TWI488310B - 半導性石墨烯結構、用於形成此結構之方法及包含此結構之半導體裝置 - Google Patents

半導性石墨烯結構、用於形成此結構之方法及包含此結構之半導體裝置 Download PDF

Info

Publication number
TWI488310B
TWI488310B TW103125747A TW103125747A TWI488310B TW I488310 B TWI488310 B TW I488310B TW 103125747 A TW103125747 A TW 103125747A TW 103125747 A TW103125747 A TW 103125747A TW I488310 B TWI488310 B TW I488310B
Authority
TW
Taiwan
Prior art keywords
graphene
lattice matching
matching material
semiconductor structure
forming
Prior art date
Application number
TW103125747A
Other languages
English (en)
Other versions
TW201513363A (zh
Inventor
Roy E Meade
Sumeet C Pandey
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of TW201513363A publication Critical patent/TW201513363A/zh
Application granted granted Critical
Publication of TWI488310B publication Critical patent/TWI488310B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)

Description

半導性石墨烯結構、用於形成此結構之方法及包含此結構之半導體裝置 優先權主張
本申請案主張於2013年7月30日提出申請之標題為「SEMICONDUCTING GRAPHENE STRUCTURES, METHODS OF FORMING SUCH STRUCTURES AND SEMICONDUCTOR DEVICES INCLUDING SUCH STRUCTURES」之美國專利申請案第13/954,017號之申請日期之權益。
在各項實施例中,本發明大體而言係關於半導性石墨烯(graphene)結構、用於形成此結構之方法及包含此結構之半導體裝置。更具體而言,本發明之實施例係關於具有石墨烯材料及直接接觸石墨烯材料之石墨烯晶格匹配材料之半導性石墨烯結構,以及形成此等結構之方法。
矽已用於製作各種半導體裝置,包含場效應電晶體(FET)裝置。矽之處理極限通常被認為係約10nm線寬。隨著持續要求減小半導體裝置之大小同時增加速度及整合密度,矽半導體材料逐漸接近其處理極限。
石墨烯係石墨(graphite)之單個原子層(亦即,單層)。石墨烯具有二維結構且在平面方向上傳到電。石墨烯晶格包含以具有120度之碳-碳鍵角、1.42Å之碳-碳鍵長(r o,g )及約2.46Å之晶格常數之六方陣列配置之碳原子。石墨烯具有近似15,000cm2 /Vs之高電荷移動性、超過1×108 A/cm2 之高載流能力及卓越導熱性。因而,正在研究石墨烯以作為在各種半導體裝置(包含FET裝置)中用於替換矽之下一代材料。
石墨烯係0能帶隙材料(亦即,在石墨烯之導帶與價帶之間不存在能隙)。相反,半導體材料在導帶與價帶之間具有能帶隙。由於其0能帶隙,因此石墨烯具有極大關斷電流且因此具有操作電流之極小接通/關斷比率(在下文中表示為「接通/關斷比率」)。此低接通/關斷比率限制FET裝置之大整合及高速操作。此外,由於石墨烯之極大關斷電流,使用未經改質石墨烯(亦即,大面積石墨烯)之FET裝置無法關斷且不適於邏輯應用。
已做出各種嘗試來改質(亦即,打開)石墨烯之能帶隙結構。一種方法係藉由將未經改質石墨烯切割成小於數十奈米之窄條帶(被稱為石墨烯奈米條帶)來在一維上對該未經改質石墨烯進行限制。石墨烯奈米條帶之能帶隙與奈米條帶之寬度成反比。因而,為獲得具有對習用FET裝置有用之能帶隙之石墨烯,需要具有經極佳界定邊緣之極窄石墨烯奈米條帶。至此,製造具有均勻寬度之數奈米大小、減小之邊緣粗糙度及卓越品質之石墨烯已成為挑戰。因此,儘管其具有卓越特性,但將石墨烯奈米條帶整合成半導體裝置(諸如,FET裝置)仍受限制。
已研究石墨烯-矽氫化物結構用於製作三極體裝置,其中可藉由調整閘極電壓以控制石墨烯-矽肖特基障壁來達成約105 之通/關斷比率。雖然石墨烯具有0能帶隙,但在石墨烯與矽之介面處不存在費米能階釘紮允許障壁之高度變成0.2eVs。
美國專利第8,247,806號揭示一種具有石墨烯通道層之FET裝置。雖然石墨烯具有0能帶隙,但藉由將電壓施加至閘極結構,藉此改變費米表面之能階來增加FET裝置之接通/關斷比率。
需要一種改質石墨烯之能帶隙以允許在半導體裝置中使用石墨烯來代替基於矽之材料之方法。
此外,需要一種與標準互補金屬氧化物半導體(CMOS)處理技術相容且可以最小數目個動作製造之FET裝置。
400‧‧‧半導體裝置
401‧‧‧源極
402‧‧‧汲極
403‧‧‧半導性石墨烯結構
404‧‧‧閘極結構
410‧‧‧基板
500‧‧‧半導體裝置
501‧‧‧源極
502‧‧‧汲極
503‧‧‧半導性石墨烯結構
504‧‧‧閘極結構
505‧‧‧閘極介電材料
510‧‧‧基板
‧‧‧向量
‧‧‧向量
C‧‧‧碳原子
G‧‧‧石墨烯
Mg‧‧‧鎂原子
O‧‧‧氧原子
X‧‧‧X軸
Y‧‧‧Y軸
Z‧‧‧Z軸
圖1A係具有六方晶體結構之碳酸鎂(MgCO3 )結構之等角視圖;圖1B係石墨烯晶格結構之等角視圖;圖1C係在六方MgCO3 上具有石墨烯材料之半導性石墨烯結構之結構側視圖;圖2A係展示石墨烯(G)與石墨烯晶格匹配材料(GLM)之間晶體對準之俯視圖,其中石墨烯晶格匹配材料之單位晶胞向量()與石墨烯晶格向量對準;圖2B係展示石墨烯(G)與石墨烯晶格匹配材料(GLM)之間晶體對準之俯視圖,其中石墨烯晶格匹配材料之單位晶胞向量()與石墨烯鍵對準;圖3A展示未經改質石墨烯之電子狀態密度(EDOS),如將密度泛函理論(DFT)與平面波及併合泛函(HSE06)一起使用所計算;圖3B展示塊體六方MgCO3 之電子狀態密度(EDOS),如將密度泛函理論(DFT)與平面波及併合泛函(HSE06)一起使用所計算;圖3C展示包含石墨烯及石墨烯上方之MgCO3 石墨烯晶格匹配材料之半導性石墨烯結構之電子狀態密度(EDOS),如將密度泛函理論(DFT)與平面波及併合泛函(HSE06)一起使用所計算;圖4A係實施例之半導體裝置之側視圖; 圖4B係展示沿著在圖4A中展示之半導體裝置之側視圖之對應能帶之圖表;及圖5係另一實施例之半導體裝置之側視圖。
以下闡述提供具體細節(諸如,材料類型、材料厚度及處理條件),以便提供對本發明之實施例之透徹闡述。然而,熟習此項技術者將理解,可在不採用此等具體細節之情況下實踐本發明之實施例。實際上,可結合工業中採用之習用製作技術實踐本發明之實施例。
另外,本文提供之闡述不形成用於形成半導體裝置結構之完整程序流程,且下文闡述之半導體裝置結構不形成完整半導體裝置。下文僅詳細地闡述理解本發明之實施例所必需之彼等程序動作及結構。可藉由習用製作技術執行形成完整半導體裝置之額外動作。申請案之隨附圖式亦僅出於說明性目的,且因此不必按比例繪製。諸圖之間的共同元件可保持相同元件符號。
如本文所使用,參考給定參數、性質或條件之術語「實質上」意指熟習此項技術者將理解以小程度差異(諸如,在可接受製造公差內)符合給定參數、性質或條件的程度。
如本文中所使用,術語「基板」意指且包含在其上形成額外材料的基底材料或構造。基板可係,例如,半導體基板、在支撐結構上之基底半導體材料、金屬電極或其上形成有一或多個材料、結構或區域之半導體基板。基板可係習用矽基板或包含半導電材料層之其他塊體基板。如本文所使用,術語「塊體基板」不僅意指及包含矽晶圓,而且亦意指及包含絕緣體上矽(SOI)基板,諸如藍寶石上矽(SOS)基板及玻璃上矽(SOG)基板、基底半導體基礎上之矽磊晶層,或其他半導體或光電子材料,尤其諸如矽鍺(Si1-x Gex ,其中x係(舉例而言)0.2與0.8之間的莫耳分率)、鍺(Ge)、砷化鎵(GaAs)、氮化鎵(GaN)或磷化銦 (InP)。此外,當在以下說明中參考「基板」時,可能已進行前述程序動作以在基底半導體結構或基礎中形成材料、區或接面。在一項實施例中,基板係含矽材料,諸如矽基板。基板可經摻雜或未經摻雜。在一項實施例中,基板可係p摻雜多晶矽。在一項實施例中,基板係經氧化矽材料(諸如,舉例而言習用100-mm氧化矽材料)上之經晶化Cu(111)材料。在另一實施例中,基板係碳化矽。
半導性石墨烯結構可包含石墨烯材料及石墨烯材料之至少一部分上方之石墨烯晶格匹配材料,其中石墨烯晶格匹配材料具有在石墨烯之晶格常數或鍵長之倍數的約±5%內之晶格常數。石墨烯之晶格常數係約2.46Å且其鍵長係約1.42Å。距離4.26Å係石墨烯之鍵長的三倍。具有在此距離(其係約4.05Å至4.47Å)之±5%內之晶格常數之六方材料將係關於石墨烯鍵長匹配之石墨烯晶格。藉由形成在石墨烯材料上方含有氧氣之石墨烯晶格匹配材料(其中石墨烯晶格匹配材料之晶格常數係在石墨烯材料之鍵長之5%內),將石墨烯材料自導電材料轉化成半導體材料。在石墨烯晶格匹配材料與石墨烯材料之間的介面處將該石墨烯晶格匹配材料鍵結至該石墨烯材料。利用具有在此範圍外部之晶格常數之石墨烯晶格匹配材料可在石墨烯與石墨烯晶格匹配材料之介面處致使顯著應力,使晶體結構斷裂,且增加晶格弛豫之可能性。晶體結構之此斷裂可形成缺陷狀態,此又使效能降級。可設想額外石墨烯晶格匹配材料,包含不同整數倍數(例如,一倍、二倍、三倍、四倍等)且除了匹配石墨烯之鍵長外亦匹配石墨烯之晶格常數。
在某些實施例中,石墨烯晶格匹配材料可包括具有在石墨烯之晶格常數或鍵長之倍數的約±5%內之晶格常數之六方晶體結構。
具有六方晶體結構及在石墨烯之鍵長之倍數的約±5%內之晶格常數之石墨烯晶格匹配材料的非限制性實例包含碳酸鎂(MgCO3 )或硼酸鋁。然而,如下文更詳細地闡述,其他材料可用作石墨烯晶格匹配材 料。
圖1A係具有碳原子(C)、鎂原子(Mg)及氧原子(O)標示之六方MgCO3 結構之等角視圖。MgCO3 之單位晶胞尺寸係近似4.45(X軸)、4.45(Y軸)及13.71(Z軸)。由於六方MgCO3 之晶格常數係在石墨烯之鍵長之倍數的約±5%內,因此碳酸鎂可用作石墨烯晶格匹配材料。石墨烯與MgCO3 之間的鍵結係穩定的,其中與石墨烯接觸之每氧原子具有0.8eV之鍵能。
圖1B圖解說明係單層石墨之石墨烯結構之等角視圖。
圖1C係半導性石墨烯結構之結構側視圖,其中六方MgCO3 用作石墨烯晶格匹配材料且形成於石墨烯上方以改質石墨烯之能帶隙。石墨烯晶格匹配材料鍵結至石墨烯。石墨烯晶格匹配材料可形成為足夠厚的以防止洩漏或直接穿隧。在圖1A及圖1C中,MgCO3 展示為具有三個單層,其中一個單層係與石墨烯介接(亦即,反應)之外部單層。MgCO3 之外部單層上之氧原子可鍵結至石墨烯之碳原子。
雖然圖1A及圖1C展示具有三個單層之MgCO3 ,但應理解MgCO3 可具有少於三個單層或多於三個單層。
在某些實施例中,半導性石墨烯材料可包含石墨烯晶格匹配材料單層。在某些實施例中,半導性石墨烯材料可包含多於三個石墨烯晶格匹配材料單層以防止可致使直接穿隧之非所要洩漏問題。
一種形成半導性石墨烯結構之方法可包含在石墨烯材料上方形成石墨烯晶格匹配材料,其中石墨烯晶格匹配材料具有在石墨烯材料之晶格常數或鍵長之倍數的約±5%內之晶格常數。
可使用任何習用方法在石墨烯材料上方形成石墨烯晶格匹配材料。經由非限制性實例,可使用原子層沈積(ALD)、化學汽相沈積(CVD)、物理汽相沈積(PVD)或磊晶生長程序在石墨烯材料上方形成石墨烯晶格匹配材料。在某些實施例中,石墨烯晶格匹配材料可鍵結 至石墨烯材料。石墨烯晶格匹配材料與石墨烯材料可在此兩種材料之介面處反應。經由非限制性實例,可在石墨烯晶格匹配材料在石墨烯材料上生長期間藉由退火或藉由施加熱量來將石墨烯晶格匹配材料鍵結至石墨烯材料。
石墨烯晶格匹配材料之週期性可影響石墨烯晶格匹配材料之單位晶胞向量與石墨烯之疊對與對準。可在選擇石墨烯晶格匹配材料中考量以下兩個因素以達成石墨烯與石墨烯晶格匹配材料之間之晶體對準:石墨烯晶格匹配材料之單位晶胞向量之方向,以及單位晶胞向量之量值。
單位晶胞向量之方向可支配石墨烯晶格匹配材料相對於石墨烯之定向。圖2A及圖2B展示在石墨烯(G)上方具有六方晶體結構之石墨烯晶格匹配材料(GLM)之兩個不同定向。六方石墨烯晶格匹配材料(GLM,以虛線表示)覆加於石墨烯(G)之二維晶體結構上方。石墨烯晶格匹配材料(GLM)之單位晶胞向量可如在圖2A中所展示與石墨烯晶格向量對準,或如在圖2B中所展示與石墨烯鍵對準。圖2A與圖2B之間的主要差異係石墨烯晶格匹配材料(GLM)之單位晶胞與石墨烯晶格之相對定向。
在圖2A中,石墨烯晶格匹配材料(GLM)之單位晶胞向量與石墨烯晶格向量對準。向量展示石墨烯晶格匹配材料之單位晶胞之適當定向,其中向量可定義如下:
其中r 0,g 係石墨烯鍵長,a g 係石墨烯晶格常數,x 係x軸方向上之單位向量,且係y軸方向上之單位向量。
在圖2B中,石墨烯晶格匹配材料(GLM)之單位晶胞向量與石墨烯鍵對準。向量展示石墨烯晶格匹配材料(GLM)之單位晶胞之適當定向,其中向量可如下定義:
其中r 0,g 係石墨烯鍵長,a g 係石墨烯晶格常數,x 係x軸之方向上之單位向量,且係y軸方向上之單位向量。
除單位晶胞向量之方向(亦即,石墨烯晶格匹配材料相對於石墨烯晶格之定向)之外,向量之量值支配石墨烯材料與石墨烯晶格匹配材料之間的適當晶體對準。
為達成其中石墨烯晶格匹配材料之單位晶胞向量與石墨烯晶格向量對準的石墨烯與石墨烯晶格匹配材料之間之所要週期性對準,石墨烯晶格匹配材料之單位晶胞向量之量值可係石墨烯材料之晶格常數(a g )之m 倍,如下文用方程式(1)所展示:a d =m .a g ±5% m.a g ---(1)
為達成其中石墨烯晶格匹配材料之單位晶胞向量與石墨烯鍵對準的石墨烯與石墨烯晶格匹配材料之間之所要週期性對準,石墨烯晶格匹配材料之單位晶胞向量之量值可係石墨烯材料之石墨烯鍵長(r o,g )之m 倍,如下文用方程式(2)所展示:a d =m .r o,g ±5% m .r o,g ---(2)
石墨烯晶格匹配材料在石墨烯上之形成可改質石墨烯材料之能帶隙而不實質上變更石墨烯材料之週期性。
半導性石墨烯結構可具有至少約0.5eV之能帶隙。在某些實施例中,半導性石墨烯結構可具有自約1eV至約2eV之能帶隙。
可將密度泛函理論(DFT)與平面波及併合泛函(例如,HSE06、B3LYP等)一起使用來計算未經改質石墨烯材料、石墨烯晶格匹配材料及半導性石墨烯結構之電子狀態密度(EDOS)。圖3A、圖3B及圖3C分別展示未經改質石墨烯、塊體六方MgCO3 及具有石墨烯及六方MgCO3 之半導性石墨烯結構之EDOS。
如在圖3A中所展示,未經改質石墨烯之能帶隙係0。六方MgCO3 之能帶隙係約7.27eV,如在圖3B中所展示。具有石墨烯及作為石墨烯晶格匹配材料之六方MgCO3 之半導性石墨烯結構具有約1.7eV之能帶隙,如在圖3C中所展示。因而,可藉由在石墨烯材料上形成六方MgCO3 來將石墨烯之能帶隙自0eV增加至近似1.7eV。因而,半導性石墨烯結構可在各種半導體裝置(包含(但不限於)FET、三極體、二極體或電阻性開關裝置)中用作基於矽之材料之替代。
此外,六方MgCO3 具有約7.27eV之能帶隙(如在圖3B中所展示)及約8.1之電容率。因此,其亦可用作FET裝置之介電材料(諸如,閘極介電材料)。
除MgCO3 之外,具有在石墨烯材料之晶格常數或鍵長之倍數的約±5%內之晶格常數之其他晶體結構亦可用作石墨烯晶格匹配材料。石墨烯晶格匹配材料之進一步非限制性實例可係Ni3 TeO6 、Li2 ReO3 、LiNbO3 、NiTiO3 、MgTiO3 、MgSiO3 、FeTiO3 、GeMnO3 、LiAsO3 、Al2 O3 、Ti2 O3 、Rh2 O3 、Fe2 O3 、Cr2 O3 、CaCO3 、V2 O3 、LuBO3 、MnCO3 、FeCO3 、Ga2 O3 、YbBO3 或NaNO3
在某些實施例中,習用經氧化矽晶圓(諸如,100-mm矽晶圓)上之經晶化Cu(111)可用作基板。如在此項技術中已知的,可在習用經氧化100-mm矽晶圓上之經晶化Cu(111)材料上生長石墨烯。在經晶化Cu(111)結構上形成石墨烯之後,可在石墨烯上方形成石墨烯晶格匹配材料以產生半導性石墨烯結構。
該半導性石墨烯結構可用於採用習用製作處理技術且可以最小數目個處理動作製造之各種半導體結構及裝置之製作中。
在一項實施例中,半導性石墨烯結構用於採用用於FET裝置之習用製作處理技術之FET裝置之製作中,本文不對該等習用製作處理技術進行詳細闡述。
半導體裝置(諸如,FET裝置)可包含源極、汲極、閘極結構以及毗鄰於源極及汲極中之至少一者之半導性石墨烯結構,其中該半導性石墨烯結構可包含石墨烯材料及石墨烯材料之至少一部分上方之石墨烯晶格匹配材料,該石墨烯晶格匹配材料具有在石墨烯材料之晶格常數或鍵長之倍數的約±5%內之晶格常數。
在某些實施例中,半導體裝置之源極及汲極中之至少一者可包含未經改質石墨烯。
在某些實施例中,半導性石墨烯結構之石墨烯晶格匹配材料可直接接觸閘極結構,且因而亦用作閘極介電材料。
在某些實施例中,FET裝置可在石墨烯晶格匹配材料與閘極結構之間進一步包含閘極介電材料。
圖4A係一項實施例之半導體裝置400之側視圖,其中該裝置包含源極(401)、汲極(402)、半導性石墨烯結構(403)、閘極結構(404)及基板(410)。源極(401)及汲極(402)各自包含石墨烯材料(G)。半導性石墨烯結構(403)毗鄰於源極(401)及汲極(402)。半導性石墨烯結構(403)包含石墨烯材料(G)及石墨烯材料之至少一部分上方之石墨烯晶格匹配材料(GLM)。石墨烯晶格匹配材料(GLM)直接接觸閘極結構(404);因而,半導性石墨烯結構(403)之石墨烯晶格匹配材料(GLM)亦可用作閘極介電材料。
圖4B係展示沿著在圖4A中展示之半導體裝置之側視圖之對應能帶之圖表。源極(401)及汲極(402)中之每一者由未經改質石墨烯製 成;因而各自展現0能帶隙。位於源極(401)與汲極(402)之間之半導性石墨烯結構(403)展示約1.7eV之能帶隙。
圖5係一項實施例之半導體裝置500之側視圖,其中該裝置包含基板(510)、源極(501)、汲極(502)、將源極(510)連接至汲極(502)且包含半導性石墨烯結構(503)之通道材料、閘極結構(504)以及半導性石墨烯結構(503)與閘極結構(504)之間的閘極介電材料(505)。半導性石墨烯結構(503)可包含石墨烯材料(G)及石墨烯材料之至少一部分上方之石墨烯晶格匹配材料(GLM)。
雖然展示了圖4A之半導體裝置400及圖5之半導體裝置500,但應理解可形成半導體裝置之其他結構。作為非限制性實例,該半導體裝置可具有如在圖4A及圖5中所展示之上部閘極結構,其中該閘極結構安置於半導性石墨烯結構、源極及汲極上方。另外,作為另一非限制性實例,該半導體裝置可具有下部閘極結構,其中該閘極結構安置於半導性石墨烯結構、源極及汲極下方。
雖然本發明易於得出各種修改及替代形式,但已在圖式中以實例方式展示且在本文中詳細闡述具體實施例。然而,本發明並非意欲限於所揭示之特定形式。而是,本發明將涵蓋歸屬於由以下隨附申請專利範圍及其合法等效形式界定之本發明範疇內之所有修改、等效及替代形式。
500‧‧‧半導體裝置
501‧‧‧源極
502‧‧‧汲極
503‧‧‧半導性石墨烯結構
504‧‧‧閘極結構
505‧‧‧閘極介電材料
510‧‧‧基板

Claims (20)

  1. 一種半導體結構,其包括:石墨烯材料;及石墨烯晶格匹配材料,其位在該石墨烯材料之至少一部分上方,該石墨烯晶格匹配材料具有在該石墨烯材料之晶格常數或鍵長之倍數的約±5%內之晶格常數。
  2. 如請求項1之半導體結構,其中該半導體結構具有至少約0.5eV之能帶隙。
  3. 如請求項1之半導體結構,其中該半導體結構具有自約1eV至約2eV之能帶隙。
  4. 如請求項1之半導體結構,其中該石墨烯晶格匹配材料係石墨烯晶格匹配含氧材料。
  5. 如請求項1之半導體結構,其包括在該石墨烯材料上方之多於三個單層或少於三個單層的該石墨烯晶格匹配材料。
  6. 如請求項1之半導體結構,其包括在該石墨烯材料上方之至少三個單層的該石墨烯晶格匹配材料。
  7. 如請求項1之半導體結構,其中該石墨烯晶格匹配材料係介電材料。
  8. 如請求項1之半導體結構,其中該石墨烯晶格匹配材料展現六方晶體結構。
  9. 如請求項1之半導體結構,其中該石墨烯晶格匹配材料包括選自由以下各項組成之群組之材料:碳酸鎂、硼酸鋁、Ni3 TeO6 、Li2 ReO3 、LiNbO3 、NiTiO3 、MgTiO3 、MgsiO3 、FeTiO3 、GeMnO3 、LiAsO3 、Al2 O3 、Ti2 O3 、Rh2 O3 、Fe2 O3 、Cr2 O3 、CaCO3 、V2 O3 、LuBO3 、MnCO3 、FeCO3 、Ga2 O3 、YbBO3 及 NaNO3
  10. 如請求項1之半導體結構,其進一步包括經氧化矽材料上之經晶化Cu(111)材料,該石墨烯材料位在該經晶化Cu(111)材料上。
  11. 一種半導體裝置,其包括:源極;汲極;閘極結構;及如請求項1至10中任一項之半導體結構,該半導體結構毗鄰於該源極及該汲極中之至少一者。
  12. 如請求項11之半導體裝置,其中該源極及該汲極中之至少一者包括未經改質石墨烯。
  13. 如請求項11之半導體裝置,其中該石墨烯晶格匹配材料與該閘極結構直接接觸。
  14. 如請求項11之半導體裝置,其進一步包括上覆於該半導性石墨烯結構之該石墨烯晶格匹配材料上之閘極介電材料,該閘極結構上覆於該閘極介電材料。
  15. 一種改質石墨烯材料之能帶隙之方法,該方法包括:在石墨烯材料之至少一部分上方形成石墨烯晶格匹配材料,該石墨烯晶格匹配材料具有在該石墨烯材料之晶格常數或鍵長之倍數的約±5%內之晶格常數。
  16. 如請求項15之方法,其中在石墨烯材料之至少一部分上方形成石墨烯晶格匹配材料包括在該石墨烯材料之該至少一部分上方形成該石墨烯晶格匹配材料而不使該石墨烯材料之週期性交替。
  17. 如請求項15之方法,其中在石墨烯材料之至少一部分上方形成石墨烯晶格匹配材料包括使該石墨烯晶格匹配材料鍵結至該石 墨烯材料。
  18. 如請求項15之方法,其中在石墨烯材料之至少一部分上形成石墨烯晶格匹配材料包括使該石墨烯材料之能帶隙增加至約至少0.5eV。
  19. 如請求項15之方法,其中在石墨烯材料之至少一部分上方形成石墨烯晶格匹配材料包括使該石墨烯晶格匹配材料之單位晶胞向量與該石墨烯材料之晶格向量對準。
  20. 如請求項15之方法,其中在石墨烯材料之至少一部分上方形成石墨烯晶格匹配材料包括使該石墨烯晶格匹配材料之單位晶胞向量與該石墨烯材料之石墨烯鍵對準。
TW103125747A 2013-07-30 2014-07-28 半導性石墨烯結構、用於形成此結構之方法及包含此結構之半導體裝置 TWI488310B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/954,017 US8901666B1 (en) 2013-07-30 2013-07-30 Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures

Publications (2)

Publication Number Publication Date
TW201513363A TW201513363A (zh) 2015-04-01
TWI488310B true TWI488310B (zh) 2015-06-11

Family

ID=51948358

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103125747A TWI488310B (zh) 2013-07-30 2014-07-28 半導性石墨烯結構、用於形成此結構之方法及包含此結構之半導體裝置

Country Status (7)

Country Link
US (2) US8901666B1 (zh)
EP (1) EP3027556B1 (zh)
JP (1) JP6043022B2 (zh)
KR (1) KR101817020B1 (zh)
CN (2) CN105452162A (zh)
TW (1) TWI488310B (zh)
WO (1) WO2015017117A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures
WO2017022577A1 (ja) * 2015-08-06 2017-02-09 株式会社村田製作所 歪抵抗素子、圧力センサ、歪ゲージ、加速度センサおよび角速度センサ
KR102465353B1 (ko) 2015-12-02 2022-11-10 삼성전자주식회사 전계 효과 트랜지스터 및 이를 포함하는 반도체 소자
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
US10665799B2 (en) 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
CN106783997B (zh) * 2016-12-05 2019-07-19 北京大学 一种高迁移率晶体管及其制备方法
US10170702B2 (en) * 2017-01-12 2019-01-01 International Business Machines Corporation Intermetallic contact for carbon nanotube FETs
CN108281357A (zh) * 2017-12-27 2018-07-13 中国人民解放军国防科技大学 基于Al2O3介质栅衬底制备二维材料场效应管的方法
KR102483991B1 (ko) * 2018-02-13 2022-12-30 성균관대학교산학협력단 마이크로 버블 집적구조체 및 이의 제조방법
DE102018214302B4 (de) * 2018-08-23 2020-07-30 Infineon Technologies Ag Verfahren zum Herstellen eines graphenbasierten Sensors
US11257962B2 (en) 2019-05-02 2022-02-22 Micron Technology, Inc. Transistors comprising an electrolyte, semiconductor devices, electronic systems, and related methods
CN110038557B (zh) * 2019-05-20 2022-02-11 中国科学院海洋研究所 一种电催化GOx/MnCO3复合材料及其制备和应用
CN111640800B (zh) * 2020-04-30 2023-04-11 中国科学院微电子研究所 一种半导体器件及其制备方法
CN113193037B (zh) * 2021-04-01 2022-01-28 北京大学 Ga2O3基共振隧穿二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732859B2 (en) * 2007-07-16 2010-06-08 International Business Machines Corporation Graphene-based transistor
US8247806B2 (en) * 2009-04-08 2012-08-21 Electronics And Telecommunications Research Institute Field effect transistor having graphene channel layer
TW201304014A (zh) * 2011-01-12 2013-01-16 Semiconductor Energy Lab 半導體裝置及其製造方法
TW201314900A (zh) * 2011-09-26 2013-04-01 United Microelectronics Corp 半導體結構及其製程

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619257B2 (en) * 2006-02-16 2009-11-17 Alcatel-Lucent Usa Inc. Devices including graphene layers epitaxially grown on single crystal substrates
US7781061B2 (en) * 2007-12-31 2010-08-24 Alcatel-Lucent Usa Inc. Devices with graphene layers
JP2009277803A (ja) * 2008-05-13 2009-11-26 Fujitsu Ltd 半導体装置、半導体装置の製造方法およびトランジスタ
US8198707B2 (en) * 2009-01-22 2012-06-12 Board Of Regents, The University Of Texas System Establishing a uniformly thin dielectric layer on graphene in a semiconductor device without affecting the properties of graphene
US20120161098A1 (en) 2009-08-20 2012-06-28 Nec Corporation Substrate, manufacturing method of substrate, semiconductor element, and manufacturing method of semiconductor element
US8697230B2 (en) * 2009-08-31 2014-04-15 Kyushu University Graphene sheet and method for producing the same
FR2952471A1 (fr) * 2009-11-09 2011-05-13 Commissariat Energie Atomique Graphene epitaxie sur sic, ayant un gap ouvert et une mobilite comparable a celle du graphene standard a gap nul
US20110108854A1 (en) * 2009-11-10 2011-05-12 Chien-Min Sung Substantially lattice matched semiconductor materials and associated methods
US8344358B2 (en) * 2010-09-07 2013-01-01 International Business Machines Corporation Graphene transistor with a self-aligned gate
US9266738B2 (en) * 2010-10-15 2016-02-23 The Regents Of The University Of California Organometallic chemistry of extended periodic II-electron systems
KR20130132808A (ko) * 2010-11-24 2013-12-05 후지 덴키 가부시키가이샤 그라펜을 포함하는 도전성 박막 및 투명 도전막
US20120276718A1 (en) * 2011-04-27 2012-11-01 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Method of fabricating graphene-based field effect transistor
CN102184849B (zh) * 2011-04-27 2013-03-20 中国科学院上海微系统与信息技术研究所 石墨烯基场效应晶体管的制备方法
TWI550828B (zh) * 2011-06-10 2016-09-21 住友化學股份有限公司 半導體裝置、半導體基板、半導體基板之製造方法及半導體裝置之製造方法
EP2720809A4 (en) 2011-06-17 2015-01-14 Univ North Texas DIRECT GRAPH GROWTH ON MGO (111) THROUGH PHYSICAL STEAM STORAGE: INTERFACE CHEMISTRY AND BAND GAP TRAINING
TW201304104A (zh) 2011-07-11 2013-01-16 United Microelectronics Corp 矽穿孔結構以及形成矽穿孔結構的方法
WO2013010060A1 (en) * 2011-07-14 2013-01-17 University Of North Texas Direct growth of graphene by molecular beam epitaxy for the formation of graphene heterostructures
US8878157B2 (en) * 2011-10-20 2014-11-04 University Of Kansas Semiconductor-graphene hybrids formed using solution growth
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732859B2 (en) * 2007-07-16 2010-06-08 International Business Machines Corporation Graphene-based transistor
US8247806B2 (en) * 2009-04-08 2012-08-21 Electronics And Telecommunications Research Institute Field effect transistor having graphene channel layer
TW201304014A (zh) * 2011-01-12 2013-01-16 Semiconductor Energy Lab 半導體裝置及其製造方法
TW201314900A (zh) * 2011-09-26 2013-04-01 United Microelectronics Corp 半導體結構及其製程

Also Published As

Publication number Publication date
JP2016525790A (ja) 2016-08-25
KR101817020B1 (ko) 2018-01-09
US9349803B2 (en) 2016-05-24
EP3027556A4 (en) 2017-04-12
EP3027556B1 (en) 2023-05-10
KR20160018872A (ko) 2016-02-17
US20150034908A1 (en) 2015-02-05
CN109166785A (zh) 2019-01-08
US8901666B1 (en) 2014-12-02
EP3027556A1 (en) 2016-06-08
JP6043022B2 (ja) 2016-12-14
CN105452162A (zh) 2016-03-30
WO2015017117A1 (en) 2015-02-05
TW201513363A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
TWI488310B (zh) 半導性石墨烯結構、用於形成此結構之方法及包含此結構之半導體裝置
Huyghebaert et al. 2D materials: roadmap to CMOS integration
US9431520B2 (en) Graphene nanoribbons and carbon nanotubes fabricated from SiC fins or nanowire templates
US20110220865A1 (en) Transistor and manufacturing method thereof
US10784353B2 (en) Lateral heterojunctions between a first layer and a second layer of transition metal dichalcogenide
Liu et al. Tuning the Schottky barrier height of the Pd–MoS 2 contact by different strains
US20110227044A1 (en) Transistor and method for manufacturing the same
CN109196651B (zh) 场效应晶体管结构及其制作方法
US12046665B2 (en) Forming semiconductor structures with two-dimensional materials
JPWO2019107411A1 (ja) トンネル電界効果トランジスタおよび電子デバイス
TW202008586A (zh) 穿隧式場效電晶體及其形成方法
Lien et al. High Performance WSe 2 Transistors with Multilayer Graphene Source/Drain
TWI641138B (zh) 半導體功率元件單元及其製造方法
Zheng et al. Tuning the Electronic Structures of Atomic Layer MoS 2 on Different Substrates Using Scanning Tunneling Microscopy/Spectroscopy
Hui Novel III-V Device Architectures for Application in Advance CMOS Logic and Beyond
Yuan Metal Contacts on Low-Dimensional Materials