CN105006238A - 图案形成方法和磁记录介质的制造方法 - Google Patents

图案形成方法和磁记录介质的制造方法 Download PDF

Info

Publication number
CN105006238A
CN105006238A CN201410454113.9A CN201410454113A CN105006238A CN 105006238 A CN105006238 A CN 105006238A CN 201410454113 A CN201410454113 A CN 201410454113A CN 105006238 A CN105006238 A CN 105006238A
Authority
CN
China
Prior art keywords
protecting group
particulate
magnetic recording
dispersion liquid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410454113.9A
Other languages
English (en)
Inventor
木村香里
藤本明
渡部彰�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN105006238A publication Critical patent/CN105006238A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

本发明的实施方式提供能够形成面内均匀性良好的周期性图案的图案形成方法和磁记录介质的制造方法。根据实施方式,能够提供一种图案形成方法,该方法包括:在基板上,向具有表面极性与该基板相近的第1保护基、且至少在表面具有选自Al、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Mo、Ta、W、Au、Ag、Pd、Cu、Pt、及其氧化物中的材料的微粒添加第2保护基和第2溶剂,调制第2分散液,并用该第2保护基修饰具有第1保护基的微粒的工序;向包含具有第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制微粒涂布液的工序;以及,涂布微粒涂布液,在基板上形成微粒层的工序。

Description

图案形成方法和磁记录介质的制造方法
相关申请
本申请要求以日本专利申请2014-92072号(申请日:2014年4月25日)为基础申请的优先权。本申请通过参照该基础申请而包含基础申请的所有内容。
技术领域
本发明的实施方式涉及图案形成方法和磁记录介质的制造方法。
背景技术
以数nm~数百nm的周期规则排列的微细结构,能够应用于催化剂、防反射膜、电路、磁记录介质等各种技术。要制作那样的结构的话,可以举出利用电子束和/或紫外光的绘图装置在抗蚀剂上绘制图案的方法、利用二嵌段共聚物和/或微粒的自组织化现象的方法等。
特别是如果将微粒用于图案形成,则有与使用二嵌段共聚物和/或抗蚀剂不同的优点。由无机物形成的微粒,具有与有机物不同的蚀刻耐性,因此通过适当选择形成微粒的材料,能够使在接下来的过程中的蚀刻选择比、生长选择比成为优选的值。
但是,在现有技术中,难以使由所希望的材料形成的微粒具有一定间隔地单层排列于基板上。为了微粒的规则排列,需要在微粒中混合高粘度的粘度调整剂。但是,例如Fe微粒的情况下,在混合了粘度调整剂的时刻粒子凝聚,涂布本身变得困难。另外,能够在Au粒子的周围以聚苯乙烯类为保护基进行取代,但在这样的方法中存在难以通过旋涂而使其最密排列的问题。
发明内容
本发明的实施方式,提供一种能够形成面内均匀性良好的周期性图案的图案形成方法和磁记录介质的制造方法。
根据实施方式,能够提供一种图案形成方法,该方法包括:
在基板上,向具有表面极性与该基板相近的第1保护基、且至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、钨、金、银、钯、铜、铂、及其氧化物中的材料的微粒添加第2保护基和第2溶剂,调制第2分散液的工序;
在该第2分散液中用该第2保护基修饰具有该第1保护基的微粒,形成具有该第1保护基和第2保护基的微粒的工序;
向包含具有该第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制该微粒涂布液的工序;
涂布该微粒涂布液,在上述基板上形成微粒层的工序。
附图说明
图1是表示采用实施方式涉及的方法能够制成的周期性图案的例子的图。
图2是表示采用实施方式涉及的方法能够做成的周期性图案的例子的图。
图3是将能够应用实施方式涉及的磁记录介质的磁记录再生装置的一例部分拆解的立体图。
图4是表示第1实施方式中所使用的周期性图案的形成方法的一例的流程图。
图5(a)~(d)是表示形成第1实施方式涉及的磁记录介质的工序的概略性的截面图。
图6是表示第1实施方式中所使用的周期性图案的形成方法的另一例的流程图。
图7(a)~(d)是表示第1实施方式涉及的磁记录介质的制造工序的变形例的概略性的截面图。
图8(a)~(e)是表示形成第2实施方式涉及的磁记录介质的工序的概略性的截面图。
图9(a)~(e)是表示形成第2实施方式涉及的磁记录介质的工序的另一例的概略性的截面图。
具体实施方式
以下对实施方式进行说明。
根据第1实施方式,能够提供一种磁记录介质的制造方法,该制造方法的特征在于,具备:
在基板上,向具有表面极性与基板相近的第1保护基、且至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、和钨、金、银、钯、铜、铂、及其氧化物中的材料的微粒添加第2保护基和第2溶剂,调制第2分散液的工序;
在该第2分散液中用该第2保护基修饰具有该第1保护基的微粒,形成具有该第1保护基和第2保护基的微粒的工序;
向包含具有该第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制微粒涂布液的工序;
涂布微粒涂布液,在基板上形成单层的微粒层,形成由微粒构成的周期性图案的工序;以及
在周期性图案上形成磁记录层的工序。
根据第1实施方式,能够得到在单层的微粒层中各微粒不凝聚地排列的周期性图案,所述单层的微粒层,是在微粒的周围设置与基板相容性良好的第1保护基,而且向具有第1保护基的微粒追加第2保护基,并使其分散于混合有所希望的粘度的粘度调整剂的溶剂中,进行涂布而能够使微粒排列的层。由此,能够得到粒子的尺寸分布低的图案化介质。而且,后来添加的第2保护基,能够以除了微粒表面以外还分散于分散液中的状态存在,因此所添加的第2保护基被填充到基板表面、微粒间,微粒间的分子间作用力均匀地发挥作用,能够提高排列性。
在此,基板是微粒涂布液所应用的层,根据需要,能够为单层或多层。
根据第1实施方式,能够提供一种图案形成方法,该方法包括:
在基板上,向具有表面极性与基板相近的第1保护基、且至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、钨、金、银、钯、铜、铂、及其氧化物中的材料的微粒添加第2保护基和第2溶剂而调制分散液,并在该分散液中用该第2保护基修饰具有该第1保护基的微粒,形成具有该第1保护基和第2保护基的微粒的工序;
向包含具有该第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制微粒涂布液的工序;以及
涂布微粒涂布液,在基板上形成微粒层的工序。
第2实施方式涉及的磁记录介质的制造方法,其特征在于,具备:
向具有表面极性与包含磁记录层的基板相近的第1保护基、且至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、钨、金、银、钯、铜、铂、及其氧化物中的材料的微粒添加第2保护基和第2溶剂,调制第2分散液的工序;
在第2分散液中用第2保护基修饰具有第1保护基的微粒,形成具有第1保护基和第2保护基的微粒的工序;
向包含具有第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制微粒涂布液的工序;
在上述基板上涂布微粒涂布液,形成单层的微粒层的工序;
将由微粒层构成的周期性图案向上述磁记录层转印的工序。
根据第2实施方式,能够得到在单层的微粒层中各微粒不凝聚地排列的周期性图案。由此,能够得到磁性体粒子的尺寸分布低的图案化介质。
在此,所谓周期性图案,指具有一定的规则性的图案排列。图案可以是凹凸的,可以是化学组成不同的材料,也可以是其两者。例如Fe微粒以埋入到聚甲基丙烯酸甲酯的基质中的状态排列的情况下,虽没有凹凸但成为化学组成不同的材料的排列。另外,通过RIE工艺除去了聚甲基丙烯酸甲酯的基质的情况下,仅残存Fe微粒并成为凹凸图案。所谓一定的规则性,意味着利用凹凸和/或化学组成不同的材料,且其一方进行排列。排列可以是六方最密排列,也可以是正方排列。排列表示包含至少大于或等于100个的图案。将规则排列的区域称为域(domain),实施方式中的微粒排列体,能够具有多个域。在域和域的边界排列被打乱。
另外,所谓磁性体粒子,表示在磁记录层中,磁性体作为单一粒子引起磁化反转的区域。可以举出例如具有规则结构的磁性体粒子。所谓规则结构,可以是单晶,可以是如L10结构那样的交替叠层膜,也可以是保持了相同的面取向的人造晶格那样的结构。另外,颗粒介质之类的磁性体颗粒埋入到非磁性基质那样的结构的情况下,基质内的磁性体部分是在本申请中所说的磁性体粒子。磁性体粒子的粒子尺寸分布,与记录再生时的抖动噪声直接关联。粒子尺寸分布少的介质是理想的。在本申请中,由于利用微粒的周期性图案将磁记录层分隔,因此微粒的粒子尺寸分布与磁性体颗粒的粒子尺寸分布大致等同。
另外,基板是微粒涂布液所应用的层,根据需要,能够成为单层或多层。
根据实施方式,能够在微粒的周围设置与基板相容性良好的第1保护基,进而向具有第1保护基的微粒追加第2保护基,并使其分散于混合有所希望的粘度的粘度调整剂的溶剂中,进行涂布而使微粒排列。此时,通过调整溶剂和保护基、粘度调整剂的溶解性,使得粘度调整剂和保护基很好地混合,由此虽然根据涂布条件不是最密的,但能够规则地排列微粒。而且,后来添加的第2保护基,能够以除了微粒表面以外还分散于分散液中的状态存在,因此所添加的第2保护基被填充到基板表面、微粒间,微粒间的分子间作用力均匀地发挥作用,能够提高排列性。
另外,关于微粒的应用,在具有以图案化介质为首的纳米结构的器件中,能够使微粒以高密度向基板上最密填充并且进行排列。或者,作为形成纳米结构的模板来考虑。在使微粒向基板上单层排列时成为问题的是微粒和基板的涂布性和密着性。如果密着性过强则微粒单独地吸附于基板上,不进行排列。但是,如果密着性弱,则微粒不残留于基板之上。根据实施方式,在微粒的周围使表面极性与基板相近的第1保护基化合,能够进行单层涂布。而且,通过在微粒分散液之中混合粘度高的粘度调整剂,能够使微粒规则排列。采用该方法排列的直径小于或等于10nm的粒子,能够作为磁记录介质的模板使用。
如果采用第3实施方式涉及的图案形成方法,则能够得到各微粒不凝聚地排列的周期性图案。所添加的第2保护基,被填充到基板表面、微粒间,微粒间的分子间作用力均匀地发挥作用,能够提高排列性。
在此,基板是向其表面涂布微粒涂布液的基板,包含:最终与微粒一同形成周期性图案的层、被加工成周期性图案的层、或最终被加工成周期性图案的层与从该层除去的层的叠层等。
<微粒>
在实施方式中所使用的微粒是指粒径为1nm~1μm左右的微粒。在使用于磁记录介质中的情况下,粒径,包括保护基在内能够设为小于或等于20nm。形状大多为球形,但也可以呈现四面体、长方体、八面体、三棱柱、六棱柱、或圆筒形等的形状。在考虑到规则地排列的情况下,能够提高形状的对称性。上述微粒,为了提高涂布时的排列性,优选粒径分散小。例如用于HDD介质的情况下,粒径分散优选为小于或等于20%,进一步优选为小于或等于15%。如果粒径分散小,则能够降低HDD介质的振动噪声。如果分散超过20%,则与通过溅射制作的以往的介质相比,没有粒径分散的优点。
微粒的材料,优选为金属或无机物、或者它们的化合物。具体而言,可以举出Al、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Mo、Ta、W、Au、Ag、Pd、Cu、Pt等。另外,也能够使用它们的氧化物、氮化物、硼化物、碳化物、硫化物等。粒子可以是结晶性的,也可以是非晶。例如可以是如由FeOx(x=1~1.5)覆盖在Fe的周围的结构那样的芯壳型的粒子。在芯壳型的情况下,可以是SiO2覆盖Fe3O4的周围那样的、组成不同的材料。此外,也可以如Co/Fe那样的金属芯壳型的表面被氧化而成为如Co/Fe/FeOx那样的大于或等于3层的结构。如果主成分是上述举出的物质,则也可以是例如如Fe50Pt50那样的、与Pt、Ag等贵金属的化合物。但是,贵金属的比率超过50%的情况下,由于保护基的结合变得难以进行,因此不适当。
由于微粒的排列在溶液系中进行,因此微粒能以带有后述的保护基的状态、以稳定地分散于溶液中的状态使用。
<保护基>
能够作为第1保护基和第2保护基使用的材料,可以举出在末端带有羧基或硫醇基等反应性官能团的有机物。
一般地,羧基与Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Mo、Ta、W等的粒子良好地反应,硫醇基与Au、Ag、Pd、Cu、Pt等的粒子反应。如果是2种的合金,则可使用含量多的一方的材料,或者如Fe50Pt50那样组成比为相同程度的情况下,也能够同时使用两者。该情况下,可以认为在Fe侧带有羧基,在Pt侧带有硫醇基。
使第1保护基和第2保护基的反应性官能团与微粒结合,并将主链用在用于粒子间隔调整和排列的极性调整上。极性一般地能够使用溶解度参数(SP值)来很好地说明。上述SP值,例如如水那样为极性大的物质的情况下,值变大,当为极性小的物质时,值变小。在本申请中经常使用的碳(C)、硅(Si)表面的情况下,优选SP值为小于或等于25MPa1/2。有机物的主链,优选:一般的烃(CnH2n+1)、含有1个或多个的双键和/或三键的主链、以聚苯乙烯为首的芳香族烃,聚酯、聚醚类。例如对于具有羧基的有机物,如果是饱和烃则可以举出癸酸、月桂酸、棕榈酸、硬脂酸,如果是不饱和烃则可以举出棕榈油酸、油酸、亚油酸、亚麻酸等。对于硫醇基,同样地有CnH2n+1-硫醇、CnH2n-硫醇等。另外,主链也可以是聚酯、聚乙烯、环氧树脂、聚氨酯、聚苯乙烯、聚丙乙烯的聚合物。为了之后使第2保护基反应的过程,优选具有分枝少的直链状结构。特别是使用聚苯乙烯类的情况下,由于其SP值取得与涂布溶剂相近的值,因此溶解性和涂布性良好。
作为第1保护基和第2保护基,可以优选使用:选自饱和烃、具有多个碳碳双键的不饱和烃、聚酯、聚苯乙烯、聚甲基丙烯酸甲酯、聚烯丙基醚、聚乙烯醚、聚丙烯酸酯、聚甲基丙烯酸酯、及其衍生物中的至少1种。
在此,通过剩余地添加这样的第2保护基,能够提高与基板的流动性,并使粒子的排列性提高。第2保护基,在涂布中~涂布后反应性官能团可以与基板表面反应也可以不反应。在反应的情况下,由于基板表面成为与用第2保护基修饰相同的状态,因此粒子易于吸附。在不反应的情况下,第2保护基在粒子与粒子之间以自由的状态存在,以补充第1保护基的量不足的部分的形式成为粒子排列的辅助。
再者,第1保护基和第2保护基可以是相同的,也可以是不同的。
第1保护基可以具有与第2保护基的主链相同的主链。
<溶剂>
使微粒分散的第1溶剂和第2溶剂,能够使用各自与上述的第1保护基和第2保护基亲合性高的溶剂。另外,在考虑进行涂布的情况下,优选不是水系而是有机溶剂。例如如盐酸那样使金属粒子溶解的溶剂是不适当的。在涂布使用旋涂那样的方法的情况下,溶剂的挥发性高为好,其沸点优选为小于或等于200℃,进一步优选为小于或等于160℃。可以举出芳香族烃、醇、酯、醚、酮、二醇醚(glycol aether)、脂环式烃、脂肪族烃等。从沸点和涂布性的观点出发,具体地可使用己烷、甲苯、二甲苯、环己烷、环己酮、PGMEA(丙二醇1-单甲基醚2-醋酸酯:Propylene Glycol1-Monomethyl Ether 2-Acetate)、二甘醇二甲醚、乳酸乙酯、乳酸甲酯、THF等。
第1溶剂和第2溶剂可以是相同的,也可以是不同的。
<保护基与微粒的反应>
微粒能够与第1保护基和第2保护基各自在溶液系中反应。有使微粒、和第1或第2保护基分别分散于溶剂中后进行混合的方法、或者一方以粉末的状态而另一方以分散于溶液中的状态进行混合的方法。在采取分别溶解于溶剂中的方法时,SP值的差优选为5以内,进一步优选为相同的溶剂。混合后,保持数分钟~数小时的反应时间,使第1或第2保护基与微粒完全反应。为使反应充分进行,需要第1保护基和第2保护基以与完全覆盖微粒的周围相比更浓的浓度进行混合。其量,例如直径8nm的Fe微粒的情况下,相对于所含有的Fe原子的个数,混合50~2000倍左右的PS分子。此时,在溶液中包含带有第1和/或第2保护基的粒子、以及与粒子不反应的自由的第1和/或第2保护基。根据情况也可以包含粒子合成时的保护基,例如油胺等。为控制分散液中的第1保护基和第2保护基的量,可以使结合了第1保护基的微粒在不良溶剂中沉淀,将未反应的第1保护基连同上清液废弃。然后,重新添加所希望的量的第2保护基。
能够利用与微粒结合的保护基的数量来控制排列。保护基的数量,由保护基的反应性官能团(羧基、硫醇基等)相对于微粒的表面积存在几个来决定。10nm左右的粒子的情况下,保护基优选为0.1~100个/nm2。在具有1个与微粒表面反应的官能团的保护基分子的情况下,单位表面积的保护基的个数采用以下的方法计算。
微粒的总表面积S=1个粒子的表面积×微粒的个数
=1个粒子的表面积×(微粒的总重量/1个粒子的重量)
=4πr2×mNP/(d×(4πr3/3))
保护基分子的个数N=保护基的总重量/保护基1个分子的重量
=mL/MW×NA
微粒的单位表面积的保护基个数=N/S
在此,mNP:微粒的总重量,mL:保护基的总重量,r:微粒的半径,d:构成微粒的材料的密度,MW:保护基的分子量,NA:阿伏伽德罗常数。
在保护基少的情况下由于粒子间隔变得不均等,因此排列恶化,在极端多的情况下不能取得粒子与粒子的相互作用,间隔过大而没有进行排列。通常,市售的微粒,由于不存在这样的剩余的保护基,因此难以排列。
<微粒的涂布方法>
为了将微粒涂布于基板上,可以采用旋涂法、浸涂法、LB法等。在旋涂法中,将调整了浓度的微粒分散液向基板上滴下,使基板旋转而使溶剂干燥。利用转速控制膜厚。在浸涂法中,将基板向分散液中浸渍,利用提起基板时的粘性力和分子间作用力而使微粒附着于基板上。利用提起的速度来控制膜厚。在LB法中,使粒子保护基的极性和溶剂的极性解离,形成粒子以单层浮于表面那样的状态后,将浸渍了的基板提起,由此在基板上使微粒排列。
<粘度调整剂>
为了使微粒规则排列,向微粒的分散液中混合粘度高的材料。材料的粘度,能够利用毛细管粘度计、旋转粘度计进行测定。对粘度调整剂要求的粘度,也取决于混合的微粒的浓度、溶剂的粘度,但一般优选在10cps~5000cps之间。如果低于10cps,则粘性不足,无助于粒子的相互作用,存在没有规则排列的倾向,如果超过5000cps,则有液体的均匀涂布变得困难的倾向。
另外,粘度调整剂,由于希望均匀地配置于微粒之间,因此不优选具有太高的分子量。具体而言,优选在100~1000左右之间。
粘度调整剂,为了使粒子的排列固定化,也可以具有聚合性。可以举出具有例如丙烯酰基、甲基丙烯酰基、环氧基、氧杂环丁烷环、乙烯基醚基、其他的不饱和键等的聚合性材料。通过具有这些基团,能够利用光、热来推进保护基与保护基的聚合反应,使保护基固化。
再者,该聚合性材料,如果能够得到所希望的粘度,则也能够在未固化下使用。
作为具有100~1000cps的粘度的树脂,可以举出丙烯酸酯、甲基丙烯酸酯、及其衍生物。
例如,关于丙烯酸酯,可以举出丙烯酸乙酯、丙烯酸异冰片酯、丙烯酸苯酯、丙烯酸辛酯、三丙二醇二丙烯酸酯、三羟甲基丙烷乙氧基三丙烯酸酯、季戊四醇三丙烯酸酯、环氧丙烯酸酯、丙烯酸尿烷酯、聚酯丙烯酸酯、聚醚丙烯酸酯等。另外,关于甲基丙烯酸酯,可以举出甲氧基聚乙二醇甲基丙烯酸酯、苯氧基乙二醇甲基丙烯酸酯、甲基丙烯酸硬脂酯(stearylmethacrylate)、乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、聚乙二醇甲基丙烯酸酯、乙氧基化双酚A二丙烯酸酯、丙二醇二丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、聚酯甲基丙烯酸酯、聚醚甲基丙烯酸酯、环氧甲基丙烯酸酯、甲基丙烯酸尿烷酯等。
具有环氧基的聚合性材料的例子,为环氧丙烯酸酯、环氧乙烷、醇缩水甘油醚、乙二醇缩水甘油醚、聚乙二醇缩水甘油醚。
具有氧杂环丁烷环的聚合性材料的例子,为3-乙基-3-羟基甲基氧杂环丁烷、3-乙基-氯代甲基氧杂环丁烷。
具有乙烯基醚基的聚合性材料的例子,为2-羟基乙基乙烯基醚、二甘醇单乙烯基醚、4-羟基丁基乙烯基醚。
由微粒的布朗运动导致的排列的混乱,越是低粘度的液体就越容易产生,因此,对于粘度调整剂的固化,越是粘度低就越需要进行。例如,对于在粘度调整剂的原液的状态下为小于或等于1000cps的粘度调整剂,优选进行固化。
为了粘度调整剂和微粒的均匀的混合,粘度调整剂的SP值不过高为好。但是,如果具有聚合性的官能团增加则有SP值变高的倾向。如果SP值低于18(MPa)1/2,则有聚合反应所需要的基团减少的倾向,如果大于25(MPa)1/2,则有向基板的涂布性恶化的倾向。
<粘度调整剂的固化方法>
通过照射一般的UV光,能够将填充到微粒的周围的聚合性树脂固化。UV光是指波长为200~400nm的光。例如使用了酚改性丙烯酸酯的情况下,如果使10~100mW/cm2的UV灯照射数十秒左右,则能够使聚合性树脂固化。在固化时采用自由基聚合机制的情况下,为了防止氧的固化阻碍,优选在真空中或用保护层覆盖等而形成氧不进入的状态来使其固化。
另外,也能够通过加热而使保护基固化。例如使用丙烯酸异丁酯之类的材料的情况下,能够通过在N2气氛的烘箱中、在150℃加热30分钟~数小时左右,来使保护基固化。
<硬掩模>
在微粒层与基板之间,能够根据需要设置硬掩模层。通过设置硬掩模层,能够确保掩模的高度,建立图案的锥度。
硬掩模,是采用溅射等方法将至少大于或等于1层的膜附在记录层之上的。硬掩膜需要某种程度的高度的情况下,优选使硬掩膜成为大于或等于2层的结构。例如实际通过使下层为C、上层为Si,能够制作形貌(aspect)高的掩模。或者,在使下层为Ta、Ti、Mo、W等的金属类或它们的化合物的情况下,上层能够使用Ni、Cr等材料。在使用金属材料作为掩模的情况下,优点是成膜速率快。
作为离子铣削的硬掩模使用的情况下,硬掩模可使用C、Ta、Ti、或其化合物。在不将硬掩模作为蚀刻掩模使用,而作为用于在上面沉积磁性膜的图案层使用的情况下,优选:在表面形成氧化被膜的Al、Fe、Ni、Sn、难以氧化的Au、Ag、Pt、Pd、Ru等的贵金属类、C、Si等的材料。
<硬掩模的图案化>
硬掩模的图案化,优选根据需要使用各种干法蚀刻工艺。例如硬掩模为C的情况下,优选用O2、O3等的氧系气体、或H2、N2等的气体进行干法蚀刻。在硬掩模为Si、Ta、Ti、Mo、W等材料的情况下,优选采用使用含卤素气体(CF4、CF4/O2、CHF3、SF6、Cl2)的RIE。在硬掩模中使用Cr、Al的化合物的情况下,优选使用Cl系气体的RIE。在使用Au、Pt、Pd、Cu等贵金属的情况下,稀有气体的离子铣削是有效的。
<磁记录层的图案化>
磁记录层的图案化,通过离子铣削或RIE,将被掩蔽了的部分以外进行蚀刻,在记录层上制作基于凹凸的图案。所谓基于凹凸的图案制作,通常是指将记录层的材料全部进行蚀刻。根据情况也有时制作:在凹部残留一部分的记录层的材料、或者如Capped(盖帽)结构那样第1层全部蚀刻、且自第2层以后残留等等这样的结构。
离子铣削能够使用Ne、Ar、Kr、Xe等稀有气体、N2等惰性气体。在使用RIE的情况下,使用Cl2系、CH3OH、NH3+CO等气体。RIE的情况下,也有时在蚀刻后需要H2气体洗涤、烘烤处理、水洗处理。
<埋入工序>
形成周期性图案后,能够增加通过埋入而使周期性图案平坦化的步骤。埋入,为了简便可使用以埋入材料为靶的溅射法,但除此之外也可以采用镀敷、离子束蒸镀、CVD、ALD等方法。如果采用CVD、ALD,则相对于高锥度的磁记录层的侧壁,能够以高速率进行成膜。另外,通过在埋入成膜时向基板施加偏压,即使高形貌的图案也能够无间隙地埋入。也可以采用SOG(Spin-On-Glass)、SOC(Spin-On-Carbon)等的所谓将抗蚀剂进行旋涂,并通过热处理使其固化的方法。
作为埋入材料不限于SiO2,可以使用硬度和平坦性允许限度内的材料。例如NiTa、NiNbTi等的非晶金属易于平坦化,能够作为埋入材料使用。如果使用以C为主成分的材料、例如CNx、CHx等,则硬度高,有与DLC的密着性变得良好的倾向。SiO2、SiNx、TiOx、TaOx等氧化物、氮化物也适合作为埋入材料。但是,在与磁记录层接触时与磁记录层形成反应生成物的情况下,可以在埋入层与磁记录层之间夹1层保护层。
<保护膜和润滑剂>
作为保护层,能够使用碳。
碳保护膜,为了使对凹凸的覆盖良好而优选采用CVD法进行成膜,但也可以采用溅射法或真空蒸镀法进行成膜。如果采用CVD法,则能形成包含较多的sp3键碳的DLC膜。膜厚如果为小于或等于2nm则覆盖变差,如果为大于或等于10nm,则由于记录再生磁头与介质的磁性间隔变大从而SNR降低,因此不优选。
另外,能够在保护膜上涂布润滑剂。作为润滑剂,能够使用例如全氟聚醚、氟代醇、氟代羧酸等。
<磁记录层>
作为磁记录层,为合金系的情况下,优选以Co或Fe、Ni为主成分,且包含Pt或Pd。磁记录层根据需要可以包含Cr和/或氧化物。作为氧化物,特别优选氧化硅、氧化钛。进而,除了氧化物以外,能够含有选自Ru、Mn、B、Ta、Cu、和Pd中的大于或等于1种的元素。通过含有上述元素,能够使结晶性、取向性提高,能够得到适合于更高密度记录的记录再生特性、热摆特性。
作为垂直磁记录层,也能够使用CoPt系合金、FePt系合金、CoCrPt系合金、FePtCr系合金、CoPtO、FePtO、CoPtCrO、FePtCrO、CoPtSi、FePtSi、以及以选自Pt、Pd、Ag、Cu中的至少一种为主成分的合金与Co、Fe、Ni的多层结构等。另外,也能够使用Ku高的MnAl合金、SmCo合金、FeNbB合金、CrPt合金等。进而,也能够使用Gd-Co、Gd-Fe、Tb-Fe、Gd-Tb-Fe、Tb-Co、Tb-Fe-Co、Nd-Dy-Fe-Co、Sm-Co等的非晶记录材料。
垂直磁记录层的厚度,优选为3~30nm,更优选为5~15nm。如果是该范围,则能够制作适合于更高记录密度的磁记录再生装置。如果垂直磁记录层的厚度低于3nm,则再生输出过低从而有噪声成分变高的倾向。如果垂直磁记录层的厚度超过30nm,则再生输出过高从而有使波形失真的倾向。
<软磁性衬里层>
软磁性衬里层(SUL),担负着使来自用于将垂直磁记录层磁化的单磁极磁头的记录磁场沿水平方向通过,向磁头侧回流这样的磁头功能的一部分,具有向记录层施加陡峭且充分的垂直磁场、使记录再生效率提高的作用。
在软磁性衬里层中,能够使用含有Fe、Ni或Co的材料。作为这样的材料,可以举出FeCo系合金例如FeCo、FeCoV等、FeNi系合金例如FeNi、FeNiMo、FeNiCr、FeNiSi等、FeAl系合金、FeSi系合金例如FeAl、FeAlSi、FeAlSiCr、FeAlSiTiRu、FeAlO等、FeTa系合金例如FeTa、FeTaC、FeTaN等、FeZr系合金例如FeZrN等。也能够使用含有大于或等于60at%的Fe的FeAlO、FeMgO、FeTaN、FeZrN等的具有微晶结构或者微细的晶粒分散于基体中的粒状结构的材料。作为软磁性衬里层的其它材料,也能够使用含有Co、和Zr、Hf、Nb、Ta、Ti和Y之中的至少1种的Co合金。优选在Co合金中含有大于或等于80at%的Co。这样的Co合金,在采用溅射法进行了成膜的情况下容易形成非晶层。非晶软磁性材料,由于没有晶体磁各向异性、晶体缺陷和晶界,因此显示出非常优异的软磁性,并且能够谋求介质的低噪声化。作为优选的非晶软磁性材料,能够举出例如CoZr、CoZrNb和CoZrTa系合金等。
在软磁性衬里层的下面,为了提高软磁性衬里层的结晶性或提高其与基板的密着性,也可以进一步设置基底层。作为这样的基底层的材料,能够使用Ti、Ta、W、Cr、Pt、含有它们的合金、或它们的氧化物或氮化物。
为防止尖峰噪声,也可以通过将软磁性衬里层分为多个层,并插入0.5~1.5nm的Ru层来作为中间层,来进行反铁磁性耦合。另外,也可以使CoCrPt、SmCo、FePt等的具有面内各向异性的硬磁性膜或者包含IrMn、PtMn等的反铁磁性体的钉扎层与软磁性层交换耦合。为了控制交换耦合力,也可以在Ru层的上下层叠磁性膜(例如Co)或非磁性膜(例如Pt)。
<中间层>
能够在软磁性衬里层与垂直磁记录层之间设置包含非磁性体的中间层。中间层具有将软磁性衬里层与记录层的交换耦合相互作用隔断、控制记录层的结晶性这2个作用。作为中间层的材料,能够使用Ru、Pt、Pd、W、Ti、Ta、Cr、Si、Ni、Mg、含有它们的合金、或它们的氧化物或氮化物。
在图1中示出表示能够采用实施方式涉及的方法制成的周期性图案的例子的图。
如图所示,如果采用实施方式涉及的方法,则能够形成例如在大面积上总括起来微粒20以数nm~数十nm的间距被六方最密填充的图案。
另外,在图2中示出表示能够采用实施方式涉及的方法制成的周期性图案的另一例的图。
在该例的周期性图案中,微粒21正方排列。这样的图案,例如在所使用的微粒的形状为未图示的立方体时可以呈现。
另外,图3表示将能够应用实施方式涉及的磁记录介质的磁记录再生装置的一例部分拆解了的立体图。
如图3所示,磁记录再生装置130,具有:上面开口了的矩形箱状的筐体131、和利用多个螺丝拧紧到筐体131上的将筐体的上端开口闭塞的未图示的顶盖。
在筐体131内,收纳有:实施方式涉及的磁记录介质132、作为将该磁记录介质132支持和使其旋转的驱动手段的主轴电动机133、对磁记录介质132进行磁信号的记录和再生的磁头134、具有将磁头搭载于顶端的悬架、且相对于磁记录介质132移动自如地支持磁头134的磁头促动器135、旋转自如地支持磁头促动器135的旋转轴136、通过旋转轴136将磁头促动器135旋转、定位的音圈电动机137、以及磁头放大电路基板138等。
以下,示出实施例,更具体地说明实施方式。
实施例1-1
根据图4和图5说明第1实施方式涉及的磁记录介质的制造方法的一例。
在图4中示出表示第1实施方式中所使用的周期性图案的形成方法的一例的流程图。
首先,使用甲苯作为第1溶剂,使带有油胺保护基的Fe微粒(粒径为6nm)以0.1wt%分散(BL 1)。
接着,使作为第1保护基的、具有羧基末端的聚苯乙烯(分子量为2000)以5wt%分散于甲苯溶剂中,与Fe微粒分散液以重量比1:1混合后,在氩气氛下搅拌1小时,由此使羧基与Fe微粒的表面反应,将第1保护基和油胺保护基置换(BL 2)。采用TEM(扫描电镜:Transmission ElectronMicrosope)确认出:通过该反应,Fe微粒的外侧2~3nm成为氧化物。由于表面的氧化而使厚度增加,由此Fe微粒直径变化为10nm。
接着,通过离心分离(9000rpm,10分钟)使微粒沉淀后,将作为原来的保护基的油胺、和未反应的聚苯乙烯连同上清液除去(BL 3)。通过该工序,微粒不是分散状态,而成为了仅是被第1保护基(聚苯乙烯保护基)覆盖了的Fe微粒的状态。
然后,使用PGMEA作为第2溶剂,使被第1保护基覆盖了的Fe微粒再分散(BL 4),将作为第2保护基的、以5wt%分散于第2溶剂(PGMEA)中的羧基末端聚苯乙烯(分子量2000),添加第1保护基的1/10的量,用第1保护基和第2保护基修饰了Fe微粒(BL 5)。
将所得到的微粒分散液用PGMEA稀释,进行了浓度调整,使得成为1wt%。
进而,将作为粘度调整剂的乙氧基化(6)三羟甲基丙烷三丙烯酸酯(Ethoxylated(6)Trimethylolpropane Triacrylate,以下记为E6TAPA),以相对于微粒的重量为1:1的比例混合,调制了微粒层涂布液(BL 6)。
向基板上滴下微粒层涂布液,以转速3000rpm进行旋涂,形成了单层的微粒层(BL 7)。
再者,实施例1的基板30的膜构成,是玻璃基板1、厚度为40nm的软磁性层11(CoZrNb)、以及厚度为5nm的软磁性层保护层12(NiTa)的叠层体。
SEM(Scanning Electron Microscope)观察的结果,确认出微粒以单层排列在基板上,形成了周期性图案。
在图5中示出表示使用周期性图案形成图案化磁记录介质的工序的概略的截面图。
首先,图5(a)表示在软磁性层11、软磁性层保护层(NiTa)12上,形成了由微粒层7和保护基8构成的周期性图案的样子。
如图5(b)所示,通过干法蚀刻,将Fe微粒7周围的保护基8蚀刻,使粒子与粒子孤立。该工序,例如采用感应耦合等离子(ICP)RIE装置,使用O2气作为工艺气体(process gas),将腔室压力设为0.1Pa,将线圈RF功率和压板(platen)RF功率分别设为100W和10W,将蚀刻时间设为10秒来进行。Fe微粒7在O2等离子体中基本没有被削,因此Fe微粒7成为在基板表面露出的形态。该蚀刻在至少粒子的上半部分的保护基被除去了的阶段结束。
接着,如图5(c)所示,通过溅射,使磁记录层3沉积在Fe微粒7的表面。首先,制成3nm的用于晶体取向控制的未图示的Ru层后,层叠:层叠有10层的[Co(0.3nm)/Pt(0.7nm)]的人造晶格的磁记录层3(合计10nm)。
最后,如图5(d)所示,通过采用CVD(化学气相沉积)形成厚度为5nm的保护膜14,并涂布未图示的润滑剂,来得到第1实施方式的图案化介质。
通过SEM观察了采用上述那样的方法制作出的图案化介质的平面结构,[Co/Pt]人造晶格粒子的尺寸分布为10%。从该结果判断出:由实施方式涉及的微细周期性图案,能够得到尺寸分布低的磁记录介质110。
将制作出的磁记录介质搭载于驱动器中,以200MHz的记录频率进行记录,确认了波形,可知能够得到充分的振幅,能够作为磁记录介质使用。
实施例1-2
根据图5和图6说明第1实施方式涉及的磁记录介质的制造方法的另一例。
在图6中示出表示第1实施方式中所使用的周期性图案的形成方法的另一例的流程图。
首先,使用环己酮作为第1溶剂,使带有十二烷硫醇保护基来作为第1保护基的Au微粒(粒径为8nm)以5wt%分散(BL 11)。此时,十二烷硫醇,相对于Au粒子的表面积以1个/nm2的浓度结合。
然后,以与第1保护基同量的1个/nm2的浓度向含有被第1保护基覆盖的Au微粒的分散液添加:以5wt%分散于作为第2溶剂与第1溶剂同样的环己酮中的作为第2保护基的硫醇基末端聚苯乙烯(分子量为2000),用第1保护基和第2保护基修饰了Au粒子(BL 12)。
将所得到的微粒分散液用环己酮稀释,进行了浓度调整,使得成为3wt%。进而,将作为粘度调整剂的E6TAPA以相对于微粒的重量为1:1的比例混合,调制了微粒涂布液(BL 13)。
向基板上滴下微粒层涂布液,以转速3000rpm进行旋涂,形成了单层的微粒层(BL 14)。
再者,实施例1-2的基板的构成,与实施例1-1的基板30的膜构成同样,是玻璃基板1、厚度为40nm的软磁性层11(CoZrNb)、以及厚度为5nm的软磁性层保护层12(NiTa)的叠层体。
SEM观察的结果,确认出微粒以单层排列在基板上,形成了周期性图案。
接着,与实施例1-1同样地,按照图5(a)~(d)所示的工序,得到了第1实施方式的图案化介质。
通过SEM观察了采用上述那样的方法制作出的图案化介质的平面结构,[Co/Pt]人造晶格粒子的尺寸分布为10%。从该结果判断出:由实施方式涉及的微细周期性图案,能够得到尺寸分布低的磁记录介质。
将制作出的磁记录介质搭载于驱动器中,以200MHz的记录频率进行记录,确认了波形,可知能够得到充分的振幅,能够作为磁记录介质使用。
实施例2-1~实施例2-6
除了如下述那样变更使用的材料以外,与实施例1-1同样地将微粒以单层向基板上涂布。
将作为第2保护基而添加的羧基末端聚苯乙烯的量如下述表1那样变更,相对于Fe微粒设为0.1~20倍。再者,实施例1成为追加了Fe微粒重量的5倍的聚苯乙烯的计算,与实施例2-4相当。在下述表1中示出添加了的第2保护基的量、由此计算出的单位粒子表面积的保护基分子量、用平面SEM测定了其排列的结果。
表1
表中,作为测定结果的评价,双重圆表示单层排列和规则排列区域以平均计粒子为大于或等于100个,○表示单层排列和规则排列区域以平均计粒子为大于或等于20个,△表示能够单层排列,或者有一些凝聚,×表示凝聚、或未排列。
保护基的量比0.1个/nm2少的情况下,有粒子发生凝聚、不能很好地排列的倾向。相反,保护基超过100个/nm2的情况下,由于保护基过多因此阻碍粒子的排列,有看不到规则排列的倾向。在0.1~100个/nm2之间时,虽然保护基量越增加粒子的间隔越扩大,但是在所有的条件下粒子规则排列。
由以上的结果已知:如果保护基为0.1~100个/nm2,则能够得到更良好的规则排列的周期性图案。
实施例3-1~实施例3-6
除了将第1保护基和第2保护基的种类和分子量如下述表2那样变更以外,与实施例1-1同样地将微粒以单层向基板上涂布,形成了微粒的周期性图案。
再者,作为第1保护基和第2保护基,除了聚苯乙烯以外使用了聚甲基丙烯酸甲酯。浓度调整后,将微粒涂布在基板上,通过平面SEM测定了粒子的排列的样子和间距。将其结果示于下面的表2。
表2
再者,表中,PS表示聚苯乙烯,PMMA表示聚甲基丙烯酸甲酯,括号内表示分子量。
表中,双重圆表示单层排列和规则排列区域以平均计粒子为大于或等于100个,○表示单层排列和规则排列区域以平均计粒子为大于或等于20个,△表示能够单层排列,×表示凝聚、或未排列。
判明:只要保护基的量适当,则即使是添加的保护基的分子量不同的情况下,也能够规则排列。进而判明:即使添加的保护基是聚苯乙烯以外的物质也具有同样的效果。判明在使用了不同的保护基的情况下,能够同样地排列。
由以上的结果显示出:即使添加的保护基的分子量不同,也能够排列。
实施例4-1~4-22
除了将使用的微粒材料变更为下述表3所示的微粒材料以外,与实施例1-1同样地将微粒以单层向基板上涂布,形成了微粒的周期性图案。另外,保护基的主链是聚苯乙烯,但与微粒反应的末端部分,根据微粒材料而选择了适当的末端部分。
表3
材料 保护基 直径 排列
实施例4-1 Fe 羧基末端 10nm
实施例4-2 AlOx 羧基末端 13nm
实施例4-3 Si 羧基末端 10nm
实施例4-4 TiOx 羧基末端 25nm
实施例4-5 VOx 羧基末端 10nm
实施例4-6 CrOx 羧基末端 20nm
实施例4-7 Mn 羧基末端 30nm
实施例4-8 Co 羧基末端 50nm
实施例4-9 Ni 羧基末端 10nm
实施例4-10 Zn 羧基末端 50nm
实施例4-11 YOx 羧基末端 50nm
实施例4-12 ZrOx 羧基末端 100nm
实施例4-13 Sn 羧基末端 100nm
实施例4-14 Mo 羧基末端 100nm
实施例4-15 Ta 羧基末端 25nm
实施例4-16 WOx 羧基末端 100nm
实施例4-17 FePt(芯)/FeOx(壳) 羧基末端 10nm
实施例4-18 Au 硫醇基末端 8nm
实施例4-19 Ag 硫醇基末端 5nm
实施例4-20 Pd 硫醇基末端 10nm
实施例4-21 Cu 硫醇基末端 50nm
实施例4-22 Pt 硫醇基末端 20nm
表中,双重圆表示单层排列和规则排列区域以平均计粒子为大于或等于100个,○表示单层排列和规则排列区域以平均计粒子为大于或等于20个,△表示能够单层排列,×表示凝聚、或未排列。
由该结果可知:在后来追加保护基而进行排列的过程中,即使微粒的种类不同也能够得到同样的排列体。这样的排列体,除了实施例1中记载的磁记录介质以外,还能够在防反射膜、存储器、催化剂等各种各样的用途上展开。
实施例5
在图7中示出表示第1实施方式涉及的磁记录介质的制造工序的变形例的概略的截面图。
在此,代替在基板上形成由微粒构成的周期性图案,在设置于基板上的加工用基底层上形成由微粒构成的周期性图案后,对加工用基底层进行图案加工而除去微粒。
首先,准备甲苯来作为第1溶剂,使带有油胺保护基的Fe微粒(粒径为6nm)以0.1wt%分散。
接着,使作为第1保护层的、具有羧基末端的聚苯乙烯(分子量为2000)以5wt%分散于甲苯溶剂中,与Fe微粒分散液以重量比1:1混合后,在氩气氛下搅拌了1小时。使羧基与Fe微粒的表面反应,将第1保护基和油胺保护基置换。利用TEM确认出:通过该反应,Fe微粒的外侧2~3nm成为氧化物。另外,由于厚度增加了,粒子直径变化为10nm。
接着,进行离心分离(9000rpm,10分钟),使微粒沉淀后,将作为原来的保护基的油胺、和未反应的聚苯乙烯连同上清液除去。通过该工序,微粒不是分散状态,成为了仅是被第1保护基(聚苯乙烯保护基)覆盖了的Fe微粒的状态。
然后,使用PGMEA作为第2溶剂,使被第1保护基覆盖了的Fe微粒再分散,将作为第2保护基的、以5wt%分散于第2溶剂(PGMEA)中的羧基末端聚苯乙烯添加第1保护基的1/10的量,用第2保护基修饰了被第1保护基覆盖了的Fe微粒。
将微粒分散液用PGMEA稀释,进行了浓度调整,使得成为1wt%。
而且,将作为粘度调整剂的E6TAPA以相对于微粒的重量为1:1的比例混合,调制了微粒层涂布液。
作为基板40,准备:在玻璃基板1上依次沉积有厚度为40nm的软磁性层11(CoZrNb)、厚度为5nm的软磁性层保护层(NiTa)(未图示)、以及厚度为30nm的凹凸加工用的基底层(C)16的叠层体,向该基板上滴下Fe微粒分散液,以转速3000rpm进行旋涂,形成了单层的微粒层。
SEM观察的结果,确认出粒子以单层排列在基板上,形成了周期性图案。
图7(a)表示在凹凸用基底层16上形成有由微粒层7和保护层8构成的周期性图案的样子。
如图7(b)所示,将Fe微粒7的图案通过干法蚀刻向C基底层16上转印。
该工序,例如采用ICP-RIE装置,使用O2气来作为工艺气体,将腔室压力设为0.1Pa,将线圈RF功率和压板RF功率分别设为100W和10W,将蚀刻时间设为20秒来进行。Fe微粒在O2等离子体中基本没有被削,因此Fe微粒成为在基板表面露出的形态。通过该蚀刻,微粒的周围的保护基和基底的C层被蚀刻,在软磁性层保护层露出了的阶段结束。
接着,如图7(c)所示,将Fe微粒7溶解剥离,成为仅有C柱16的结构。该工序,例如通过将基板在1重量%的HCl水溶液中浸渍10分钟,使Fe微粒7选择性地溶解而进行。软磁性层11,被NiTa保护膜保护,不会溶解。
然后,如图7(d)所示,通过溅射,使磁记录层3沉积在C柱16的表面。首先,制成10nm的用于晶体取向控制的Ru层,然后层叠15nm的Co80Pt20
进而,如图7(e)所示,通过采用CVD(化学气相沉积)形成厚度为5nm的由DLC构成的保护膜14,并涂布润滑剂,来得到实施方式的图案化介质。
通过SEM观察了采用上述那样的方法制作出的图案化介质的平面结构,CoPt粒径的分散为10%。从该结果判明:由本发明的微细图案,能够得到尺寸分散低的磁记录介质。
将制作出的磁记录介质搭载于驱动器中,以200MHz的记录频率进行记录,确认了波形,可知能够得到充分的振幅,能够作为磁记录介质使用。
从该结果显示出:由实施方式涉及的微细图案,能够得到具有尺寸分布低、面内均匀性良好的周期性图案的磁记录介质。
实施例6
在图8中示出表示形成第2实施方式涉及的磁记录介质的工序的概略的截面图。
如以下那样,从Fe微粒向磁记录层转印凹凸图案,制作了磁记录介质。
首先,采用与实施例1-1同样的方法向基板上涂布微粒层涂布液,形成了单层的微粒层。
作为基板50,准备了:在玻璃基板1上层叠了厚度为40nm的软磁性层2(CoZrNb)、厚度为20nm的取向控制用中间层2(Ru)、厚度为10nm的磁记录层3(Co80Pt20)、厚度为2nm的保护层4(Pd)、以及厚度为5nm的剥离层5(Mo)的叠层体。
图8(a)表示在剥离层5上形成了由微粒层7和保护层8构成的周期性图案的样子。
如图8(b)所示,通过干式蚀刻,将Fe的周围的保护基蚀刻,使Fe微粒露出。该工序,例如采用ICP-RIE装置,使用O2气来作为工艺气体,将腔室压力设为0.1Pa,将线圈RF功率和压板RF功率分别设为100W和10W,将蚀刻时间设为10秒来进行。Fe微粒在O2等离子体中基本没有被削,因此Fe微粒成为在基板表面露出的形态。该蚀刻,将微粒7的周围的保护基和硬掩模层6蚀刻,在剥离层5的表面露出了的阶段结束。
接着,如图8(c)所示,通过离子铣削,以Fe微粒7为掩模,将磁记录层3连同剥离层5和保护层8隔断。例如采用Ar离子铣削装置,使用Ar气来作为工艺气体,将腔室压力设为0.04Pa,将等离子体功率设为400W,将加速电压设为400V,将蚀刻时间设为20秒来进行。通过该工序,Mo、Pd、CoPt被铣削,CoPt的记录层3被磁隔断。该工序,将磁记录层3蚀刻,在Ru中间层2的表面露出时结束。
接着,如图8(d)所示,将Fe微粒溶解剥离。例如在浓度为0.1%的过氧化氢水溶液中浸渍基板,保持10分钟。通过该工序,Fe微粒7连同Mo剥离层5被溶解除去,被加工了的C基底层4露出。
最后,如图8(e)所示,通过采用CVD(化学气相沉积)形成第2保护膜14,并涂布未图示的润滑剂,得到第1实施方式涉及的图案化介质。
通过SEM观察了采用上述那样的方法制作出的图案化介质的平面结构,CoPt粒径的分散为10%。
将制作出的磁记录介质搭载于驱动器中,以200MHz的记录频率进行记录,确认了波形,可知能够得到充分的振幅,能够作为磁记录介质使用。
由该结果判明:由本发明的微细图案,能够得到尺寸分散低的磁记录介质。
实施例7
在图9中示出表示形成第2实施方式涉及的磁记录介质的工序的另一例的概略的截面图。
如以下那样,从Fe微粒隔着硬掩模层向磁记录层转印凹凸图案,制作了磁记录介质。
首先,采用与实施例1-1同样的方法将微粒涂布液向基板上涂布,形成了单层的微粒层。
作为基板50,准备了:在玻璃基板1上层叠了厚度为40nm的软磁性层2(CoZrNb)、厚度为20nm的取向控制用中间层2(Ru)、厚度为10nm的磁记录层3(Co80Pt20)、厚度为2nm的保护层4(Pd)、厚度为5nm的剥离层5(Mo)、以及硬掩模层6(C)的叠层体。
图9(a)表示在硬掩模层6上形成了由微粒层7和埋入到微粒层7的周围的保护基8构成的规则的排列图案的样子。
如图9(b)所示,通过干式蚀刻,将Fe微粒层7的图案向C硬掩模层6转印。该工序,例如采用ICP-RIE装置,使用O2气来作为工艺气体,将腔室压力设为0.1Pa,将线圈RF功率和压板RF功率分别设为100W和10W,将蚀刻时间设为40秒来进行。Fe微粒在O2等离子体中基本没有被削,因此成为在10nm的高度的C柱之上载有直径为10nm的Fe微粒的状态的掩模。
接着,如图9(c)所示,通过离子铣削,将硬掩模6(C)的形状向磁记录层3转印。在此,例如采用Ar离子铣削装置,使用Ar气来作为工艺气体,将腔室压力设为0.04Pa,将等离子体功率设为400W,将加速电压设为400V,将蚀刻时间设为20秒来进行。通过该工序,Mo剥离层5、Pd保护层4、CoPt磁记录层3被蚀刻,CoPt记录层3磁隔断。
接着,如图9(d)所示,将硬掩模6连同包含Mo的剥离层5剥离。该工序,通过向例如浓度为0.1%的过氧化氢水溶液中浸渍介质,保持10分钟来进行。
最后,如图9(e)所示,通过采用CVD(化学气相沉积)形成厚度为5nm的由DLC构成的第2保护膜14,并涂布润滑剂,得到了第1实施方式涉及的图案化介质100。
通过SEM观察了采用上述那样的方法制作出的图案化介质的平面结构,CoPt粒径的分散为10%。
将制作出的磁记录介质搭载于驱动器中,以200MHz的记录频率进行记录,确认了波形,可知能够得到充分的振幅,能够作为磁记录介质使用。
从该结果显示出:由通过实施方式形成的微粒层的周期性图案,能够得到具有磁性体粒子的尺寸分布低、面内均匀性良好的周期性图案的图案化磁记录介质。
实施例8
使用采用实施方式涉及的方法形成的微粒排列基板,进行了碳纳米管(CNT)的生长。
首先,采用与实施例1-1同样的方法,将Fe微粒排列在基板上。但是,作为基板,代替玻璃基板而使用带有热氧化膜的硅基板,不进行基底等的成膜就直接向基板上涂布了微粒。
在该微粒排列基板上进行了CNT的生长。首先,为了使微粒的表面露出,通过使用O2气的RIE,除去了微粒表面的保护基和聚苯乙烯。然后,通过使用甲烷气体的CVD,使CNT在微粒表面生长。通过截面TEM进行了观察,弄清了确实地在Fe微粒上生长出CNT。
对本发明的几个实施方式进行了说明,但这些实施方式是作为例子而提示的,不意图限定发明的范围。这些新的实施方式,能够以其它的各种各样的方式实施,能够在不脱离发明的要旨的范围进行各种省略、置换、变更。这些实施方式和其变形,包含于发明的范围和要旨中,并且包含于权利要求书所记载的发明及其均等的范围中。

Claims (18)

1.一种磁记录介质的制造方法,其特征在于,具备:
在基板上,向具有表面极性与该基板相近的第1保护基、且至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、钨、金、银、钯、铜、铂、及其氧化物中的材料的微粒添加第2保护基和第2溶剂,调制第2分散液的工序;
在该第2分散液中用该第2保护基修饰具有该第1保护基的微粒,形成具有该第1保护基和第2保护基的微粒的工序;
向包含具有该第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制微粒涂布液的工序;
涂布该微粒涂布液,在所述基板上形成单层的微粒层的工序;以及
在由所述微粒构成的周期性图案上形成磁记录层的工序。
2.根据权利要求1所述的磁记录介质的制造方法,其特征在于,在形成所述磁记录层的工序之前,还包括以所述微粒为掩模将所述第1保护基和第2保护基蚀刻的工序。
3.根据权利要求1所述的磁记录介质的制造方法,其特征在于,在所述基板与所述微粒层之间进一步设置基底层,在形成所述磁记录层的工序之前,还包括以所述微粒为掩模向该基底层转印由所述微粒构成的周期性图案,并除去该微粒的工序。
4.一种磁记录介质的制造方法,其特征在于,具备:
向具有表面极性与包含磁记录层的基板相近的第1保护基、且至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、钨、金、银、钯、铜、铂、及其氧化物中的材料的微粒添加第2保护基和第2溶剂,调制第2分散液的工序;
在该第2分散液中用该第2保护基修饰具有该第1保护基的微粒,形成具有该第1保护基和第2保护基的微粒的工序;
向包含具有该第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制微粒涂布液的工序;
在所述基板上涂布该微粒涂布液,形成单层的微粒层的工序;以及
向所述磁记录层转印由该微粒层构成的周期性图案的工序。
5.根据权利要求1~4的任一项所述的磁记录介质的制造方法,其特征在于,所述第2溶剂选自己烷、2-丁酮、甲苯、二甲苯、环己烷、环己酮、PGMEA、二甘醇二甲醚、乳酸乙酯、乳酸甲酯、四氢呋喃、及它们的混合物中。
6.根据权利要求1~4的任一项所述的磁记录介质的制造方法,其特征在于,
具有所述第1保护基的微粒,是通过制成在第1溶剂中分散有第1保护基和所述微粒的第1分散液,并在该第1分散液中使该微粒结合所述第1保护基的工序得到的,
形成所述第2分散液的工序,包括:使该第1分散液沉淀而除去上清液,并向具有该第1保护基的微粒添加所述第2溶剂和分散于该第2溶剂的所述第2保护基的工序。
7.根据权利要求6所述的磁记录介质的制造方法,其特征在于,所述第1保护基中的反应性官能团数/所述微粒表面积为0.1~100个/nm2
8.根据权利要求6所述的磁记录介质的制造方法,其特征在于,所述第1溶剂选自己烷、2-丁酮、甲苯、二甲苯、环己烷、环己酮、PGMEA、二甘醇二甲醚、乳酸乙酯、乳酸甲酯、四氢呋喃、及它们的混合物中。
9.根据权利要求1~4的任一项所述的磁记录介质的制造方法,其特征在于,所述第1保护基具有与第2保护基的主链相同的主链。
10.根据权利要求9所述的磁记录介质的制造方法,其特征在于,所述第1保护基与第2保护基相同。
11.根据权利要求1~4的任一项所述的磁记录介质的制造方法,其特征在于,所述第1保护基和第2保护基,包含羧基或硫醇基来作为反应性官能团。
12.根据权利要求11所述的磁记录介质的制造方法,其特征在于,所述微粒至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、和钨、以及其氧化物中的材料时,所述第1保护基和第2保护基包含羧基来作为反应性官能团。
13.根据权利要求11所述的磁记录介质的制造方法,其特征在于,所述微粒至少在表面具有选自金、银、钯、铜、铂、及其氧化物中的材料时,所述第1保护基和第2保护基包含硫醇基来作为反应性官能团。
14.根据权利要求1~4的任一项所述的磁记录介质的制造方法,其特征在于,所述第1保护基和第2保护基的主链,是选自饱和烃、具有多个碳碳双键的不饱和烃、聚酯、聚苯乙烯、聚甲基丙烯酸甲酯、聚烯丙基醚、聚乙烯醚、聚丙烯酸酯、聚甲基丙烯酸酯、及其衍生物中的至少1种。
15.根据权利要求1~4的任一项所述的磁记录介质的制造方法,其特征在于,所述第1保护基和所述第2保护基具有100~50000的分子量。
16.根据权利要求1~4的任一项所述的磁记录介质的制造方法,其特征在于,所述该微粒涂布液的涂布,采用旋涂法、浸涂法、和LB法之中的1种方法进行。
17.一种图案形成方法,包括:
在基板上,向具有表面极性与该基板相近的第1保护基、且至少在表面具有选自铝、钛、钒、铬、锰、铁、钴、镍、锌、钇、锆、锡、钼、钽、钨、金、银、钯、铜、铂、及其氧化物中的材料的微粒添加第2保护基和第2溶剂,调制分散液,在该分散液中用该第2保护基修饰具有该第1保护基的微粒,形成具有该第1保护基和第2保护基的微粒的工序;
向包含具有该第1保护基和第2保护基的微粒的分散液添加粘度调整剂,调制微粒涂布液的工序;以及
涂布该微粒涂布液,在所述基板上形成微粒层的工序。
18.根据权利要求17所述的图案形成方法,其特征在于,
具有所述第1保护基的微粒,是通过制成在第1溶剂中分散有第1保护基和所述微粒的第1分散液,并在该第1分散液中使该微粒结合所述第1保护基的工序得到的,
形成所述第2分散液的工序,包括:使该第1分散液沉淀而除去上清液,并向具有该第1保护基的微粒添加第2溶剂和分散于该第2溶剂的所述第2保护基的工序。
CN201410454113.9A 2014-04-25 2014-09-05 图案形成方法和磁记录介质的制造方法 Pending CN105006238A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-092072 2014-04-25
JP2014092072A JP2015210834A (ja) 2014-04-25 2014-04-25 パターン形成方法、及び磁気記録媒体の製造方法

Publications (1)

Publication Number Publication Date
CN105006238A true CN105006238A (zh) 2015-10-28

Family

ID=54335362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410454113.9A Pending CN105006238A (zh) 2014-04-25 2014-09-05 图案形成方法和磁记录介质的制造方法

Country Status (3)

Country Link
US (1) US9412405B2 (zh)
JP (1) JP2015210834A (zh)
CN (1) CN105006238A (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152418A (ja) * 2017-03-10 2018-09-27 東芝メモリ株式会社 半導体装置の製造方法及びエッチング用マスク
US11158340B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Underlayer formulation for tape media
US11158337B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Tape cartridge having tape media having synergistic magnetic recording layer and underlayer
US11410697B2 (en) 2019-08-20 2022-08-09 International Business Machines Corporation Process for forming underlayer for tape media
US11790942B2 (en) 2019-08-20 2023-10-17 International Business Machines Corporation Process for forming magnetic recording layer for tape media
US12014760B2 (en) 2019-08-20 2024-06-18 International Business Machines Corporation Process for forming tape media having synergistic magnetic recording layer and underlayer
US11158339B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Magnetic recording layer formulation for tape media
US11152027B2 (en) 2019-08-20 2021-10-19 International Business Machines Corporation Tape media having synergistic magnetic recording layer and underlayer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116989A1 (en) * 2005-11-24 2007-05-24 Hiroshi Ikekame Magnetic recording media, its fabrication technique, and hard disk drive
CN101230142A (zh) * 2007-01-23 2008-07-30 国际商业机器公司 在聚合物中形成磁性纳米颗粒化学改性分散体的方法
US20100015472A1 (en) * 2008-07-16 2010-01-21 Richard Lionel Bradshaw Protective coating of magnetic nanoparticles
CN101702886A (zh) * 2007-04-12 2010-05-05 分子制模股份有限公司 利用粘着底漆层的压印光刻法
CN101945963A (zh) * 2007-12-21 2011-01-12 3M创新有限公司 用于减少颗粒的涂层和方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068578B2 (ja) 2004-02-18 2008-03-26 株式会社東芝 微細凸凹パターンの形成方法
JP2006082182A (ja) 2004-09-16 2006-03-30 Tokyo Institute Of Technology 微粒子配列薄膜の作製方法
JP2006107550A (ja) 2004-09-30 2006-04-20 Fuji Photo Film Co Ltd 磁気記録媒体およびその製造方法
JP2006342399A (ja) 2005-06-09 2006-12-21 Mitsubishi Chemicals Corp 鉄超微粒子及びその製造方法
JP2007069272A (ja) 2005-09-02 2007-03-22 Toshiba Corp 微粒子配列体、薄膜配列体および磁気記録媒体の製造方法
JP5214477B2 (ja) 2009-01-20 2013-06-19 株式会社東芝 粒子配列構造体の製造方法、およびそれを利用する有機エレクトロルミネッセンス素子の製造方法ならびにパターン形成方法
JP5471084B2 (ja) 2009-07-01 2014-04-16 旭硝子株式会社 光硬化性材料の製造方法、光硬化性材料および物品
JP5857448B2 (ja) 2011-05-24 2016-02-10 昭和電工株式会社 磁気記録媒体及びその製造方法、並びに磁気記録再生装置
JP5939846B2 (ja) 2012-03-09 2016-06-22 エスアイアイ・セミコンダクタ株式会社 半導体装置の製造方法
JP2014170602A (ja) * 2013-03-01 2014-09-18 Toshiba Corp 磁気記録媒体、及びその製造方法
JP5902115B2 (ja) 2013-03-22 2016-04-13 株式会社東芝 磁気記録媒体、及びその製造方法
JP2015056186A (ja) 2013-09-10 2015-03-23 株式会社東芝 パターン形成方法、及び磁気記録媒体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116989A1 (en) * 2005-11-24 2007-05-24 Hiroshi Ikekame Magnetic recording media, its fabrication technique, and hard disk drive
CN101230142A (zh) * 2007-01-23 2008-07-30 国际商业机器公司 在聚合物中形成磁性纳米颗粒化学改性分散体的方法
CN101702886A (zh) * 2007-04-12 2010-05-05 分子制模股份有限公司 利用粘着底漆层的压印光刻法
CN101945963A (zh) * 2007-12-21 2011-01-12 3M创新有限公司 用于减少颗粒的涂层和方法
US20100015472A1 (en) * 2008-07-16 2010-01-21 Richard Lionel Bradshaw Protective coating of magnetic nanoparticles

Also Published As

Publication number Publication date
US9412405B2 (en) 2016-08-09
JP2015210834A (ja) 2015-11-24
US20150310885A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
CN105006238A (zh) 图案形成方法和磁记录介质的制造方法
CN100446089C (zh) 被构图基底,制造基底的方法,磁记录介质及磁记录装置
JP4551957B2 (ja) 磁気記録媒体の製造方法
JP4575499B2 (ja) 磁気記録媒体の製造方法
JP2007095115A (ja) 磁気記録媒体および磁気記録装置
JP2010033636A (ja) 磁気記録媒体の製造方法
JP2017123206A (ja) 垂直磁気記録媒体、及びその製造方法
JP4568367B2 (ja) 磁気記録媒体の製造方法
JP2010218597A (ja) パターン転写用樹脂スタンパ、及びこれを用いた磁気記録媒体の製造方法
JP2011023083A (ja) 磁気記録媒体の製造方法
JP4988032B2 (ja) 磁気記録媒体の製造方法
JP5902115B2 (ja) 磁気記録媒体、及びその製造方法
JP2009080902A (ja) 磁気記録媒体およびその製造方法
CN104424964A (zh) 图案形成方法和磁记录介质的制造方法
JP2014086114A (ja) 磁気記録媒体の製造方法及び微細パターンの製造方法
JP4468439B2 (ja) 磁気記録媒体の製造方法
JP5039199B2 (ja) パターン転写に用いられる紫外線硬化性樹脂材料
JP5017446B2 (ja) 半導体装置の製造方法
CN103219014A (zh) 磁记录介质的制造方法和磁记录再生装置
JP2010146685A (ja) 磁気記録媒体の製造方法
CN104700850A (zh) 垂直磁记录介质和垂直磁记录介质的制造方法
CN104424967A (zh) 图案形成方法、磁记录介质的制造方法及微粒子分散液
JP2009289412A (ja) 磁気記録装置
JP2010218595A (ja) パターン転写用紫外線硬化性樹脂材料、及びこれを用いた磁気記録媒体の製造方法
US20150069014A1 (en) Pattern formation method, magnetic recording medium manufacturing method, and fine particle dispersion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151028