CN105274488B - 金刚石电极及其制造方法 - Google Patents

金刚石电极及其制造方法 Download PDF

Info

Publication number
CN105274488B
CN105274488B CN201510267092.4A CN201510267092A CN105274488B CN 105274488 B CN105274488 B CN 105274488B CN 201510267092 A CN201510267092 A CN 201510267092A CN 105274488 B CN105274488 B CN 105274488B
Authority
CN
China
Prior art keywords
film
substrate
diamond
electrode
bdd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510267092.4A
Other languages
English (en)
Other versions
CN105274488A (zh
Inventor
崔容瑄
李瑜基
韩致福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Te Ying Science and Technology Ltd.
Original Assignee
Te Ying Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Te Ying Science And Technology Ltd filed Critical Te Ying Science And Technology Ltd
Publication of CN105274488A publication Critical patent/CN105274488A/zh
Application granted granted Critical
Publication of CN105274488B publication Critical patent/CN105274488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46147Diamond coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及利用化学气相沉积(CVD)工艺的商用金刚石电极及其制造方法,在金刚石电极的制造方法中,利用热灯丝化学气相沉积(HFCVD)工艺在碳质材料或导电性基板上形成导电性金刚石薄膜,在实施用于形成金刚石薄膜的工艺条件之前,流入碳源供给气体以在铌基板的表面形成碳化铌(NbC),在形成导电性金刚石薄膜时,将薄膜分2次以上进行沉积,由此,在形成导电性金刚石薄膜时,填埋随之而来的针孔,最大限度抑制在电解氛围下电解液与基板的接触,使基板的腐蚀缓慢,从而提供具有长时间寿命的金刚石电极。

Description

金刚石电极及其制造方法
技术领域
本发明涉及金刚石电极及其制造方法,更详细而言,涉及利用化学气相沉积(Chemical Vapor Deposition,CVD)的商用金刚石电极及其制造方法。
背景技术
作为利用化学气相沉积(Chemical Vapor Deposition,CVD)工艺的导电性金刚石薄膜的形成方法,已知利用热灯丝CVD、微波等离子体CVD等的方法。
纯金刚石作为具有5.2eV带隙(band gap)半导体,因几乎没有导电性而无法用作电极。然而,如果在形成金刚石薄膜时添加微量硼(B)或磷(P)等,则因形成导电性金刚石膜而能够用作电极。近年来,硼掺杂金刚石薄膜电极(Boron Doped Diamond Electrode,BDD电极)成为主流。
BDD电极由于电位窗口宽,且与其他电极相比产生氧的过电压高,因此在利用电化学方法来处理水的领域中非常有用。特别是当将BDD电极与被称为DSA(DimensionallyStable Anode,尺寸稳定阳极)电极的不溶性电极进行比较时,在电极表面氢氧自由基(OH)和臭氧(O3)的产生量极高,从而作为水处理用电极非常有用。
进一步,在将BDD电极用于水处理用电极的情况下,产生氢氧自由基(OH)、臭氧(O3)、过氧化氢(H2O2)等氧化剂,除此以外,在包含氯(Cl2)的电解液中,还产生像次氯酸离子(OCl-)一样的强氧化剂,从而能够有效应用于电化学废水处理、电化学净水处理、船舶平衡水处理等领域。
另一方面,大部分BDD电极与其他薄膜的形成过程一样,存在如下缺点:在成膜时会存在针孔,因形成后的薄膜的应力而与基板的密合力降低,在形成无定形碳或石墨相的薄膜的情况下,在电解环境中的寿命差。此外,随着电解工序进行,由于电极自身产生的热或电解液的温度以及化学腐蚀等会使薄膜发生剥离等,因此可能更加缩短BDD电极的寿命。
此外,以往为了弥补成膜后的BDD电极的针孔等缺陷,提出了对基板的表面进行氟化处理的方法(专利文献1),但由于追加所谓的氟化处理工序,因此整体上延长BDD电极的制造时间而使生产性降低,产生额外费用,从这些方面考虑,存在BDD电极的产业利用只能受限的缺点。
此外,以往对于金刚石薄膜的形成,提出了如下方法:形成包含性质不同的层的多个金刚石层,将最表层的金刚石层的厚度形成为20μm以上(专利文献2)。据此,在涂布相对厚膜的金刚石层的情况下,有可能因拉伸应力而产生薄膜剥离的问题。为了解决这样的问题,提出了在基板的反面也进行成膜的方案,但由于利用CVD法的BDD电极的成膜速度仅为0.1~0.7μm/hr水平,因此存在如下问题:如果欲形成20μm以上的薄膜时,则需要100小时左右的成膜工序。
此外,为了解决上述问题,以往提出了在初期成膜时,形成低品质的金刚石薄膜,仅在最表层形成高品质的金刚石薄膜的方案。然而,由于利用常规CVD法的BDD电极的成膜速度为0.1~0.7μm/hr水平,因此成膜时间过长而难以实际应用。目前为止,虽然有成膜速度与投入的气体的总量在一定程度上成比例的趋势,但仍然未知以每小时数μm水平进行成膜的方法。这样,仅在最表层成膜高品质的金刚石薄膜的方法也仍然存在难以将其有效应用于产业的问题。
现有技术文献
专利文献
专利文献1:韩国公开专利公报第10-2006-0051632号(2006.05.19)
专利文献2:韩国公开专利公报第10-2011-0073461号(2011.06.29)
发明内容
所要解决的课题
本发明为了解决上述问题而做出的,其目的在于提供一种金刚石电极的制造方法,该制造方法利用化学气相沉积(Chemical Vapor Deposition,CVD)工艺,通过控制在铌(Nb)基板上形成导电性金刚石薄膜的工序,能够制造具有优异特性和长寿命的金刚石电极。
此外,本发明的另一目的在于提供一种金刚石电极,其利用上述制造方法来制造。
解决课题的方法
为了解决上述课题,本发明的一个方面涉及金刚石电极的制造方法,其特征在于,在形成导电性金刚石薄膜之前,首先向腔室内注入碳源气体而在基板的表面形成碳化物薄膜,之后,调节投入的氢气、碳源气体和硼源气体的投入比率来调整金刚石晶体的大小,并且以既定厚度至少分2次以上形成导电性金刚石薄膜。
本发明的另一方面涉及金刚石电极,其包含基板、基板上的碳化涂层、碳化涂层上的第1导电性金刚石薄膜以及与第1导电性金刚石薄膜具有相同性质的第1导电性金刚石薄膜上的第2导电性金刚石薄膜。
本发明的又另一方面涉及金刚石电极,其包含赋予粗糙度的铌基板、基板上的碳化铌涂层、碳化铌涂层上的第1导电性金刚石薄膜、第1导电性金刚石薄膜内的针孔以及第1导电性金刚石薄膜和针孔上的第2导电性金刚石薄膜。
在一个实施方式中,第1导电性金刚石薄膜的厚度为2μm以下,优选为1~2μm。
发明效果
根据本发明,在金刚石电极的制造中,能够提供一种金刚石电极及其制造方法,所述金刚石电极无关针孔产生与否均能够在将电极特性最大化的同时确保长时间的寿命。
附图说明
图1是根据本发明的一个实施方式的金刚石电极的制造方法的流程图。
图2是利用图1的金刚石电极的制造方法制造的金刚石电极的截面图。
附图标记说明
11:成为基板的铌(Nb)板
12:形成于基板的碳化铌(NbC)层
13:在基板上1次成膜的导电性金刚石(BDD)层
14:1次BDD层成膜时产生的针孔
15:2次成膜的BDD层
具体实施方式
以下,参照附图对根据本发明的实施方式进行详细说明。
图1是根据本发明的一个实施方式的金刚石电极的制造方法的流程图。
参照图1,根据本实施方式的金刚石电极的制造方法包括如下工序:赋予基板粗糙度的步骤S11;对基板进行碳化处理的步骤S12;控制投入气体的混合比率的步骤S13;和导电性金刚石薄膜的分次成膜步骤S14。
以下,对各个工序进行详细说明。
赋予基板粗糙度的步骤S11
一般而言,对基板实施打磨(sanding)处理或利用酸的蚀刻(etching)来向基板表面赋予粗糙度(roughness)作为提高基板与涂膜间的密合力的技术已得到广泛利用,不仅目前提供的不溶性电极的情况,对所有基板表面均可赋予粗糙度。
特别是在导电性金刚石(硼掺杂金刚石,BDD)电极的情况下,不仅提高基板与薄膜的密合力,而且在电解工序中确保电极的活性面积的方面也有效。
依据现有研究,Ti/PbO2电极的活性面积是不考虑粗糙度的真实面积的85%水平,在BDD电极的情况下,为15~26%,相对于真实面积的诸如氢氧自由基(OH)和臭氧(O3)之类的氧化剂的产生量存在差异。据报导,这可能是由电极的活性面积引起的(Sim Sujin,首尔大学博士学位论文“电化学水处理工艺中影响氧化剂产生的二氧化铅电极的特性”,2013)。
在本实施方式中,以利用市售的#150氧化铝(Brown Aluminum Oxide,粒度106~75μm)和#16氧化铝(粒度(grain size),1,400~1,180μm)进行打磨处理的基板和未进行打磨处理的基板作为对象制造BDD电极,并实施寿命评价。
表1是本实施方式所提出的BDD制造工艺中未考虑其他变量而仅以是否打磨为基准实施寿命评价的结果。
[表1]
区分 1次实验 2次实验 3次实验 平均寿命
实施例(#150打磨的BDD) 114.2hr 119.5hr 116.5hr 116.7hr
实施例(#16打磨的BDD) 87.6hr 85.3hr 93.2hr 88.7hr
比较例(未打磨的BDD) 66.3hr 71.7hr 68.7hr 68.9hr
在表1中,用于寿命评价的试验条件为:使用以1L∶3L∶27L的比率将99.5%乙腈(CH3CN)、98%硫酸(H2SO4)、蒸馏水混合而得的电解液,电流密度100A/dm2,阳极为#150打磨的BDD、#16打磨的BDD、未打磨的BDD,阴极使用铂(Pt)电极,电极间距离保持3mm,使用电极的大小均为3mm x 5mm的电极进行试验。
寿命判断以电压上升为基准进行,考虑到初期电压为5.0~5.2V,电解中电压达到7V时判断为寿命结束。
如表1所示,确认到与未赋予粗糙度的情况相比,赋予基板粗糙度提高28%~69%的寿命,对于多种尺寸的打磨介质的实验结果是,打磨介质的粒度尺寸为75~200μm时为佳,更优选为100~150μm左右的情况。
对基板进行碳化处理的步骤S12
就电极而言,在电解氛围下,因化学侵蚀、劣化等原因会使基板发生腐蚀,并且因薄膜发生损伤或损耗而使寿命降低。此外,在形成薄膜的过程中,如果存在针孔,则会因基板直接暴露于电解液而使寿命降低现象加速,而且会使基板与薄膜间的密合力减弱而对电极寿命产生不良影响。考虑到这方面,在以往不溶性电极的情况下,尝试过利用形成中间层的方法来抑制基板直接暴露于电解液的现象或提高基板与薄膜间的密合力(JP60-21232B,JP2761751B,US2009/0246410A1等)。但是,这种尝试主要涉及铂系金属氧化物电极(诸如Ti/IrO2电极等的DSA电极),BDD电极成膜时难以应用。
另一方面,在根据本发明的实施方式中,利用热灯丝化学气相沉积(Hot FilamentChemical Vapor Deposition,HFCVD)工艺制造BDD电极,分别使用甲烷(CH4)作为碳源、使用TMB(三甲基硼,C3H9B)气体作为硼源、使用氢气(H2)作为载气(carrier gas)来改善BDD电极的性能。
在此,优选上述TMB气体是TMB与氢的混合气体,在全体混合气体中,TMP具有0.1%体积(0.1%C3H9B/H2bal)
即,已知如果用于形成导电性金刚石薄膜的准备结束,则进行通过加热灯丝使碳热解而使其形成金刚石相晶体结构的工序,此时,将硼源气体一同注入,使硼以100~10,000ppm程度进行掺杂,从而形成导电性金刚石薄膜。以此为基础,在本实施方式中插入如下工序:在灯丝被加热至适当的温度而达到能够形成导电性金刚石薄膜的工艺条件的过程中,优先投入氢气和甲烷气体,从而在铌基板(图2的11)的表面首先形成碳化铌涂层。
如果在基板上首先碳化物成膜或形成涂层,则具有能够抑制基板与电解液直接接触的现象的效果,同时因碳化物的作用,产生基板与金刚石薄膜间的密合力也提高的效果。
在本实施方式中,进行10~30分钟的碳化涂层形成工序来形成100nm左右的碳化铌涂层,但不限于此。此外,在本实施方式中,使用铌基板作为基板,但不限于这种基板。即,不排除将其他材料用作基板。
控制投入气体的混合比率的步骤S13
在本实施方式中,使用甲烷作为碳源,使用TMB作为硼源,使用氢气作为载气。另一方面,依据现有研究,已知这些气体的混入比率和全体气体投入量对BDD电极的特性和成膜速度产生影响。因此,在本实施方式中,将氢气:甲烷:TMB的投入比率保持为100:0.5~2.5:3~5,并确认在上述投入比率中,100:1.5:4的比率最具效果。
导电性金刚石薄膜的分次成膜步骤S14
在BDD电极中,薄膜的厚度可以相对随意地调节,但通常普遍制造具有3~5μm厚度的BDD电极。将其对照BDD电极的一般成膜速度0.1~0.7μm/hr来看,可认为需要大约10小时左右的成膜工艺时间。另一方面,依据现有研究,粒子的大小和成膜速度随投入气体的混入比率和全体气体的投入量的变化而变化。此外,在形成薄膜时,几乎必然会存在针孔,随着薄膜厚度变厚,因拉伸应力而可能会导致密合力降低或产生剥离的现象。考虑到这些方面,在本实施方式中,在保持上述工序(S13)中所投入的气体的混合比率的同时,以如下方式分次成膜金刚石薄膜:对厚度为2μm以下或厚度为2μm左右的导电性金刚石薄膜进行5小时的1次成膜,然后,对另一导电性金刚石薄膜进一步进行5小时的2次成膜。
换言之,一般而言,当成膜厚度达到2~3μm时,薄膜的拉伸应力产生影响,因此考虑到这个原因,在本实施方式中,在形成导电性金刚石薄膜时,以2小时或其以上的时间间隔形成1次薄膜(2μm以下,优选为1~2μm),并且直至达到整体目标厚度,将成膜工序分2次以上进行。
此外,依据现有研究,实验中所使用的BDD电极的薄膜厚度为3~5μm水平,并且判断如果为该水平的厚度,则作为电极的性能也会充分,因此考虑到这个原因,在本实施方式中,以一定时间(例如,5小时)为单位将成膜工序分成多次实施来制造上述厚度的BDD薄膜。如果这样分次实施成膜工序,则可以减少由拉伸应力导致的薄膜的剥离现象,除此以外,还可以同时产生如下效果:在形成2次BDD层(图2的15)时,消除在形成1次BDD层(图2的13)时所形成的针孔(图2的14),从而最大限度地抑制电解液与基板直接接触的现象,能够制造具有长寿命的BDD电极。
图2是利用图1的金刚石电极的制造方法制造的金刚石电极的截面图。
参照图2,根据本实施方式的金刚石电极包含基板11、基板11上的碳化铌涂层12、碳化铌涂层12上的第1导电性金刚石薄膜13、第1导电性金刚石薄膜13内的针孔14以及第1导电性金刚石薄膜13和针孔14上的第2导电性金刚石薄膜15。
基板11可以是赋予粗糙度的铌基板。
第1导电性金刚石薄膜13的厚度为2μm以下,优选为1~2μm。该厚度是第1导电性金刚石薄膜13的平均厚度。
实施例1
以下,对图2的金刚石电极的制造方法进行具体说明。在本实施例中,利用#150氧化铝(Brown Aluminum Oxide,粒度106~75μm)对铌基板的两面进行打磨处理,利用丙酮进行超声波洗涤,然后利用醇进行超声波洗涤,从而将基板净化。作为铌基板,使用的尺寸为3mm x 5mm x 1mm(宽x长x厚)。并且,将准备的基板装入以金刚石粉末进行分散处理的醇溶液并进行超声波处理,从而包覆金刚石核(nuclei)。
接下来,将基板装入真空腔室,利用旋转泵排气至7~9x 10-3torr水平。接着,缓慢加热钨灯丝以使灯丝达到2,100~2,700℃。
然后,在设置于基板侧面的热电偶的温度上升至600~700℃水平时,一边利用流量调节装置(Mass Flow Controller,MFC)以100:1.5的比率进行混入的方式调整氢气与甲烷气体,一边在基板表面形成碳化铌(NbC)。此时,工艺真空度保持为50torr。
在将上述工序保持20分钟后,设定供电功率以使设置于基板侧面的热电偶的温度达到750~800℃,在保持该状态下,利用MFC来调整流入气体的量以使氢气∶甲烷∶TMB气体的混合比率为100∶1.5∶4的比率。
通过上述工序,成膜1次BDD层,在达到BDD层成膜工序时间(5小时)时,中断1次BDD层的成膜。此时,将基板从真空腔室移至常压腔室。
然后,将1次成膜BDD层的基板重新装入真空腔室,从排气过程至加热灯丝过程,以与1次成膜时同样的方法进行,在之后的工序中,以与1次BDD层成膜同样的方法操作来进行5小时的2次BDD层成膜。
将Condias公司的Nb/BDD电极、作为以往不溶性电极的Ti/IrO2电极与通过上述工序制造的本实施例的导电性金刚石电极进行比较,评价它们的寿命。在寿命评价中使用加速实验方法,并以如下所示条件进行。
-电解液:以1L∶3L∶27L的比率将99.5%乙腈(CH3CN)、98%硫酸(H2SO4)、蒸馏水混合而成的电解液
-电流密度:100A/dm2(反应面积0.00785dm2,直径10mm)
-电解温度:30℃
-阴极:锆(Zr)板
在寿命判断中,将电压上升作为基准,考虑到初期电压为5.0~5.2V,电解中电压达到7V时判断寿命结束。
整理寿命评价结果,如表2所示。
[表2]
区分 1次实验 2次实验 3次实验 平均寿命
实施例 158.7hr 134.4hr 161.3hr 151.5hr
比较例1(购得BDD) 109.4hr 112.2hr 93.8hr 105.1hr
比较例2(IrO23μm) 13.2hr 16.5hr 16.1hr 15.3hr
比较例3(IrO26μm) 38.3hr 35.4hr 39.2hr 37.6hr
在表2中,本实施例的BDD层的厚度测定为3.8~4.7μm,比较例1的BDD层的厚度测定为4.2~5.1μm。并且,本实施例的BDD电极的初期电压为5.1~5.2V,比较例1的BDD电极的初期电压为5.0~5.2V,比较例2的IrO2电极的初期电压为4.6~4.7V,比较例3的IrO2电极的初期电压为4.0~4.2V。
正如寿命评价结果所示,可知与以往BDD电极相比,根据本实施例的BDD电极的寿命提高44%以上。这是基板表面形成碳化铌膜,氢气、甲烷和TMB气体的混合比率,以及BDD层成膜时分次沉积等综合作用的结果。这样,根据本实施例,能够制造具有相对优异的持久寿命的导电性金刚石电极。
另一方面,观察电压上升的过程,本实施例的BDD电极在经过139~144小时后电压上升10%,在经过148~153小时后电压上升20%。与之相对,比较例1的BDD电极在经过75~81小时后电压上升10%,在经过77~89小时后电压上升20%。从这样的结果可知,本实施例的BDD电极在电解工序进行的过程中更加稳定,即使存在部分电压上升,电压上升曲线的斜率也相对缓慢。这可以认为其表现出BDD层的损伤进行速度相对缓慢。
已知本实施例的BDD电极的寿命如上述说明大幅提高。为了判断这样提高寿命的电极的电解性能是否存在问题,利用作为最简单方法的测定次氯酸(Hypochlorous acid)产生效率的方法进行比较评价。
在用于比较评价的试验法中,利用3%氯化钠(NaCl)水溶液生产次氯酸3分钟,对其利用碘滴定法测定效率。通常,在以往的不溶性电极的情况下,根据制造公司的不同而存在差异,但在新产品的情况下,观察到85%以上的效率,有时也观察到部分91~92%的效率。试验条件如下。
-电解液:3%氯化钠(NaCl)水溶液
-电流密度:15A/dm2
-电极间距离:3mm
-阴极:钛(Ti)网
整理利用上述碘滴定法的氧化剂产生效率的比较测定结果,如表3所示。
[表3]
区分 1次实验 2次实验 3次实验 平均效率
实施例 96.5% 98.6% 98.6% 97.9%
比较例1(购得BDD) 97.3% 98.4% 98.3% 98.0%
比较例2(IrO2电极) 84.3% 82.7% 82.5% 83.2%
比较例3(RuO2电极) 88.2% 93.7% 90.4% 90.8%
比较例4(Pt电极) 58.3% 56.5% 52.9% 55.7%
正如表3所示,可知本实施例的BDD电极与以往的不溶性电极相比表现出优异水平的效率。这可判断为在使用本实施例的BDD电极时因与次氯酸一同产生臭氧(O3)而表现出的现象。从将本实施例的BDD电极应用于水处理领域的方面考虑,由于次氯酸或臭氧均为强氧化剂,因此可以认为BDD电极作为氧化剂产生电极是最有效的电极。
另一方面,可以确认在氧化剂产生效率的方面,本实施例与比较例1表现出几乎类似的趋势。从该结果确认到,本实施例的BDD电极在产生氧化剂的性能方面与以往高价电极即比较例1的电极相比毫不逊色。
上述本发明的说明仅用于例示,应当理解本发明所属技术领域的普通技术人员在不改变本发明的技术思想或必要特征的条件下可以容易地变形为其他具体形态。因此,应当理解为上述实施例在所有方面仅为例示而不用于限定。

Claims (2)

1.一种制造金刚石电极的方法,其特征在于,包括:
通过利用粒度尺寸为100~150μm的打磨介质的打磨工序对基板的表面赋予粗糙度的步骤;
向腔室内注入氢气和碳源气体而在基板表面形成碳化涂层的步骤;
通过调节所述腔室内的氢气、碳源气体和硼源气体的投入比率来调整在所述基板上沉积的金刚石晶体的大小,并且利用热灯丝化学气相沉积(HFCVD)至少分2次以上在所述基板上形成导电性金刚石薄膜的步骤,
在所述形成碳化涂层的步骤中,
在形成所述导电性金刚石薄膜的步骤之前的步骤中,在将所述腔室内基板表面的温度加热至600~700℃的状态下,以100:1.5的比率投入氢气和作为所述碳源气体的甲烷气体来在铌基板上形成碳化铌涂层,
所述形成导电性金刚石薄膜的步骤中,
将作为所述碳源气体的甲烷(CH4)、作为所述硼源气体的TMB(三甲基硼)气体、作为载气的氢气(H2)的投入比率即甲烷:TMB气体:氢气调节为0.5~2.5:3~5:100,以所述导电性金刚石薄膜的厚度每增加1~2μm时中断成膜后重新成膜的方式,至少分2次以上进行成膜。
2.一种金刚石电极,其根据权利要求1所述的方法制造。
CN201510267092.4A 2014-05-29 2015-05-22 金刚石电极及其制造方法 Active CN105274488B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140065404A KR101480023B1 (ko) 2014-05-29 2014-05-29 다이아몬드 전극 및 그 제조 방법
KR10-2014-0065404 2014-05-29

Publications (2)

Publication Number Publication Date
CN105274488A CN105274488A (zh) 2016-01-27
CN105274488B true CN105274488B (zh) 2018-05-22

Family

ID=52588143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510267092.4A Active CN105274488B (zh) 2014-05-29 2015-05-22 金刚石电极及其制造方法

Country Status (3)

Country Link
US (1) US10487396B2 (zh)
KR (1) KR101480023B1 (zh)
CN (1) CN105274488B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695590B1 (ko) * 2016-02-25 2017-01-11 재단법인 하이브리드 인터페이스기반 미래소재 연구단 티타늄금속기판 위에 다이아몬드 코팅층이 형성된 수처리용 구조재 및 그 제조 방법
KR102080067B1 (ko) 2018-04-02 2020-02-21 (주) 테크윈 전기화학적 특성을 개선한 다이아몬드 전극 및 그 제조 방법
DE102019134727A1 (de) * 2019-06-12 2020-12-17 Friedrich-Alexander-Universität Erlangen-Nürnberg Schweißelektrode und Verwendung der Schweißelektrode
CN110808181B (zh) * 2019-10-12 2021-09-03 深圳先进技术研究院 薄膜电极及制备方法
CN111627873A (zh) * 2020-04-17 2020-09-04 柯文政 具高导热能力的钻石薄膜导电层结构及其制造方法
AT525593A1 (de) 2021-10-22 2023-05-15 Carboncompetence Gmbh Vorrichtung und Verfahren zur Herstellung dotierter Diamantschichten
JP7421018B1 (ja) 2022-04-26 2024-01-23 住友化学株式会社 ダイヤモンド膜堆積基板、およびダイヤモンド膜堆積基板の製造方法
KR20230172306A (ko) 2022-06-15 2023-12-22 (주) 테크윈 전기화학적 특성과 밀착력이 향상된 다이아몬드 전극 및 그 제조 방법
JP7348422B1 (ja) * 2023-03-23 2023-09-20 住友化学株式会社 ダイヤモンド電極、およびダイヤモンド電極の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021232B2 (ja) 1981-05-19 1985-05-25 ペルメレツク電極株式会社 耐久性を有する電解用電極及びその製造方法
JP2761751B2 (ja) 1989-03-20 1998-06-04 ペルメレック電極株式会社 耐久性電解用電極及びその製造方法
US6858080B2 (en) * 1998-05-15 2005-02-22 Apollo Diamond, Inc. Tunable CVD diamond structures
KR20060009811A (ko) * 2003-05-26 2006-02-01 스미토모덴키고교가부시키가이샤 다이아몬드 피복 전극 및 그의 제조 방법
JP2005054264A (ja) * 2003-08-07 2005-03-03 Ebara Corp ダイアモンド電極の成膜方法
JP4456378B2 (ja) * 2004-02-24 2010-04-28 ペルメレック電極株式会社 導電性ダイヤモンド電極の製造方法
KR100581006B1 (ko) * 2004-08-05 2006-05-17 한국과학기술연구원 NbSi2계 나노 복합 피복층 및 그 제조방법
JP4535822B2 (ja) 2004-09-28 2010-09-01 ペルメレック電極株式会社 導電性ダイヤモンド電極及びその製造方法
JP4673696B2 (ja) * 2005-08-01 2011-04-20 ペルメレック電極株式会社 導電性ダイヤモンド電極及びその製造方法
JP2007238989A (ja) * 2006-03-07 2007-09-20 Ebara Corp ダイヤモンド電極の製造方法
KR20080100415A (ko) * 2006-03-17 2008-11-18 트라이엄프,오퍼레이팅애즈어조인트벤쳐바이더거버너스 오브더유니버시티오브알버타더유니버시티오브브리티시콜롬비아 칼레톤유니버시티시몬프레이저유니버시티더유니버시티 오브토론토앤드더유니버시티오브빅토리아 다이아몬드 상 탄소 층을 갖는 자기 지지 다층 필름
JP2008001932A (ja) * 2006-06-21 2008-01-10 Sumitomo Electric Ind Ltd 電解用電極
JP2008063607A (ja) * 2006-09-06 2008-03-21 Sumitomo Electric Ind Ltd ダイヤモンド被覆基板、電気化学的処理用電極、電気化学的処理方法及びダイヤモンド被覆基板の製造方法
US7833581B2 (en) * 2006-09-11 2010-11-16 The Hong Kong University Of Science And Technology Method for making a highly stable diamond film on a substrate
JP5171082B2 (ja) * 2007-03-23 2013-03-27 株式会社不二製作所 被膜形成部の下地処理方法
US20090017258A1 (en) * 2007-07-10 2009-01-15 Carlisle John A Diamond film deposition
TWI453306B (zh) 2008-03-31 2014-09-21 Permelec Electrode Ltd 電解用電極的製造方法
CN102159750A (zh) * 2008-09-24 2011-08-17 栗田工业株式会社 金刚石电极及金刚石电极的制造方法

Also Published As

Publication number Publication date
US20150345011A1 (en) 2015-12-03
CN105274488A (zh) 2016-01-27
US10487396B2 (en) 2019-11-26
KR101480023B1 (ko) 2015-01-07

Similar Documents

Publication Publication Date Title
CN105274488B (zh) 金刚石电极及其制造方法
US6855242B1 (en) Electrochemical production of peroxopyrosulphuric acid using diamond coated electrodes
TWI361844B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
US7438790B2 (en) Electrode for electrolysis and process for producing the same
JP6929378B2 (ja) 電気分解用陽極及びその製造方法
US20090324810A1 (en) Method for production of diamond electrodes
JP5772102B2 (ja) フッ素化合物の電解合成用電極
US8282796B2 (en) Carbonaceous substrate and electrode for fluorine-producing electrolysis
KR20120036779A (ko) 다중 층 혼합 금속 산화물 전극 및 이의 제조방법
CN207646292U (zh) 一种硼掺杂金刚石电极
Rufino et al. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
KR101525340B1 (ko) 도전성 다이아몬드 전극, 이것을 이용한, 황산 전해방법 및 황산 전해장치
JP2006286457A (ja) 燃料電池セパレータの製造方法
EP1779101A1 (en) Diamond electrodes
KR102080067B1 (ko) 전기화학적 특성을 개선한 다이아몬드 전극 및 그 제조 방법
TWI496953B (zh) 電解用陽極及使用該電解用陽極進行含氟物質之電解合成方法
CN105621537A (zh) 具有多层界面结构的水处理用DLC/Ti电极制造方法
KR20140013326A (ko) 수도수 전기분해용 금속 산화물 전극 및 그 제조 방법
US4040918A (en) Method of activating an anode
US4602985A (en) Carbon cell electrodes
JP2012188688A (ja) ダイヤモンドライクカーボン薄膜の製造方法及び該薄膜が金属基板上に形成された電極材料
Gorodetskii et al. Tantalum oxide effect on the surface structure and morphology of the IrO 2 and IrO 2+ RuO 2+ TiO 2 coatings and on the corrosion and electrochemical properties of anodes prepared from these
Jović et al. Ni-MoO2 composite cathodes for hydrogen evolution in alkaline solution: Effect of aging of the electrolyte for their electrodeposition
CN117512681A (zh) 一种钛基多金属氧化物涂层电极的制备方法
RS20060678A (en) Activated mixed metal oxide coated electrodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20171024

Address after: North Chungcheong Province

Applicant after: Te Ying Science and Technology Ltd.

Address before: Gyeongbuk, South Korea

Applicant before: AVECTECH CO., LTD.

GR01 Patent grant
GR01 Patent grant