN111362258A (zh)
WO (1) WO2021159663A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159663A1 (en) * 2020-02-12 2021-08-19 Zhejiang University Method for transferring graphene film
CN114956062A (zh) * 2021-02-25 2022-08-30 北京石墨烯研究院 单晶晶圆石墨烯薄膜的转移方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852999B (zh) * 2022-04-27 2024-04-05 云南大学 一种转移石墨烯的方法
CN118016768B (zh) * 2024-03-12 2024-08-16 国科大杭州高等研究院 一种波导集成的范德华异质结器件制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021224A1 (en) * 2010-07-23 2012-01-26 Clean Energy Labs, Llc Graphene/graphene oxide platelet composite membranes and methods and devices thereof
CN106315562A (zh) * 2015-07-01 2017-01-11 韩国科学技术研究院 通过利用石油膏的材料转移方法
CN106477570A (zh) * 2016-10-14 2017-03-08 天津大学 小分子石蜡转移石墨烯的方法
CN106542524A (zh) * 2016-10-21 2017-03-29 成都新柯力化工科技有限公司 一种石墨烯分散体及其制备方法
CN106946248A (zh) * 2017-04-20 2017-07-14 成都川烯科技有限公司 一种新型转移石墨烯薄膜的方法以及传感器的制备方法
CN108933193A (zh) * 2017-05-26 2018-12-04 北京大学 一种铁磁半导体薄膜的转移方法及应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620733B (zh) * 2011-05-23 2018-04-24 新加坡国立大学 转印薄膜的方法
CN102719803B (zh) * 2012-07-09 2014-05-07 深圳市贝特瑞纳米科技有限公司 一种石墨烯透明薄膜的制备和转移方法
KR101489866B1 (ko) * 2012-10-05 2015-02-06 성균관대학교산학협력단 높은 변형률에도 안정적인 거동을 가지는 절연체 및 게이트 전극을 포함하는 그래핀 전계효과 트랜지스터, 및 이의 제조 방법
KR101807182B1 (ko) * 2015-09-17 2017-12-08 재단법인 나노기반소프트일렉트로닉스연구단 그래핀의 전사방법 및 그 방법을 이용한 전자소자의 제조방법
KR101785930B1 (ko) * 2015-12-30 2017-10-16 주식회사 쿼드메디슨 수분 환경에서 변형 및 변성 억제를 위한 마이크로 니들 및 그 제작 방법
CN107585762A (zh) * 2017-08-11 2018-01-16 江苏大学 一种铜箔基底石墨烯转移的改良方法
CN108147398B (zh) * 2017-12-28 2021-05-18 深圳大学 在传感器基体表面制备石墨烯层的方法
KR20200113245A (ko) * 2018-01-24 2020-10-06 토마스 제퍼슨 유니버시티 생물확산 챔버
CN108660430B (zh) * 2018-05-14 2020-07-03 北京工业大学 在氧化物绝缘衬底上类直接生长大面积石墨烯的工艺方法
CN108793146A (zh) * 2018-07-03 2018-11-13 中国科学院上海微系统与信息技术研究所 一种转移石墨烯的方法
CN111129199A (zh) * 2020-01-10 2020-05-08 中国科学院重庆绿色智能技术研究院 一种石墨烯/硫化铅/钙钛矿光电探测器及其制备方法
CN111362258A (zh) * 2020-02-12 2020-07-03 浙江大学 一种蜂蜡作支撑层的石墨烯薄膜转移方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021224A1 (en) * 2010-07-23 2012-01-26 Clean Energy Labs, Llc Graphene/graphene oxide platelet composite membranes and methods and devices thereof
CN106315562A (zh) * 2015-07-01 2017-01-11 韩国科学技术研究院 通过利用石油膏的材料转移方法
CN106477570A (zh) * 2016-10-14 2017-03-08 天津大学 小分子石蜡转移石墨烯的方法
CN106542524A (zh) * 2016-10-21 2017-03-29 成都新柯力化工科技有限公司 一种石墨烯分散体及其制备方法
CN106946248A (zh) * 2017-04-20 2017-07-14 成都川烯科技有限公司 一种新型转移石墨烯薄膜的方法以及传感器的制备方法
CN108933193A (zh) * 2017-05-26 2018-12-04 北京大学 一种铁磁半导体薄膜的转移方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
裘炳毅等: "《现代化妆品科学与技术上册》", 31 March 2016 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159663A1 (en) * 2020-02-12 2021-08-19 Zhejiang University Method for transferring graphene film
CN114956062A (zh) * 2021-02-25 2022-08-30 北京石墨烯研究院 单晶晶圆石墨烯薄膜的转移方法

Also Published As

Publication number Publication date
US20220002156A1 (en) 2022-01-06
WO2021159663A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
CN111362258A (zh) 一种蜂蜡作支撑层的石墨烯薄膜转移方法
KR102109380B1 (ko) 절연기판상에 그래핀 단일층을 제조하는 방법
TWI678333B (zh) 懸空二維奈米材料的製備方法
CN108793145B (zh) 一种原子级厚度石墨烯/氮化硼复合异质薄膜及制备
Pham Cleaning of graphene surfaces by low-pressure air plasma
CN107226486A (zh) 一种二硫化钼的基底转移方法
TWI688543B (zh) 利用奈米碳管膜轉移二維奈米材料的方法
CN104556005B (zh) 一种转移石墨烯薄膜的方法
CN107424682A (zh) 一种具有分形结构的多孔金属薄膜透明导电电极的制备方法
CN107585762A (zh) 一种铜箔基底石墨烯转移的改良方法
CN109052377A (zh) 一种大面积石墨烯的制备方法
CN105023629A (zh) 石墨烯-铜纳米线复合薄膜及其制备方法
Wang et al. Effects of solvents and polymer on photoluminescence of transferred WS2 monolayers
CN108281357A (zh) 基于Al2O3介质栅衬底制备二维材料场效应管的方法
CN109321893B (zh) 石墨烯保护膜的制备方法、石墨烯保护膜及其使用方法
CN107867679B (zh) 一种无支撑单一取向碳纳米管薄膜的制备及转移方法
CN110098099B (zh) 透射电镜微栅及透射电镜微栅的制备方法
CN111453720A (zh) 一种铜箔为基底的石墨烯转移方法
CN113683083B (zh) 一种高洁净无损转移石墨烯纳米带的方法
CN112919454B (zh) 一种控制双层石墨烯堆叠角度的方法
KR101648895B1 (ko) 금속박편 또는 금속박막에 성장한 그래핀을 임의의 기판에 고분자 레지듀 없이 전사하는 그래핀 가두리 전사방법
CN114195142B (zh) 一种基于醇类溶剂剥离聚合物支撑材料的石墨烯转移方法
CN107500276A (zh) 一种利用醋酸铜制备超洁净石墨烯的方法
CN109824039B (zh) 一种以掺杂石墨烯量子点为形核点制备掺杂石墨烯的方法
CN111441080B (zh) 一种In2Te5单晶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200703

RJ01 Rejection of invention patent application after publication