CN105205557A - 一种城市常规公交线网设计方法 - Google Patents
一种城市常规公交线网设计方法 Download PDFInfo
- Publication number
- CN105205557A CN105205557A CN201510595058.XA CN201510595058A CN105205557A CN 105205557 A CN105205557 A CN 105205557A CN 201510595058 A CN201510595058 A CN 201510595058A CN 105205557 A CN105205557 A CN 105205557A
- Authority
- CN
- China
- Prior art keywords
- passenger
- circuit
- cost
- destination
- sigma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种城市常规公交线网设计方法,包括简化已知的城市道路网,然后以发车频率为变量,以乘客和运营者成本最小为目标函数,以最小发车频率、车辆容量等限制条件为约束的城市常规公交线网设计模型,通过模拟退火算法求解,最终可以得到总成本最小时的最优公交线网设计和对应发车频率,“一次成网”,实现公交线路设计和运营调度的双重目的,在得到的优化线网基础上本发明将进行线路调整,使公交线网设计更加合理、质量更优、结构更加稳定,更具有实用性。
Description
技术领域
本发明涉及公共交通领域,特别涉及一种城市常规公交线网设计方法。
背景技术
公共交通有利于减轻空气污染、节能、缓解城市交通拥挤,同时还有维护社会公平的优势,因而在很大程度上被视为实现大中城市可持续交通的可行选择,其中常规公交是城市公共交通系统的重要组成部分。由此可见,研究城市公交线网设计、确定对应发车频率具有重要现实意义。公交线网设计(TRNDP)包括线路布局及相关发车频率设计两个方面。目前,在TRNDP分析优化研究中,大多数模型对乘客换乘行为缺少描述,或者在指定的简单路网上研究乘客换乘行为;此外,模型计算结果线路重复率过高,与实际不符,计算结果不稳定,质量不佳,计算效率过低。
发明内容
为了克服技术存在的缺点与不足,本发明提供一种城市常规公交线网设计方法。
本发明采用如下技术方案:
如图1所示,一种城市常规公交线网设计方法,包括如下步骤:
S1简化已知的城市道路网,并数据初始化,包括已知道路网的各种参数。
S2根据乘客出行的任意OD点,采用Dijkstra算法计算最短线路,并将最短线路作为初始候选线路;
所述采用Dijkstra算法计算得到最短线路,根据实际情况将得到的最短线路中长度大于15千米或小于7千米,及自配起始点对的线路剔除(起点站和终点站相同的OD对),并将剔除线路的发车频率定为0,然后将剩下的最短线路作为初始候选线路。即便是保留的初始候选线路,在最终线网中也不一定存在,即考虑到总成本最低,满足约束条件和乘客需求的情况下一些合格初始候选线路最终频率为0。
采用的Dijkstra算法基本思路为:
开始
{
d(i)=∞,p(i)=-1,对于任意i∈N
d(s)=0,prd(s)=0,对于起点s而言
P=Φ,
当|P|<N时:
{
选择距离起点最短距离的点i,
把i变为永久标签,,令p(i)=1,并把i从P中删除,P=P+{i},
对于每个(i,j)∈A(i),进行:
{
如果d(j)>d(i)+Cij,则
{
距离更新:d(j)=d(i)+Cij;
把j的前一个连接点记为prd(j)=i;
}
}
}
}
其中:i、j分别表示节点;N表示节点集合;d(i)表示起始点到节点i的距离;p(i)表示辅助变量,用于判断节点i是否被永久标记;prd(i)表示节点i的前一个连接点;P表示永久标签点集合;P表示临时标签节点集合;A(i)表示与i相连接的路段;Cij表示节点i、j间的距离。
S3模型目标函数的总成本主要综合考虑乘客的时间价值成本与企业营运成本。其中,使用者成本包括等车成本、换乘成本和车内时间成本,运营成本主要是人工、燃油、折旧等成本。
以将乘客的时间价值成本及企业营运成本控制最低为目标,建立目标函数,
MinC=CW+CR+CI+Co
其中,CI是乘客的车内时间成本,CW是乘客的候车成本,CR乘客在中间站换乘候车时间成本,Co车辆运营成本。
1)乘客的候车成本CW
公交线路规划需要考虑所有愿意使用公交出行的乘客的特征,这里将乘客分为愿意换乘与不愿换乘者两类,将乘客候车成本也细分到对应的两种人群成本,愿意换乘的乘客平均等车时间少于不愿换乘的乘客等车时间(下文中的时间单位均为小时,时间价值单位均为元/小时),为有所区分,这里用所有线路发车间隔的平均值表示各类乘客的平均等车时间。
其中:qij为出发点i到目的地j的需求量(人/小时);N为站点总数;分别为愿意换乘和不愿意换乘乘客的单位等车时间价值(元/h);rij为出发点i到目的地j的乘客中换乘乘客比例。出发点i到目的地点j的愿意换乘的乘客候车时间与不愿意换乘的乘客候车时间分别为:
其中:表示起点站i1到终点站j1的公交线路;表示起点站i1到终点站j1的公交线路发车频率(车/小时,veh/h);为全体站点集合;为乘客平均等车时间因子,一般假设乘客到站服从均匀分布, 取值为0或者1,当起点站i1到终点站j1的公交线路经过乘客出发点i但却不经过乘客目的地j,乘客只能在公交线路的某个中途站下车时,否则取值为0或者1,起点站i1到终点站j1的公交线路经过乘客出发点i并且经过乘客目的地j时, 否则
2)乘客在中间站换乘候车时间成本CR
其中,VR表示单位转车时间价值(元/h);rij表示愿意换乘的乘客比例;为出发点i到目的地j的换乘乘客平均换乘时间(h),psk表示想从出发点i到目的地j的换乘乘客可能选择换乘线路Rsk的概率,表示乘客在中转站等车的等待时间(h),psk、tsk分别为:
其中:fsk表示从以s为起点站,k为终点的公交发车频率(车/小时,veh/h);取值为0或者1,当以s为起点站,k为终点的公交线路经过乘客出发点i但却不经过乘客目的地j,乘客只能在线路Rsk的中间站b下车并且从b到j有直达车时,否则 取值为0或者1,当以i1为起点站,j1为终点站的车经过乘客出发点i和Rij的中点站b但不经过终点站j并且从b到j有直达车时或者当线路Rsk经过乘客出发点i和乘客目的地j时其他情况为0;为乘客换乘平均等车时间因子, 取值为0或者1,当以i1为起点,j1为终点的车经过中间b并且可以达到乘客目的地j时,否则
3)乘客的车内时间成本CI
其中:VI表示乘客的车内时间价值(元/h);为车辆运行于发点i至目的地j的平均车内时间(h),是车辆运行时间与车辆停靠时间之和。
4)车辆运行成本Co
公交企业的运营成本与公交的线路设计、运营方案,司乘人员工资、奖金、福利等有关。一定时期内运营企业的司乘人员工资、奖金、福利等的平均值可以认为是常数,所有人员的费用总量与公交线路及运营方案有关。根据国内公交运营经验,本专利将运营成本转化为车公里运营成本。车辆运行成本Co为:
其中:c为每车公里成本(元/veh·km);Dij为车辆从发点i至目的地j的行驶距离(km)。
S4设定相关约束条件,所述约束条件包括:
1)上下行发车间距相等约束
公交线路的两个来回方向的公交车发车频率相同,即:
fij=fji(6)
2)发车频率需满足基本运输要求
发车频率需满足基本运输要求,能够尽最大可能运走需要通过公交出行的乘客。即:
其中:K为每辆车载客容量(人/veh);Qab,Qba分别为路段上行(方向a到b)、下行方向乘客需求量(人/h),Fab为路段上的公交车发车频率;取值为0或者1,若i为起点站j为终点站的线路Rij经过了路段则取值为1,其他情况为0。
3)车辆容量限制条件
从出发点i至目的地j的乘客需求量应小于或者等于其对应的直达、换乘线路允许载客总数,这样用以确保满足车辆容量限制。需求的容量限制可表示如下:
其中:取0或者1,当经过乘客从发点i和目的地j时或者当经过乘客出发点i和线路Rij的中间站b时当路径无法为i到j的乘客提供直达或者换乘服务时
4)路线长度lij限制
通常公共交通线路取中、小城市的直径或大城市的半径作为平均线路长度,或取乘客平均运距的2~3倍。公共交通线路长度约在7~15km之间。市区的线路常在10km左右,郊区线路的长度视实际情况而定,本发明约定
7≤lij≤15(9)
5)发车频率限制
除了最小发车频率和出行需求的限制外,线路长度需控制在一定范围内。此外,发车频率需要大于等于0,满足整数条件的限制。
S5由上述目标函数及约束条件,可整理得到如下公交线网设计的非线性数学规划模型:
MinC=CW+CR+CI+Co
s.t.fij=fij
S6采用以模拟退火方法为基础结合公车线路运营调整的经验,对非线性数学规划模型进行求解,得到优化线路与发车频率。
所述求解公交线网设计优化模型的方法上可分为两大类:传统优化方法和启发式方法。从本质上讲公交线网设计优化模型NP问题,在大多数情况下,传统优化方法求解此类问题非常困难,因而常用启发式算法是可行的方法。本专利以模拟退火方法为基础设计算法求解整数非线性规划模型。其中的线路调整算法融入了近年来公车线路运营调整的经验。算法具体步骤如下:
S6.1按照最短路径的原则,预先假设各对OD点间有初始候选线路Rij,其对应频率记为fij,采用Dijkstra算法得到所有候选线路,取消长度在限制要求之外的线路,相应发车频率为0,把所有符合长度要求的被择路径存储在集合中。
S6.2求出各对OD间可以选用的直达线路并存储在集合中;求出各对OD的可以选择的换乘线路,存储在集合中。
S6.3确定初始温度T,总循环次数G,L表示一个温度下迭代次数,步长Z,每个变量即发车频率fij上限BU,下限BL,给定初始状态S,其中η表示随机数,令k=0(k=1,2,3…L);
S6.4令k=k+1,并循环S6.5至S6.8。
S6.5计算新解Sk=(2*γ-1)*Z+S,其中γ是随机数。
S6.6计算目标函数TC(Sk),△t=TC(Sk)-TC(S)。若△t小于0,接收目标函数值,用Sk替换当前解S,并把Sk与记录的最优解相比较。若Sk优于已记录的最优解则用Sk替换当前最优解。若△t大于0则按随机概率决定是否接受计算结果。
S6.7如果T<ε或者总循环次数超过预设次数G则输出当前最优解,结束程序
S6.8当k≤L时,T=T/k,返回S6.3。
S6.9存储得到较优的路径集合针对此次较优的路径集合中的路径做出调整,具体调整规则如下:两条线路R1,R2经初始计算后频率不为0,分别记为f1,f2。若线路R1包含于R2,则取消线路R1(f1为0);若线路R1从起点站开始的30%站点被R2连续包含,且二者的终点站经过至多2个路段相连,则取消线路R1(f1为0)。令调整得到的路线集合为调整解。
S6.10若较优的路径集合针对目标的结果劣于调整解,则以调整解作为初始解,执行S6.3至S6.8若得到的较优的路径集合优于前轮S6.9得到的调整解,则输出结束程序。
图1中的参数含义为:i、k为辅助变量;T表示当前的温度;ε表示模拟退火算法中给定的最低温度;Sk、TC(Sk)、Δt分别表示第k次迭代得到的解、总成本、成本增量;Rbetter表示求解得到的较优路径集合;G、L分别表示给定的辅助参数i、k的最大取值;R表示调整后得到的线路集合。
本发明构建一个以发车频率为变量,以乘客和运营者成本最小为目标函数,以最小发车频率、车辆容量等限制条件为约束的城市常规公交线网设计模型,通过模拟退火算法求解,最终可以得到总成本最小时的最优公交线网设计和对应发车频率,“一次成网”,实现公交线路设计和运营调度的双重目的。在得到的优化线网基础上本专利将进行线路调整,使公交线网设计更加合理、质量更优、结构更加稳定,更具有实用性。
本发明的有益效果:实现了公交线网设计的“一次成网”,并同时生成了公交线网的线路及对应频率;本发明中提出的模型考虑了乘客的换乘行为,且得到的结果中线路重复较低、计算结果稳定。
附图说明
图1是本发明的工作流程图;
图2是本发明实施例1中站点网络结构图;
图3是本发明实施例1的OD量变化敏感度分析图;
图4是本发明实施例1的单位运营成本变动敏感度分析图;
图5是本发明实施例2的OD量变化敏感度分析图;
图6是本发明实施例2的单位运营成本变动敏感度分析图;
图7是本发明实施例2的站点网络结构图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
图2给出一个由9个站点,12条区段,24个有向路段组成的站点网络。网络中24条路段长度均为5km,公交车的行驶速率均为30km/h。各个站点间乘客起讫需求量列于表1中。愿意通过换乘到达目的地的乘客比例为0.05。乘客车内时间价值30(元/人·h)不愿换乘的乘客车外时间价值50(元/人·h)愿意换乘乘客的车外时间价值70(元/人·h)。车辆容量70(人/车);每次停靠站时间为0.02h。客车运行成本主要包括燃油消耗、通行费、人员工资等,加上车胎耗损费、人员费用、企业运转办公费用等,折合的单位运营总成本为30(元/车·km)计算。公交线路长度限制在7km-15km之间。
表1乘客OD需求量
基于以上数据,模型可以同步确定最优的公交线路与最优的运营方案。根据模型计算得到的发车频率是否为零作为任意两个城市间是否设置公交线路的依据。计算可得大于零的各个起讫点之间的公交发车频率见表2。特定起讫点之间的发车频率若为零,则此起讫点之间无专设线路。经300次独立计算,本算例选择其中目标函数值最小的一组结果作为线路布设结果。由计算结果知总计需设置16条线路,具体见表2。
表2线路布设结果
编号 | 线路 | 发车频率(辆/h) |
1 | 1-2-3 | 6 |
2 | 1-2-3-6 | 10 |
3 | 1-4-7 | 6 |
4 | 2-1-4 | 6 |
5 | 2-1-4-7 | 6 |
6 | 2-5-8 | 12 |
7 | 2-5-6-9 | 4 |
8 | 3-2-1-4 | 8 |
9 | 3-2-5-8 | 6 |
10 | 3-6-9 | 4 |
11 | 4-5-6 | 8 |
12 | 4-5-6-9 | 4 |
13 | 5-4-7 | 6 |
14 | 5-8-9 | 2 |
15 | 6-5-4-7 | 10 |
16 | 7-8-9 | 4 |
考察300次独立计算结果,可以发现每次计算结果中约有2/3的线路是基本相同的,即是稳定出现的,还有1/3的线路在每次计算结果中常会有变化。在本算例中所有符合条件的81条候选线路中,约有30条在各次计算中均未出现。若以300次计算中曾经出现的所有线路作为候选线路并基于本专利模型与算法计算,可以看到计算结果相当稳定,即线路基本相同,目标函数非常接近。
我国城市常规公共交通规划一般由以下三个部分组成:1)公交场站规划;2)公交线网设计;3)公交运营车辆确定。从计算结果可知线路布设情况与发车频率及所有始发站的公交车总量,从而为包括每一区域需要预留的基本场站用地在内的上述三个部分的决策提供依据。
实践中还需要了解未来乘客需求量变化对于路线设计的影响。假定各站点产生和吸引的乘客量作一定倍数变化,观察公交线网结构及相对应的公交发车频率变化情况。我们会发现随着OD变化,部分线路会稳定出现在公交线网设计结果中,还有约1/5-1/4的线路有较大变化。文章选择稳定出现的三条代表性公交线路R46、R59、R79为研究对象,考察当OD乘客量减少0.5倍、增加0.5倍、增加1倍变化时,线路发车频率的变化,其具体计算结果如图2所示。图3横坐标是乘客需求量变化倍数,纵坐标为各个城市间来往公交车的发车频率变化。随着需求量变大,从图中可看出整体趋势上三条线路的发车频率均有所增大,其中R46发车频率变化最大。究其原因是出发点4至目的地6的乘客需求量变化最大。还可以看出OD乘客量减少0.5倍、增加0.5倍对于R79发车频率基本无影响。
单位运营成本按:20、30、40、50变化时,三条公交线路R46、R59、R79发车频率变化如图4所示。
由图4可以看出,随着运营成本增加,R46线路发车频率减少,R59线路发车频率稳定在1(车/h)。R79线路发车频率逐渐增加,单位运营成本对线路发车频率有直接的、大的影响。这与我国现阶段许多城市的公交运营实际是吻合的。
实施例2
如图7所示,给出一个大规模站点网络,有65个点,各路段长度如表3所示,各OD对间的需求如表4中所示。公交车行驶速率均为20km/h。各个站点间乘客起讫需求量如表4所示。愿意通过换乘到达目的地的乘客比例为0.05。乘客车内时间价值30(元/人*小时),不愿换乘的乘客车外时间价值35(元/人*小时),愿意换乘乘客的车外时间价值50(元/人*小时)。车辆容量70(人/车);每次停靠站时间为0.02h。客车运行成本主要包括燃油消耗、通行费、人员工资等,其中燃油成本为1.93元每车每公里,加上车胎耗损费、人员费用、企业运转办公费用等,折合的单位运营总成本为30元每车每公里计算。取消长度小于7千米大于15千米的线路,令该线路频率为0。基于以上数据,本发明模型可以同步确定最优的公交线路与最优的运营方案。
最优解为总成本:1393646元,其中,候车成本80555元,换乘成本4347元,车内时间成本967133,运营成本341610元。
表3路段间的距离数据表
表4OD对间的需求数据
说明:(1)所有起终点相同的OD对间的需求为0,表中均未列举出;
(2)假设OD需求矩阵为对称矩阵,即表中所有OD对间的双向需求相等,如OD对对应的需求为25,表示的是起点52到终点58的需求为25,同样起点58到终点52的需求也为25。
计算得到的公车线路及其相对应的最优频率如表5所示。
表5线路发车频率
线路 | 线路上的节点 | 频率(辆/小时) | 线路长度(m) |
R1-49 | 1-9-17-34-43-44-45-46-47-48-57-63-64-58-49 | 5 | 11600 |
R2-64 | 2-3-4-13-21-29-38-47-56-57-58-64 | 19 | 9200 |
R3-53 | 3-11-19-27-36-45-54-55-56-62-61-60-53 | 21 | 10000 |
R3-55 | 3-2-1-9-17-34-43-52-60-53-54-55 | 15 | 9200 |
R7-38 | 7-6-5-4-13-21-28-37-46-47-38 | 3 | 8000 |
R7-63 | 7-6-5-14-22-30-39-48-57-56-62-63 | 27 | 8800 |
R8-52 | 8-7-6-5-4-13-21-28-37-46-55-54-61-60-52 | 26 | 11200 |
R9-50 | 9-10-11-12-20-21-22-30-39-40-49-58-59-50 | 24 | 10400 |
R9-58 | 9-17-34-35-36-37-38-47-48-49-50-51-65-59-58 | 10 | 11800 |
R9-63 | 9-10-11-12-20-21-22-23-31-32-33-42-51-50-59-58-64-63 | 24 | 13600 |
R10-63 | 10-18-19-20-28-37-38-47-56-57-63 | 16 | 8000 |
R10-65 | 10-18-26-35-44-45-54-61-62-63-64-65 | 32 | 9200 |
R12-57 | 12-20-21-29-38-47-48-49-58-64-63-57 | 9 | 8800 |
R12-60 | 12-11-10-18-26-35-44-43-52-53-60 | 13 | 8000 |
R16-19 | 16-24-25-8-7-6-5-4-3-2-10-18-26-27-19 | 37 | 12000 |
R16-34 | 16-15-14-13-21-28-27-26-35-44-43-34 | 15 | 8800 |
R16-57 | 16-15-14-13-21-29-38-37-46-55-56-62-63-57 | 15 | 10400 |
R16-60 | 16-24-32-41-50-59-65-64-63-62-61-60 | 29 | 9000 |
R17-39 | 17-9-1-2-3-4-5-6-7-8-25-24-16-15-23-22-30-39 | 18 | 14400 |
R17-50 | 17-9-10-11-12-13-14-15-16-24-32-33-42-51-65-59-50 | 15 | 13000 |
R17-65 | 17-18-19-20-21-29-30-31-32-33-42-41-40-49-58-64-65 | 25 | 12800 |
R26-63 | 26-35-36-37-46-47-48-49-50-51-65-59-58-57-63 | 21 | 11400 |
R27-64 | 27-36-37-38-47-48-49-50-51-65-59-58-64 | 5 | 9800 |
R33-43 | 33-42-41-32-31-30-29-38-37-36-35-34-43 | 36 | 9600 |
R33-55 | 33-32-31-30-29-38-47-46-45-44-43-52-53-54-55 | 11 | 11200 |
R42-43 | 42-41-40-39-48-47-46-45-54-61-60-52-43 | 24 | 9600 |
R45-50 | 45-44-35-36-37-38-29-30-31-32-41-50 | 10 | 8800 |
R49-53 | 49-40-39-30-29-38-37-36-35-34-43-52-60-53 | 3 | 10400 |
R52-59 | 52-43-44-45-46-47-48-49-50-51-65-59 | 27 | 9000 |
R54-65 | 54-61-60-53-52-43-44-35-26-27-28-21-22-23-24-25-33-42-51-65 | 35 | 15600 |
选取线路R7-64,R9-63,R19-63为典型线路进行敏感度分析。
(1)当OD需求按照减少一半,增加1/2,增加一倍变化时上述线路最优频率变化如图5所示,
由图6可以看出,在其他条件不变情况下,发车频率总体随需求量的增大而增大以满足运输需求。
当线路运营成本按照15元/车·千米,30元/车·千米,45元/车·千米,60元/车·千米变化时线路发车频率变化如下图:
由图6可知,随着运营成本的升高,在满足出行需求的前提下,企业将通过减少各线路的发车频率来降低总成本。
研究城市公交线网设计,把研究背景拓展到城市道路,使带状城市群或者公交走廊下的公交线网设计成为一个特例。模型里考虑乘客换乘成本;算法方面,经过多种算法比较,最终采用计算质量较好的模拟退火算法,保证计算效率。针对公交线路重叠率过高问题,提出线路调整思想,降低线路重复率、提高线网稳定性。
针对较大规模网络构建模型与线路调整算法,使得这两类问题的有效解决得到了实际性进展(突破),与其他优化模型相比,实现“一次成网”效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (4)
1.一种城市常规公交线网设计方法,其特征在于,包括如下步骤:
S1简化已知的城市道路网,并数据初始化;
S2根据乘客出行OD点,采用Dijkstra算法计算最短线路,并将最短线路作为初始候选线路;
S3以将乘客的时间价值成本及企业营运成本控制最低为目标,建立目标函数,所述乘客的时间价值成本包括乘客的候车成本、乘客的车内时间成本及乘客在中间站换乘候车时间成本;
MinC=CW+CR+CI+Co
其中,CI是乘客的车内时间成本,CW是乘客的候车成本,CR乘客在中间站换乘候车时间成本,Co车辆运营成本;
S4设定相关约束条件,所述约束条件包括:
(1)上下行发车间距相等
公交线路的来回两个方向的公交车发车频率相同,即:
fij=fji
(2)发车频率需满足基本运输要求,能够尽最大可能运走需要通过公交出行的乘客,即:
其中:K为每辆车载客容量,单位是人/veh;Qab,Qba分别为路段上行即方向a到b、下行方向乘客需求量,单位是人/h, Fab为路段上的公交车发车频率;Fba为路段上的公交车发车频率,取值为0或者1,若i为起点站,j为终点站的线路Rij经过了路段则取值为1,其他情况为0;
(3)从出发点i至目的地j的乘客需求量应小于或者等于其对应的直达、换乘线路允许载客总数,这样用以确保满足车辆容量限制,需求的容量限制可表示如下:
其中:取0或者1,当经过乘客从发点i和目的地j时或者当经过乘客出发点i和线路Rij的中点站b时当路径无法为i到j的乘客提供直达或者换乘服务时K是每辆车的最大载客量;
(4)路线长度lij
7≤lij≤15;
(5)发车频率
发车频率需要大于等于0,满足整数条件的限制;
S5由上述目标函数及约束条件,可整理得到如下公交线网设计的非线性数学规划模型:
MinC=CW+CR+CI+Co
s.t.fij=fij
S6采用以模拟退火方法为基础结合公车线路运营调整的经验,对非线性数学规划模型进行求解,得到优化线路与发车频率。
2.根据权利要求1所述的一种城市常规公交线网设计方法,其特征在于,所述S6,具体求解过程包括:
S6.1假设各对OD点的初始候选线路设为Rij,其对应频率为fij,将S2中得到初始候选线路符合要求的最短路径存储在集合中,此时最短路径包括直达线路及换乘线路;
S6.2求出各对OD间的直达线路并存储在集合中,求出各对OD的可以选择的换乘线路,存储在集合中;
S6.3确定初始温度T,总循环次数G,L表示一个温度下迭代次数,步长Z,每个变量即发车频率fij上限BU,下限BL,给定初始状态解S,其中η表示随机数,令k=0;
S6.4令k=k+1,k=1,2,3…L,并循环S6.5至S6.8;
S6.5计算新解Sk=(2*γ-1)*Z+S,其中γ是随机数;
S6.6计算目标函数TC(Sk),Δt=TC(Sk)-TC(S),若Δt小于0,接收目标函数值,用Sk替换当前解S,并把Sk与记录的最优解相比较,若Sk优于已记录的最优解则用Sk替换当前最优解,若Δt大于0则按随机概率决定是否接受计算结果;
S6.7如果T<ε或者总循环次数超过预设次数G则输出当前最优解,结束程序,否则执行S6.8,其中ε表示模拟退火算法中给定的最低温度;
S6.8当k≤L时,T=T/k,返回S6.3;
S6.9存储得到模型求解中较优的路径集合针对此次较优的路径集合中的路径做出调整,具体调整规则如下:两条线路R1,R2经初始计算后频率不为0,分别记为f1,f2,若线路R1包含于R2,则取消线路R1,此时f1为0;若线路R1从起点站开始的30%站点被R2连续包含,且二者的终点站经过至多2个路段相连,则取消线路R1,此时f1为0,令调整得到的路线集合为调整解;
S6.10若较优的路径集合针对目标的结果劣于调整解,则以调整解作为初始解,执行S6.3至S6.8;若得到的较优的路径集合优于前轮S6.9得到的调整解,则输出结束程序。
3.根据权利要求1所述的方法,其特征在于,
乘客的候车成本CW
公交线路规划需要考虑所有愿意使用公交出行的乘客的特征,这里将乘客分为愿意换乘与不愿换乘者两类,将乘客候车成本也细分到对应的两种人群成本,愿意换乘的乘客平均等车时间少于不愿换乘的乘客等车时间(下文中的时间单位均为小时,时间价值单位均为元/小时),为有所区分,这里用所有线路发车间隔的平均值表示各类乘客的平均等车时间。
其中:qij为出发点i到目的地j的需求量,单位人/小时;N为站点总数; 分别为愿意换乘和不愿意换乘乘客的单位等车时间价值,单位元/h;rij为出发点i到目的地j的乘客中换乘乘客比例,出发点i到目的地点j的愿意换乘的乘客候车时间与不愿意换乘的乘客候车时间分别为:
其中:表示起点站i1到终点站j1的公交线路;表示起点站i1到终点站j1的公交线路发车频率,单位车/小时;为全体站点集合;为乘客平均等车时间因子,一般假设乘客到站服从均匀分布,取值为0或者1,当起点站i1到终点站j1的公交线路经过乘客出发点i但却不经过乘客目的地j,乘客只能在公交线路的某个中途站下车时,否则取值为0或者1,起点站i1到终点站j1的公交线路经过乘客出发点i并且经过乘客目的地j时,否则
乘客在中间站换乘候车时间成本CR
其中,VR表示单位转车时间价值,单位元/h;rij表示愿意换乘的乘客比例;为出发点i到目的地j的换乘乘客平均换乘时间,单位h,psk表示想从出发点i到目的地j的换乘乘客可能选择换乘线路Rsk的概率,表示乘客在中转站等车的等待时间,psk、tsk分别为:
其中:fsk表示从以s为起点站,k为终点的公交发车频率,单位车/小时;取值为0或者1,当以s为起点站,k为终点的公交线路经过乘客出发点i但却不经过乘客目的地j,乘客只能在线路Rsk的中点站b下车并且从b到j有直达车时,否则 取值为0或者1,当以i1为起点站,j1为终点站的车经过乘客出发点i和Rij的中点站b但不经过终点站j并且从b到j有直达车时或者当线路Rsk经过乘客出发点i和乘客目的地j时其他情况为0;为乘客换乘平均等车时间因子,取值为0或者1,当以i1为起点,j1为终点的车经过中点b并且可以达到乘客目的地j时,否则
乘客的车内时间成本CI
其中:VI表示乘客的车内时间价值,单位元/h;为车辆运行于发点i至目的地j的平均车内时间是车辆运行时间与车辆停靠时间之和;
车辆运行成本Co
车辆运行成本Co为:
其中:c为每车公里成本;Dij为车辆从发点i至目的地j的行驶距离。
4.根据权利要求1所述的方法,其特征在于,所述采用Dijkstra算法计算得到最短线路,将得到的最短线路中长度大于15千米或小于7千米,及自配起始点对的线路剔除,并将剔除线路的发车频率定为0,然后将剩下的最短线路作为初始候选线路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510595058.XA CN105205557B (zh) | 2015-09-17 | 2015-09-17 | 一种城市常规公交线网设计方法 |
PCT/CN2015/098616 WO2017045294A1 (zh) | 2015-09-17 | 2015-12-24 | 一种城市常规公交线网设计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510595058.XA CN105205557B (zh) | 2015-09-17 | 2015-09-17 | 一种城市常规公交线网设计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105205557A true CN105205557A (zh) | 2015-12-30 |
CN105205557B CN105205557B (zh) | 2019-06-18 |
Family
ID=54953226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510595058.XA Active CN105205557B (zh) | 2015-09-17 | 2015-09-17 | 一种城市常规公交线网设计方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105205557B (zh) |
WO (1) | WO2017045294A1 (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106097226A (zh) * | 2016-06-20 | 2016-11-09 | 华南理工大学 | 基于层次规划的城市常规公交线网设计方法 |
CN106485372A (zh) * | 2016-11-28 | 2017-03-08 | 中兴软创科技股份有限公司 | 公交线路配车数量评估与优化方法与系统 |
CN106530677A (zh) * | 2016-11-16 | 2017-03-22 | 武汉理工大学 | 一种基于实时信息的校车调度方法及系统 |
CN106530680A (zh) * | 2016-12-02 | 2017-03-22 | 东南大学 | 一种基于大站快车的公交线路组合服务方法 |
CN106651034A (zh) * | 2016-12-23 | 2017-05-10 | 中山大学 | 一种公交线网规划方法 |
CN107092976A (zh) * | 2017-03-28 | 2017-08-25 | 东南大学 | 一种多目标模型协同优化多条公交线路发车间隔的方法 |
CN107993437A (zh) * | 2017-12-08 | 2018-05-04 | 东莞中国科学院云计算产业技术创新与育成中心 | 新增公交路线的方法、装置、计算机设备和存储介质 |
CN110598942A (zh) * | 2019-09-18 | 2019-12-20 | 北京工业大学 | 一种考虑区域全覆盖的接驳地铁的社区公交线网与发车频率同步优化方法 |
CN110929910A (zh) * | 2018-09-20 | 2020-03-27 | 京东数字科技控股有限公司 | 公交线路调整方法和装置 |
CN111063191A (zh) * | 2019-12-12 | 2020-04-24 | 北京航空航天大学 | 用于公交线网设计的发车频率与线网结构联合优化方法 |
CN111539133A (zh) * | 2020-07-09 | 2020-08-14 | 深圳市都市交通规划设计研究院有限公司 | 一种结合专家经验和运筹优化的单线公共车辆调度方法 |
CN112419704A (zh) * | 2020-11-06 | 2021-02-26 | 杭州图软科技有限公司 | 一种基于大数据的公共交通路线规划方法及其系统 |
CN113112849A (zh) * | 2021-03-25 | 2021-07-13 | 大连海事大学 | 一种基于生态环保驾驶的需求响应公交调度方法 |
CN113378337A (zh) * | 2021-06-03 | 2021-09-10 | 安徽富煌科技股份有限公司 | 一种基于客流分析的城市公交线网优化方法 |
CN116307317A (zh) * | 2023-02-27 | 2023-06-23 | 苏州大学 | 一种地铁网络节点最短路径求解方法及系统 |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107944609B (zh) * | 2017-11-16 | 2022-01-07 | 上海交通大学 | 一种近似多目标优选路径的寻找方法 |
CN109409560B (zh) * | 2018-08-16 | 2022-07-15 | 北京交通大学 | 基于多智能体仿真的城市轨道交通客流诱导方法 |
CN109583716A (zh) * | 2018-11-16 | 2019-04-05 | 浩鲸云计算科技股份有限公司 | 一种公交线路站点od量的计算方法 |
CN109800920B (zh) * | 2019-01-30 | 2022-11-25 | 东北大学 | 一种考虑充电时间的共享电动汽车的站点选址方法 |
CN110084402B (zh) * | 2019-03-25 | 2022-03-11 | 广东工业大学 | 一种基于站点优选和蚂蚁寻迹的公交自适应调度方法 |
CN110659794B (zh) * | 2019-08-07 | 2022-04-26 | 北京航空航天大学 | 一种基于综合成本评估的公交车队置换方法 |
CN110909434B (zh) * | 2019-10-11 | 2023-03-14 | 东南大学 | 一种低碳导向下的城市公共交通干线网络设计方法 |
CN111008730B (zh) * | 2019-11-07 | 2023-08-11 | 长安大学 | 基于城市空间结构的人群聚集度预测模型构建方法及装置 |
CN111105078B (zh) * | 2019-11-29 | 2023-09-29 | 同济大学 | 一种定制公交网络优化方法 |
CN111476032B (zh) * | 2020-04-07 | 2024-02-02 | 武汉元光科技有限公司 | 一种公交中途站点名称生成方法及装置 |
CN111626480B (zh) * | 2020-05-06 | 2023-06-09 | 杭州师范大学 | 一种动态路由下双层交通网络的资源优化方法 |
CN111582581B (zh) * | 2020-05-08 | 2022-06-21 | 北京理工大学 | 考虑随机交通流量偏移的电动汽车换电站鲁棒选址方法 |
CN111667114A (zh) * | 2020-06-05 | 2020-09-15 | 鲁东大学 | 一种基于时空大数据融合的智能路线规划推荐方法 |
CN111754039B (zh) * | 2020-06-23 | 2023-10-17 | 北京交通大学 | 纯电动公交线网综合集成优化设计的方法 |
CN112085249B (zh) * | 2020-07-27 | 2022-11-04 | 北京工业大学 | 一种基于强化学习的定制公交线路规划方法 |
CN111898909B (zh) * | 2020-07-31 | 2023-09-01 | 同济大学 | 一种基于实时需求的无人驾驶公交派车方法 |
CN112231811B (zh) * | 2020-10-15 | 2022-11-11 | 国网河北省电力有限公司雄安新区供电公司 | 基于bim的城市中压配电网过渡网架改造方法 |
CN112434844B (zh) * | 2020-11-10 | 2024-01-26 | 郑州天迈科技股份有限公司 | 基于凸包计算和遗传算法排序线网的新开及延长方法 |
CN112365050B (zh) * | 2020-11-10 | 2023-04-07 | 郑州天迈科技股份有限公司 | 基于部分客流比例评价指标的线网撤销、截短及拆分方法 |
CN112418503B (zh) * | 2020-11-17 | 2024-03-22 | 北京交通大学 | 面向出行链的需求响应公交服务模式及优化方法 |
CN112700029B (zh) * | 2020-12-03 | 2024-06-11 | 北京交通大学 | 一种基于仿真优化框架的定制公交规划方法 |
CN112419128B (zh) * | 2020-12-16 | 2024-03-05 | 武汉元光科技有限公司 | 一种线路规划方法以及相关设备 |
CN112580176B (zh) * | 2020-12-23 | 2024-01-30 | 长安大学 | 三层复杂交通网络模型构建方法、系统、设备及存储介质 |
CN112906981A (zh) * | 2021-03-19 | 2021-06-04 | 上海市城市建设设计研究总院(集团)有限公司 | 基于计算机的换乘覆盖率公共交通线路站点设置评价方法 |
CN113077086B (zh) * | 2021-03-30 | 2024-07-12 | 东南大学 | 一种接驳地铁枢纽的公交车同步换乘时刻表设计方法 |
CN113053156B (zh) * | 2021-03-31 | 2022-09-02 | 华录智达科技股份有限公司 | 一种智能公交半径法站点寻址方法 |
CN113177295B (zh) * | 2021-04-07 | 2024-02-27 | 北京交通大学 | 一种地铁网络列车时刻表快速编制方法 |
CN113112800B (zh) * | 2021-04-10 | 2022-06-10 | 杭州华量软件有限公司 | 一种基于乘客信息完善采集的交通工具动态调度系统 |
CN113112806A (zh) * | 2021-04-19 | 2021-07-13 | 武汉元光科技有限公司 | 一种快速公交专用站台客流分析方法以及相关设备 |
CN113256004B (zh) * | 2021-05-27 | 2023-05-12 | 支付宝(杭州)信息技术有限公司 | 车辆排班方法、装置、计算机设备及存储介质 |
CN113361885B (zh) * | 2021-05-28 | 2022-09-20 | 同济大学 | 一种基于多源数据的双目标城市公交效益评价方法 |
CN113378366B (zh) * | 2021-06-03 | 2023-08-18 | 北京建筑大学 | 一种综合客运枢纽导向标识导向信息布设方法 |
CN113822461A (zh) * | 2021-07-27 | 2021-12-21 | 深圳技术大学 | 一种轨道交通跨线运营优化方法、系统、设备及存储介质 |
CN113673836B (zh) * | 2021-07-29 | 2023-08-18 | 清华大学深圳国际研究生院 | 一种基于强化学习的共享公交车贴线调度方法 |
CN113609241B (zh) * | 2021-08-13 | 2023-11-14 | 武汉市规划研究院(武汉市交通发展战略研究院) | 一种道路网络与公交线网匹配方法与系统 |
CN113792528B (zh) * | 2021-08-26 | 2024-02-09 | 北京工业大学 | 一种公交站点可用性编码方法 |
CN113988498A (zh) * | 2021-08-30 | 2022-01-28 | 深圳大学 | 公交站场协调调度方法、计算机设备及其可读存储介质 |
CN113919529A (zh) * | 2021-09-28 | 2022-01-11 | 东南大学 | 一种网约车出行的环境影响评价方法 |
CN114141044B (zh) * | 2021-11-22 | 2023-02-21 | 东南大学 | 考虑乘客选择行为的公交时刻表协调优化方法 |
CN114118766A (zh) * | 2021-11-23 | 2022-03-01 | 安徽富煌科技股份有限公司 | 一种基于公交乘客出行多重匹配的客流od算法 |
CN114117700A (zh) * | 2021-11-29 | 2022-03-01 | 吉林大学 | 基于复杂网络理论的城市公共交通网络优化研究方法 |
CN113987730B (zh) * | 2021-12-28 | 2022-04-08 | 广州市交通规划研究院 | 一种基于土地利用的大规模公交干线线路自动选择方法 |
CN114626682A (zh) * | 2022-02-17 | 2022-06-14 | 华录智达科技股份有限公司 | 一种考虑聚集区域的城市公交线网规划方法 |
CN114613123A (zh) * | 2022-02-17 | 2022-06-10 | 华录智达科技股份有限公司 | 一种基于大数据的公交智能调度方法 |
CN114723111B (zh) * | 2022-03-25 | 2024-04-30 | 东南大学 | 考虑乘客感知的接驳轨道交通常规公交时刻表优化方法 |
CN114897213A (zh) * | 2022-04-01 | 2022-08-12 | 长安大学 | 一种历史街区公交可达性测算方法与优化方法 |
CN114881300A (zh) * | 2022-04-20 | 2022-08-09 | 郑州天迈科技股份有限公司 | 基于Q-learning算法的地铁接驳线路生成方法 |
CN115115495A (zh) * | 2022-07-13 | 2022-09-27 | 华南农业大学 | 公交区间车及大站快车站点集推荐方法、终端及存储介质 |
CN115206082A (zh) * | 2022-09-16 | 2022-10-18 | 安徽交欣科技股份有限公司 | 一种基于历史交互数据流的公交排班调度方法及系统 |
CN115760520B (zh) * | 2022-11-11 | 2024-01-26 | 交通运输部科学研究院 | 地铁新线开通阶段公交接驳优化方法及装置 |
CN115641704B (zh) * | 2022-12-26 | 2023-04-18 | 东风悦享科技有限公司 | 一种智能公交调度方法及系统 |
CN115907266B (zh) * | 2023-03-02 | 2023-06-13 | 杭州半云科技有限公司 | 基于客流出行特征的定制公交线路规划方法 |
CN116451961B (zh) * | 2023-04-21 | 2024-02-02 | 四川国蓝中天环境科技集团有限公司 | 一种城际需求响应式公交服务的建模优化方法 |
CN116542414A (zh) * | 2023-05-05 | 2023-08-04 | 北京蔚行科技有限公司 | 一种基于多阶段随机优化的公交跳停和专用道预留方法 |
CN116757397A (zh) * | 2023-05-17 | 2023-09-15 | 西南交通大学 | 一种考虑容量约束的公交客流分配方法 |
CN117195484B (zh) * | 2023-08-08 | 2024-05-03 | 广东贝能达交通设备有限公司 | 一种轨道交通管理方法及系统 |
CN117725812B (zh) * | 2023-11-07 | 2024-08-16 | 青岛理工大学 | 一种水灾情况地铁站内乘客疏散路径分布式鲁棒优化方法 |
CN117689092A (zh) * | 2023-11-09 | 2024-03-12 | 宁波大学 | 一种基于动态排序的约束多模态多目标路径优化方法 |
CN118115068B (zh) * | 2023-11-30 | 2024-10-15 | 中国人民解放军96901部队 | 一种基于NT-Dijkstra的铁公联运的任务规划方法 |
CN117854276B (zh) * | 2023-12-29 | 2024-06-21 | 淮阴工学院 | 一种智能分布式胶囊公交系统 |
CN118504952B (zh) * | 2024-07-18 | 2024-10-18 | 吉林大学 | 一种面向城市干道客流走廊的模块公交线路布设方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140025296A1 (en) * | 2012-07-17 | 2014-01-23 | Denso Corporation | Destination recommendation system, destination recommendation method and destination recommendation program product |
CN103942948A (zh) * | 2014-04-10 | 2014-07-23 | 中南大学 | 基于分段拼接的城市公交线路网络的生成方法 |
CN104134105A (zh) * | 2014-08-18 | 2014-11-05 | 东南大学 | 一种公交线网布设优化方法 |
US20150161697A1 (en) * | 2015-02-18 | 2015-06-11 | Cargo Chief | Transportation service matching with location tracking and arrival estimation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8862386B2 (en) * | 2009-04-15 | 2014-10-14 | The Boeing Company | System and method for journey planning, finding K shortest paths through a time/space network |
CN101944288B (zh) * | 2010-08-25 | 2012-02-22 | 东南大学 | 城市公交线路停靠站设置方法 |
CN104318758B (zh) * | 2014-11-05 | 2016-06-29 | 东南大学 | 基于多层次多模式的公交线网规划方法 |
-
2015
- 2015-09-17 CN CN201510595058.XA patent/CN105205557B/zh active Active
- 2015-12-24 WO PCT/CN2015/098616 patent/WO2017045294A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140025296A1 (en) * | 2012-07-17 | 2014-01-23 | Denso Corporation | Destination recommendation system, destination recommendation method and destination recommendation program product |
CN103942948A (zh) * | 2014-04-10 | 2014-07-23 | 中南大学 | 基于分段拼接的城市公交线路网络的生成方法 |
CN104134105A (zh) * | 2014-08-18 | 2014-11-05 | 东南大学 | 一种公交线网布设优化方法 |
US20150161697A1 (en) * | 2015-02-18 | 2015-06-11 | Cargo Chief | Transportation service matching with location tracking and arrival estimation |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106097226A (zh) * | 2016-06-20 | 2016-11-09 | 华南理工大学 | 基于层次规划的城市常规公交线网设计方法 |
CN106530677A (zh) * | 2016-11-16 | 2017-03-22 | 武汉理工大学 | 一种基于实时信息的校车调度方法及系统 |
CN106485372A (zh) * | 2016-11-28 | 2017-03-08 | 中兴软创科技股份有限公司 | 公交线路配车数量评估与优化方法与系统 |
CN106530680A (zh) * | 2016-12-02 | 2017-03-22 | 东南大学 | 一种基于大站快车的公交线路组合服务方法 |
CN106530680B (zh) * | 2016-12-02 | 2019-03-29 | 东南大学 | 一种基于大站快车的公交线路组合服务方法 |
CN106651034A (zh) * | 2016-12-23 | 2017-05-10 | 中山大学 | 一种公交线网规划方法 |
CN106651034B (zh) * | 2016-12-23 | 2020-10-27 | 中山大学 | 一种公交线网规划方法 |
CN107092976B (zh) * | 2017-03-28 | 2020-06-02 | 东南大学 | 一种多目标模型协同优化多条公交线路发车间隔的方法 |
CN107092976A (zh) * | 2017-03-28 | 2017-08-25 | 东南大学 | 一种多目标模型协同优化多条公交线路发车间隔的方法 |
CN107993437A (zh) * | 2017-12-08 | 2018-05-04 | 东莞中国科学院云计算产业技术创新与育成中心 | 新增公交路线的方法、装置、计算机设备和存储介质 |
CN107993437B (zh) * | 2017-12-08 | 2020-03-20 | 东莞中国科学院云计算产业技术创新与育成中心 | 新增公交路线的方法、装置、计算机设备和存储介质 |
CN110929910A (zh) * | 2018-09-20 | 2020-03-27 | 京东数字科技控股有限公司 | 公交线路调整方法和装置 |
CN110929910B (zh) * | 2018-09-20 | 2024-02-09 | 京东科技控股股份有限公司 | 公交线路调整方法和装置 |
CN110598942B (zh) * | 2019-09-18 | 2023-10-20 | 北京工业大学 | 一种考虑区域全覆盖的接驳地铁的社区公交线网与发车频率同步优化方法 |
CN110598942A (zh) * | 2019-09-18 | 2019-12-20 | 北京工业大学 | 一种考虑区域全覆盖的接驳地铁的社区公交线网与发车频率同步优化方法 |
CN111063191A (zh) * | 2019-12-12 | 2020-04-24 | 北京航空航天大学 | 用于公交线网设计的发车频率与线网结构联合优化方法 |
CN111063191B (zh) * | 2019-12-12 | 2020-11-24 | 北京航空航天大学 | 用于公交线网设计的发车频率与线网结构联合优化方法 |
CN111539133A (zh) * | 2020-07-09 | 2020-08-14 | 深圳市都市交通规划设计研究院有限公司 | 一种结合专家经验和运筹优化的单线公共车辆调度方法 |
CN111539133B (zh) * | 2020-07-09 | 2020-10-30 | 深圳市都市交通规划设计研究院有限公司 | 一种结合专家经验和运筹优化技术的单线公交调度方法 |
CN112419704A (zh) * | 2020-11-06 | 2021-02-26 | 杭州图软科技有限公司 | 一种基于大数据的公共交通路线规划方法及其系统 |
CN113112849A (zh) * | 2021-03-25 | 2021-07-13 | 大连海事大学 | 一种基于生态环保驾驶的需求响应公交调度方法 |
CN113112849B (zh) * | 2021-03-25 | 2021-12-17 | 大连海事大学 | 一种基于生态环保驾驶的需求响应公交调度方法 |
CN113378337A (zh) * | 2021-06-03 | 2021-09-10 | 安徽富煌科技股份有限公司 | 一种基于客流分析的城市公交线网优化方法 |
CN116307317A (zh) * | 2023-02-27 | 2023-06-23 | 苏州大学 | 一种地铁网络节点最短路径求解方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2017045294A1 (zh) | 2017-03-23 |
CN105205557B (zh) | 2019-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105205557A (zh) | 一种城市常规公交线网设计方法 | |
CN103761589B (zh) | 一种城市轨道交通清分方法 | |
CN106097226A (zh) | 基于层次规划的城市常规公交线网设计方法 | |
CN103942948A (zh) | 基于分段拼接的城市公交线路网络的生成方法 | |
CN110599760B (zh) | 一种多模式交通网络下的出行行为模拟方法 | |
CN106056242A (zh) | 基于客流动态分配的高铁列车开行方案评价方法 | |
CN103017780B (zh) | 移动状态下公交线路的规划方法、系统和装置 | |
CN104217129A (zh) | 一种城轨路网客流估算方法 | |
CN103208034B (zh) | 一种轨道交通客流分布预测模型建立及预测方法 | |
CN105489002A (zh) | 一种基于智能匹配和路径优化的拼车方法及系统 | |
CN115455681B (zh) | 一种面向多载运工具的通勤交通碳排放空间分布估算方法 | |
CN106127357A (zh) | 一种基于预约数据的定制公交自动布线系统及方法 | |
CN113724495B (zh) | 一种城市共享出行的流量预测方法 | |
CN107392360A (zh) | 一种电动公交车充电站的规划方法 | |
CN107798867A (zh) | 一种基于电动汽车和内燃机车混合车流的拥堵交通网络均衡方法 | |
CN106373384B (zh) | 边远地区客运班车线路实时生成方法 | |
Wu et al. | Urban Traffic Planning and Traffic Flow Prediction based on ulchis gravity model and Dijkstra algorithm | |
Xu | Intercity multi-modal traffic assignment model and algorithm for urban agglomeration considering the whole travel process | |
CN105023063B (zh) | 公交线网新能源公交车运行能耗指标体系的建立方法 | |
Li et al. | Combined modal split and assignment model for the multimodal transportation network of the economic circle in China | |
CN115330098A (zh) | 一种电动汽车集群充电潜力评估方法、系统及存储介质 | |
CN110851769B (zh) | 一种基于网络承载力的电动公交网络可靠性评价方法 | |
CN118333241B (zh) | 一种电动公交线网两阶段优化方法 | |
CN109472392B (zh) | 一种形成无人驾驶公交接驳环线的方法 | |
Ni | Optimization research of railway passenger transfer scheme based on ant colony algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |