CN104745192A - 一种磁性荧光双功能纳米离子探针及其制备方法 - Google Patents

一种磁性荧光双功能纳米离子探针及其制备方法 Download PDF

Info

Publication number
CN104745192A
CN104745192A CN201510048731.8A CN201510048731A CN104745192A CN 104745192 A CN104745192 A CN 104745192A CN 201510048731 A CN201510048731 A CN 201510048731A CN 104745192 A CN104745192 A CN 104745192A
Authority
CN
China
Prior art keywords
magnetic
preparation
acid
fluorescent
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510048731.8A
Other languages
English (en)
Other versions
CN104745192B (zh
Inventor
刘福田
丁永玲
孙康宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710083648.3A priority Critical patent/CN106833650B/zh
Priority to CN201510048731.8A priority patent/CN104745192B/zh
Priority to CN201710083537.2A priority patent/CN106833613B/zh
Publication of CN104745192A publication Critical patent/CN104745192A/zh
Application granted granted Critical
Publication of CN104745192B publication Critical patent/CN104745192B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0018Diamagnetic or paramagnetic materials, i.e. materials with low susceptibility and no hysteresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于纳米材料制备领域,具体涉及一种磁性荧光双功能纳米离子探针及其制备方法,该复合微粒同时具备了量子点的荧光性能和磁性纳米颗粒的磁性能,可用作生物体内靶向定位和生物荧光成像方面。本发明提供了一种磁性荧光双功能纳米材料的制备方法,以壳聚糖修饰的磁性纳米粒子为核,通过离子交联法连接水溶性量子点得到,所述荧光量子点分布在磁性纳米颗粒的表面,其中磁性纳米颗粒的粒径大小在10-200nm,量子点的粒径在1.5-10nm。本发明反应条件温和,操作方法简单,制备的复合纳米颗粒具有良好的发光性能和磁性能,在生物标记、荧光免疫分析、生物分离、蛋白DNA富集与分离、载药体系的制备及目标成像等领域广泛的应用前景。

Description

一种磁性荧光双功能纳米离子探针及其制备方法
技术领域
本发明属于纳米材料制备领域,具体涉及一种磁性荧光双功能纳米离子探针及其制备方法,该复合微粒同时具备了量子点的荧光性能和磁性纳米颗粒的磁性能,可用作生物体内靶向定位和生物荧光成像方面。
背景技术
随着纳米技术研究的进一步深入,人们对纳米材料的要求已经从单分散性、形貌的控制转变为构建多组分的复合纳米颗粒。通过表面外延生长等方法将多种不同材料组合在一起,成为了纳米科学技术研究的新热点。相较于单一组分的纳米颗粒,多功能纳米材料同时具备多种优良的性能,更好的解决了实际存在的功能单一使一些纳米材料的使用受限制的问题,多功能纳米材料以其优异的性能快速发展,越来越广泛的应用到不同的领域。其中,荧光材料及磁性材料因其在生化和医学领域广泛应用,受到广泛关注。
量子点是尺寸在1-100nm的微晶,通常由元素周期表中II-VI或III-V族原子组成,通过调节粒径大小,可以获得不同荧光发射波长的量子点。与传统的有机荧光染料相比,量子点具有可调的荧光发射波长,窄且对称的荧光发射光谱,宽且连续的紫外吸收光谱,以及较好的光化学稳定性。目前,荧光量子点已广泛应用在生物荧光探针、生物医学成像和免疫检测分析等领域。理想的磁性荧光微球要求具有较高的比饱和磁化强度、能产生较强的荧光且荧光稳定性良好、微球尺寸可控、粒径分布窄、化学稳定性好、表面含有丰富的功能基团,且制备工艺简单、重复性良好、价格便宜等特点,它不仅可以作为核磁共振造影剂用于疾病诊断,还可以作为药物载体用于疾病治疗以及各种蛋白、细胞等的分离。如果将磁性和荧光特性溶于一体制备出磁性和荧光双重功能的复合纳米粒子,将在生物标记、荧光免疫分析、生物分离、蛋白DNA富集与分离、载药体系的制备及目标成像等领域具有很大的应用潜力。
磁性荧光纳米粒子的制备方法主要包括二氧化硅包覆、聚合物包覆、种晶生长以及偶联法。然而,在其制备过程中普遍存在量子点的荧光淬灭现象。据文献报道,造成量子点荧光淬灭的原因主要有两个方面,一方面是量子点本身的光化学稳定性,由于应用环境的复杂性,量子点稳定性易受周围环境影响;另一方面是磁性纳米粒子的影响,包括磁的强的吸收作用以及磁性颗粒与量子点之间的荧光共振能量转移作用。
经对现有的技术检索发现,王飞俊等(公开号:CN103525405A,名称:基于天然高分子的磁性荧光双功能纳米材料及其制备方法)以磁性粒子Fe3O4为核,壳聚糖和聚阴离子型纤维素为壳层材料,以壳聚糖包覆的异硫氰酸荧光素为荧光材料,通过层层自组装方法得到。此方法选用的荧光物质为有机荧光分子,这类荧光材料与大多数有机荧光染料一样,量子产率较低,对检测系统要求严格;较窄的激发波长范围对选择激发光源要求苛刻;发射波长范围较宽且在长波长区域拖尾,且在不同的检测通道之间带来光谱的相互干扰等问题,给检测带来很大困难。陈克正(公开号:CN102020258A,名称:一种磁性荧光羟基磷灰石纳米复合结构的制备方法)通过控制钙/铕的摩尔比,将硝酸钙和硝酸铕的混合溶液、磷酸氢二铵溶液同时滴入磁性纳米粒子溶液,剧烈搅拌下得到棕黄色沉淀,制得磁性荧光羟基磷灰石纳米复合结构。此方法需要加入价格昂贵的稀土元素,同时由于掺杂量的限制,得到的荧光发射波长范围有限。
为了克服现有技术的不足,本发明以壳聚糖修饰的磁性纳米粒子为核,通过离子交联法连接溶解在聚阴离子型高分子有机物中的水溶性量子点,最终得到生物相容性良好的磁性荧光复合纳米微粒。由于壳聚糖对磁性微粒的修饰作用,有效避免了磁性材料的泄漏及对量子点的荧光淬灭作用;同时可以通过控制聚阴离子型高分子有机物中水溶性量子点的浓度、交联次数等,制得不同发光性能的磁性荧光复合纳米颗粒。
发明内容
本发明的目的是提供一种磁性荧光双功能纳米材料及离子探针的制备方法,该方法制备的复合纳米微粒具有磁响应性强、光稳定性高、制备简单、分散性好且尺寸均匀等优点,与单一功能的荧光材料和磁性材料相比,同时具有荧光和磁性的多功能纳米复合材料在纳米生物技术中具有更广泛的生物医学应用,如细胞分离及识别、细胞多模式成像分析、活体成像、生化标记及传感等。
本发明是通过以下措施实现的:
一种磁性荧光双功能纳米材料的制备方法,采用以下步骤:
(a)采用化学共价交联法制备壳聚糖修饰的磁性纳米复合物(CMCH-MNPs):① 对磁性纳米颗粒表面通过氨基化硅烷偶联剂进行氨基化修饰,得到氨基化磁性纳米颗粒;② 将壳聚糖溶解在体积分数为2%-6%的弱酸溶液中,配成0.001-0.01 g/mL的壳聚糖凝胶溶液;③ 将①和②两溶液混合,加入醛类交联剂,在24-26℃的恒温水浴振荡器中振荡10-16 h,磁铁收集反应产物,用蒸馏水清洗反应产物,得到壳聚糖修饰的磁性纳米复合物;
(b)采用离子交联法制备磁性荧光双功能纳米材料:
取制备的浓缩的水相量子点溶于蒸馏水中,并加入聚阴离子型高分子有机物,其中聚阴离子型高分子有机物的浓度为0.0006-0.02 g/mL,得到反应溶液A;取0.005-0.05g步骤(a)中制备的壳聚糖修饰的磁性纳米复合物溶于蒸馏水中,超声20-60 min,使磁性纳米微粒分散均匀得到反应溶液B;将A溶液逐滴加入B溶液中,在24-26℃的恒温水浴振荡器中振荡8-16 h,磁铁收集反应产物,用蒸馏水清洗反应产物,即得磁性荧光双功能纳米材料。
本发明所述一种高效率的离子探针制备过程如下:取100μL上述磁性荧光双功能纳米材料,其中复合纳米晶的浓度为2×10-4~2×10-3 mol/L,加入1.8 mL pH=7.4,浓度为0.01 mol/L 的缓冲溶液中,同时加入最高浓度为2×10-5~2×10-4 mol/L的铜、汞、银或铅金属离子,制得用于检测痕量金属离子的荧光探针。
本发明所述的磁性荧光双功能纳米材料的制备,磁性纳米颗粒(MNPs)是具有超顺磁、顺磁或铁磁性的金属及金属氧化物,选自Fe3O4、Fe2O3、Fe3O4、MeFe2O4(Me=Co、Mn、Ni)、化合物钕铁硼、钐钴等、金属Fe、Co、Ni以及合金Fe2Co、Ni2Fe的金属氧化物的纳米颗粒。
本发明所述的磁性荧光双功能纳米材料,其粒径大小为10-220 nm。
本发明所述的磁性纳米颗粒的制备方法包括共沉淀法、水热法。
本发明所述的量子点为表面带有亲水基团的水溶性量子点,量子点为II-VI,III-V族半导体材料,或者为II-VI和III-V族半导体材料形成的复合材料,所述量子点粒径为1.5-10 nm;优选的量子点为ZnSe、CdSe、CdTe、CdS、ZnSe/ZnS、CdS/ZnS、CdSe/ZnS、CdTe/ZnS、ZnXCd1-XSe、CdSe1-XSX、CdSe1-XTeX、CdSe/ZnSe、CdS/ZnSe、CdTe/ZnSe、CdSe/CdS、CdTe/CdS、CdS/ZnXCd1-XS、ZnSe/ZnXCd1-XS、CdSe/ZnXCd1-XS、CdTe/ZnXCd1-XS,其中0<X<1。
本发明所述的磁性荧光双功能纳米材料的制备,步骤(a)中氨基化硅烷偶联剂包括三甲氧基胺丙基硅烷(APS)、3-氨丙基三乙氧基硅烷(APTES)、三乙氧基胺丙基硅烷、氨丙基三甲氧基硅烷、2-氨乙基-氨丙基三甲氧基硅烷、二乙烯三氨基丙基三甲氧基硅烷、氨乙基氨丙基甲基二甲氧基硅烷。
本发明所述的磁性荧光双功能纳米材料的制备,步骤(a)中氨基化修饰磁性纳米颗粒过程是:将磁性纳米颗粒溶于无水乙醇,加入氨基化硅烷偶联剂,恒温水浴振荡器中振荡5-12 h,磁铁收集反应产物,用蒸馏水和无水乙醇交替洗涤反应产物,即得氨基化修饰磁性纳米颗粒,其中无水乙醇与氨基化硅烷偶联剂的体积比为200:1-50:1。
本发明所述的磁性荧光双功能纳米材料的制备,步骤(a)所述的弱酸溶液包括蚁酸、冰醋酸、酒石酸、柠檬酸。
本发明所述的磁性荧光双功能纳米材料的制备,步骤(a)所述醛类交联剂包括甲醛、乙二醛、戊二醛,浓度为4%-15%。
本发明所述的磁性荧光双功能纳米材料的制备,步骤(b)中聚阴离子型高分子有机物包括多聚磷酸钠、羧甲基纤维素钠、纤维素硫酸钠、纤维素羧酸钠、羧酸纤维素、羧甲基纤维素钾、羧甲基纤维素钠钾、纳米纤维素中的一种。
本发明所述的磁性荧光复合纳米微球,步骤(b)中壳聚糖修饰的磁性纳米复合物与量子点的摩尔比为1:1-1:30。
本发明所述的荧光探针缓冲溶液体系包括磷酸二氢钾-磷酸氢二钠(PBS)、硼酸-硼砂、甘氨酸-氢氧化钠、三羟甲基氨基甲烷盐酸盐(Tris-HCl)或醋酸-醋酸钠。
本发明所述的磁性纳米颗粒表面含有羟基、氨基、羧基中的至少一种。
本发明所述的量子点表面含有巯基、羧基、氨基中的至少一种; 半导体量子点合成中所使用的亲水基团配体包括3-巯基丙酸、巯基乙酸、L-半胱氨酸、2-巯基丙酸、巯基丁酸、巯基戊酸、巯基己酸、巯基丁二酸、巯基乙醇、巯基丙醇、巯基乙胺。
本发明的有益效果
(1)本发明通过离子交联法,将壳聚糖修饰的磁性纳米粒子与水溶性量子点连接起来,所采用的制备方法过程简单,容易操作,可以方便的应用于其它种类的磁性荧光复合纳米球的制备。
(2)本发明中由于壳聚糖对磁性微粒的修饰作用,有效避免了磁性材料的泄漏及对量子点的荧光淬灭作用;终产物的荧光性能可以通过调控聚阴离子型高分子有机物中水溶性量子点的浓度、交联次数等,制得不同发光性能的磁性荧光复合纳米颗粒,可以用来进行生物体定向药物运输和生物体荧光成像。
附图说明
图1 磁性荧光复合纳米微球的TEM照片
图2 磁性荧光复合纳米微球的荧光光谱和吸收光谱
图3不同摩尔比制备的磁性荧光复合纳米微球的荧光光谱
图4 CdTeZnS-Fe2O3磁性荧光复合纳米微球的荧光光谱
图5磁性荧光复合纳米微球的数码照片
图6磁性荧光复合纳米微球的磁滞回线。
具体实施方式
下面通过具体实施例说明本发明的技术方案,但是本发明的技术方案不以具体实施例为限。
实施例1:
1.1采用水相法制备ZnSe量子点。在氮气保护下,将0.01g NaBH4与0.0061g Se粉溶于2 mL蒸馏水中,加热至40℃,完全溶解后得到NaHSe溶液;取0.0439 g Zn(Ac)2溶入20 mL蒸馏水中,待其完全溶解后加入还原型谷胱甘肽0.0737g,用1mol/L的NaOH溶液调节pH=11.5,得到Zn的前驱体溶液;将Zn的前驱体转入三口瓶中,在氮气保护下迅速注入NaHSe溶液,油浴100℃回流,磁力搅拌1h后取出放入冰箱中快速冷却至室温,得到无色透明溶液,即为制备好的ZnSe QDs溶液。
1.2 采用水热法制备Fe3O4纳米颗粒。称取3 g FeCl3溶于80 mL乙二醇中搅拌超声溶解,加入分子量为2000的聚乙二醇2 g,醋酸钠7 g,搅拌超声使之溶解,将前驱体溶液转入水热反应釜中,在200℃反应5 h,反应完成后将所得溶液用水与无水乙醇交替洗涤,经真空干燥,得到干燥的Fe3O4磁性纳米微粒。
1.3采用化学共价交联法制备壳聚糖修饰的磁性纳米复合物(CMCH-MNPs)。 ① 称取0.5g步骤1.2中水热法制备的Fe3O4磁性纳米颗粒溶于100 mL无水乙醇中,加入0.5 mL三甲氧基胺丙基硅烷(APS)进行氨基化修饰,得到氨基化磁性纳米颗粒;② 将壳聚糖溶解在体积分数为3%的醋酸溶液中,配成0.002 g/mL的壳聚糖凝胶溶液;③ 将①和②两溶液混合,加入浓度为10%的戊二醛100 μL,在25℃的恒温水浴振荡器中振荡10 h,磁铁收集反应产物,用蒸馏水和无水乙醇交替清洗反应产物,得到壳聚糖修饰的磁性纳米复合物;
1.4 采用离子交联法制备磁性荧光双功能纳米材料。取1.1制备的浓缩的水相ZnSe量子点,异丙醇分离提纯后溶于5mL蒸馏水中,并加入多聚磷酸钠,其中多聚磷酸钠的浓度为0.001g/mL,ZnSe量子点浓度为0.1 mol/L得到反应溶液A;取0.01g步骤1.3中制备的壳聚糖修饰的磁性纳米复合物溶于15 mL蒸馏水中,超声30 min,使磁性纳米微粒分散均匀得到反应溶液B;将A溶液逐滴加入B溶液中,在25℃的恒温水浴振荡器中振荡10 h,磁铁收集反应产物,用蒸馏水清洗反应产物,即得磁性荧光双功能纳米材料。图1为制备的磁性荧光复合纳米微球的TEM照片。
1.5取100μL制备的磁性荧光双功能纳米颗粒,其中复合纳米颗粒的浓度为2×10-4 mol/L,加入1.8 mL pH=7.4,浓度为0.01 mol/L 的PBS缓冲溶液中,同时加入100 μL浓度为0~2×10-5 mol/L的Cu2+金属离子,制得用于检测痕量铜离子的荧光探针。
实施例2:
2.1 ZnSeZnS量子点溶液的制备。首先采用化学共沉淀法制备ZnSe量子点,制备方法如上述实施例1中所述。取制备好的ZnSe量子点15 mL,其中ZnSe量子点的浓度为2.7×10-3 mol/L,加入0.0138 g Zn(Ac)2、0.0277 g还原性谷胱甘肽和0.01 g硫脲,用配置好的浓度为1 mol/L NaOH溶液调节pH值为10.5,在磁力搅拌下,油浴100℃回流,磁力搅拌反应2 h后放入冰箱快速冷却至室温,得到淡黄色水溶性高发光效率的ZnSeZnS量子点。
2.2采用水热法制备Fe3O4纳米颗粒。取2.78 g FeSO4·7H2O、4.32 g FeCl3·6H2O溶于30 mL蒸馏水中,磁力搅拌溶解后,再加入30 mL乙二醇,搅拌均匀后在氮气保护下,加入三口瓶中,用配置好的浓度为2 mol/L的NaOH溶液调节pH至9-11,加入表面活性剂聚乙烯吡咯烷酮0.15 g,充分搅拌后反应30min,制得Fe3O4磁性纳米微粒的前驱体。将Fe3O4磁性纳米微粒的前驱体转入水热反应釜中,在160℃下反应6h。反应完成后将所得溶液用水与无水乙醇交替洗涤,经真空干燥,得到干燥的Fe3O4磁性纳米微粒。
2.3采用化学共价交联法制备壳聚糖修饰的磁性纳米复合物(CMCH-MNPs)。① 称取0.5g步骤2.2中水热法制备的Fe3O4磁性纳米颗粒溶于100 mL无水乙醇中,加入1 mL 3-氨丙基三乙氧基硅烷(APTES)进行氨基化修饰,得到氨基化磁性纳米颗粒;② 将壳聚糖溶解在体积分数为3%的醋酸溶液中,配成0.005 g/mL的壳聚糖凝胶溶液;③ 将①和②两溶液混合,加入浓度为8%的乙二醛100 μL,在25℃的恒温水浴振荡器中振荡10 h,磁铁收集反应产物,用蒸馏水和无水乙醇交替清洗反应产物,得到壳聚糖修饰的磁性纳米复合物;
2.4 采用离子交联法制备磁性荧光双功能纳米材料。取2.1制备的浓缩的水相ZnSeZnS量子点,异丙醇分离提纯后溶于5mL蒸馏水中,并加入羧甲基纤维素钠,其中羧甲基纤维素钠的浓度为0.003g/mL,ZnSe量子点浓度为0.3 mol/L得到反应溶液A;取0.015g步骤2.3中制备的壳聚糖修饰的磁性纳米复合物溶于15 mL蒸馏水中,超声30 min,使磁性纳米微粒分散均匀得到反应溶液B;将A溶液逐滴加入B溶液中,在25℃的恒温水浴振荡器中振荡12 h,磁铁收集反应产物,用蒸馏水清洗反应产物,即得磁性荧光双功能纳米材料。图2 为制备的磁性荧光复合纳米微球的荧光光谱和吸收光谱。
2.5 取100μL制备的磁性荧光双功能纳米颗粒,其中复合纳米颗粒的浓度为5×10-4 mol/L,加入1.8 mL pH=7.4,浓度为0.01 mol/L 的硼酸-硼砂缓冲溶液中,同时加入100 μL浓度为0~5×10-5 mol/L的Hg2+金属离子,制得用于检测痕量汞离子的荧光探针。
实施例3:
3.1水相制备CdTe量子点。在氮气保护下,将0.0945g NaBH4与0.0063g Te粉溶于5 mL蒸馏水中,加热至40℃,完全溶解后得到NaHTe溶液;取0.293 g Cd(Ac)2溶入100 mL蒸馏水中,待其完全溶解后加入2.0 mmol,用1mol/L的NaOH溶液调节pH=11,得到Cd的前驱体溶液;将Cd的前驱体转入三口瓶中,在氮气保护下迅速注入NaHTe溶液,油浴100℃回流,磁力搅拌4h后取出放入冰箱中快速冷却至室温,得到无色透明溶液,即为制备好的CdTe QDs溶液。
3.2 磁性纳米颗粒的制备。采用专利公开号为CN101597495A的方法制备Fe3O4/CoO核壳结构磁性纳米颗粒。
3.3采用化学共价交联法制备壳聚糖修饰的磁性纳米复合物(CMCH-MNPs)。 ① 称取0.8 g步骤3.2中制备的Fe3O4/CoO核壳结构磁性纳米颗粒溶于100 mL无水乙醇中,加入1.5 mL三乙氧基胺丙基硅烷进行氨基化修饰,得到氨基化磁性纳米颗粒;② 将壳聚糖溶解在体积分数为4%的蚁酸溶液中,配成0.007 g/mL的壳聚糖凝胶溶液;③ 将①和②两溶液混合,加入浓度为8%的乙二醛100 μL,在25℃的恒温水浴振荡器中振荡14 h,磁铁收集反应产物,用蒸馏水和无水乙醇交替清洗反应产物,得到壳聚糖修饰的磁性纳米复合物;
3.4 采用离子交联法制备磁性荧光双功能纳米材料。取3.1制备的浓缩的水相CdTe量子点,异丙醇分离提纯后溶于5mL蒸馏水中,并加入羧甲基纤维素钠,其中羧甲基纤维素钠的浓度为0.006 g/mL,CdTe量子点浓度为0.6 mol/L得到反应溶液A;取0.02 g步骤3.3中制备的壳聚糖修饰的磁性纳米复合物溶于15 mL蒸馏水中,超声30 min,使磁性纳米微粒分散均匀得到反应溶液B;将A溶液逐滴加入B溶液中,在25℃的恒温水浴振荡器中振荡16 h,磁铁收集反应产物,用蒸馏水清洗反应产物,即得磁性荧光双功能纳米材料。图3为不同摩尔比制备的磁性荧光复合纳米微球的荧光光谱。
3.5取100μL制备的磁性荧光复合纳米晶,其中复合纳米晶的浓度为8×10-4 mol/L加入1.8 mL pH=7.4,浓度为0.01 mol/L 的甘氨酸-氢氧化钠缓冲溶液中,同时加入100μL浓度为0~1×10-4 mol/L的Ag+金属离子,制得用于检测痕量银离子的荧光探针。
实施例4:
4.1采用水相法制备CdTeZnS量子点. 首先采用化学共沉淀法制备CdTe量子点,制备方法如上述实施例3中所述,不同点是反应时间为2h。取制备好的CdTe量子点溶在30 mL蒸馏水中,其中CdTe量子点的浓度为1.67×10-3 mol/L,加入0.0352 g Zn(Ac)2、0.0984 g还原性谷胱甘肽,用配置好的浓度为1 mol/L NaOH溶液调节pH值为8,在磁力搅拌下,油浴100℃回流,磁力搅拌反应2 h后放入冰箱快速冷却至室温,得到水溶性高发光效率的CdTeZnS量子点。
4.2 磁性纳米颗粒的制备。采用专利公开号为CN 101928043 A的方法制备α-Fe2O3磁性纳米颗粒。
4.3采用化学共价交联法制备壳聚糖修饰的磁性纳米复合物(CMCH-MNPs)。 ① 称取0.8 g步骤4.2中制备的α-Fe2O3磁性纳米颗粒溶于100 mL无水乙醇中,加入2 mL氨丙基三甲氧基硅烷进行氨基化修饰,得到氨基化磁性纳米颗粒;② 将壳聚糖溶解在体积分数为4%的冰醋酸溶液中,配成0.009 g/mL的壳聚糖凝胶溶液;③ 将①和②两溶液混合,加入浓度为8%的乙二醛100 μL,在25℃的恒温水浴振荡器中振荡16 h,磁铁收集反应产物,用蒸馏水和无水乙醇交替清洗反应产物,得到壳聚糖修饰的磁性纳米复合物;
4.4 采用离子交联法制备磁性荧光双功能纳米材料。取4.1制备的浓缩的水相CdTeZnS量子点,异丙醇分离提纯后溶于5mL蒸馏水中,并加入羧甲基纤维素钠,其中羧甲基纤维素钠的浓度为0.01 g/mL,CdTe量子点浓度为1.0 mol/L得到反应溶液A;取0.025 g步骤4.3中制备的壳聚糖修饰的磁性纳米复合物溶于15 mL蒸馏水中,超声30 min,使磁性纳米微粒分散均匀得到反应溶液B;将A溶液逐滴加入B溶液中,在25℃的恒温水浴振荡器中振荡14 h,磁铁收集反应产物,用蒸馏水清洗反应产物,即得磁性荧光双功能纳米材料。图4 为制备的CdTeZnS-Fe2O3磁性荧光复合纳米微球的荧光光谱;图5磁性荧光复合纳米微球的数码照片。
4.5取100μL制备的磁性荧光复合纳米晶,其中复合纳米晶的浓度为1×10-3mol/L,加入1.8 mL pH=7.4,浓度为0.01 mol/L 的三羟甲基氨基甲烷盐酸盐(Tris-HCl)缓冲溶液中,同时加入100μL浓度为0~2×10-4 mol/L的Pb2+金属离子,制得用于检测痕量铅离子的荧光探针。
实施例5:
5.1采用水相法制备CdSe量子点. 在氮气保护下,将0.0106 g NaBH4与0.0063 g Se粉溶于2 mL蒸馏水中,加热至40℃,完全溶解后得到NaHSe溶液;取0.0533 g Cd(Ac)2溶入20 mL蒸馏水中,待其完全溶解后加入1.0 mmol,用1mol/L的NaOH溶液调节pH=11.5,得到Cd的前驱体溶液;将Cd的前驱体转入三口瓶中,在氮气保护下迅速注入NaHSe溶液,油浴100℃回流,磁力搅拌1h后取出放入冰箱中快速冷却至室温,得到无色透明溶液,即为制备好的CdSe QDs溶液。
5.2 磁性纳米颗粒的制备。取1.39 g FeSO4·7H2O、2.16 g FeCl3·6H2O溶于50 mL蒸馏水中,磁力搅拌溶解后,在氮气保护下,加入三口瓶中,水浴加热至80℃,机械搅拌下,加入表面活性剂聚乙烯吡咯烷酮0.1 g,用配置好的浓度为15%的氨水溶液调节pH至9-11,充分搅拌后反应60min,制得Fe3O4磁性纳米微粒。反应完成后将所得溶液用水与无水乙醇交替洗涤,经真空干燥,得到干燥的Fe3O4磁性纳米微粒。
5.3采用化学共价交联法制备壳聚糖修饰的磁性纳米复合物(CMCH-MNPs)。 ① 称取0.8 g步骤5.2中制备的Fe3O4磁性纳米颗粒溶于100 mL无水乙醇中,加入1.8 mL 2-氨乙基-氨丙基三甲氧基硅烷进行氨基化修饰,得到氨基化磁性纳米颗粒;② 将壳聚糖溶解在体积分数为4%的冰醋酸溶液中,配成0.01 g/mL的壳聚糖凝胶溶液;③ 将①和②两溶液混合,加入浓度为10%的戊二醛100 μL,在25℃的恒温水浴振荡器中振荡14 h,磁铁收集反应产物,用蒸馏水和无水乙醇交替清洗反应产物,得到壳聚糖修饰的磁性纳米复合物;
5.4 采用离子交联法制备磁性荧光双功能纳米材料。取5.1制备的浓缩的水相CdSe量子点,异丙醇分离提纯后溶于5mL蒸馏水中,并加入羧酸纤维素,其中羧酸纤维素的浓度为0.015 g/mL,CdSe量子点浓度为2.0 mol/L得到反应溶液A;取0.03 g步骤5.3中制备的壳聚糖修饰的磁性纳米复合物溶于15 mL蒸馏水中,超声30 min,使磁性纳米微粒分散均匀得到反应溶液B;将A溶液逐滴加入B溶液中,在25℃的恒温水浴振荡器中振荡16 h,磁铁收集反应产物,用蒸馏水清洗反应产物,即得磁性荧光双功能纳米材料。图6为磁性荧光复合纳米微球的磁滞回线。
5.5取100μL制备的磁性荧光复合纳米晶,其中复合纳米晶的浓度为2×10-3 mol/L,加入1.8 mL pH=7.4,浓度为0.01 mol/L 的三羟甲基氨基甲烷盐酸盐(Tris-HCl)缓冲溶液中,同时加入100μL浓度为0~2×10-4 mol/L的Pb2+金属离子,制得用于检测痕量铅离子的荧光探针。

Claims (10)

1.一种磁性荧光双功能纳米材料的制备,其特征在于:以壳聚糖修饰的磁性纳米粒子为核,通过离子交联法连接水溶性量子点得到,所述荧光量子点分布在磁性纳米颗粒的表面,其中磁性纳米颗粒的粒径大小在10-200 nm,量子点的粒径在1.5-10 nm。
2.根据权利要求1所述的一种磁性荧光双功能纳米材料的制备,其特征在于,所述的制备方法包括以下步骤:
(a)采用化学共价交联法制备壳聚糖修饰的磁性纳米复合物(CMCH-MNPs):① 对磁性纳米颗粒表面通过氨基化硅烷偶联剂进行氨基化修饰,得到氨基化磁性纳米颗粒;② 将壳聚糖溶解在体积分数为2%-6%的弱酸溶液中,配成0.001-0.01 g/mL的壳聚糖凝胶溶液;③ 将①和②两溶液混合,加入醛类交联剂,在24-26℃的恒温水浴振荡器中振荡10-16h,磁铁收集反应产物,用蒸馏水清洗反应产物,得到壳聚糖修饰的磁性纳米复合物;
(b)采用离子交联法制备磁性荧光双功能纳米材料:
取制备的浓缩的水相量子点溶于蒸馏水中,并加入聚阴离子型高分子有机物,其中聚阴离子型高分子有机物的浓度为0.0006-0.02 g/mL,得到反应溶液A;取0.005-0.05g步骤(a)中制备的壳聚糖修饰的磁性纳米复合物溶于蒸馏水中,超声20-60 min,使磁性纳米微粒分散均匀得到反应溶液B;将A溶液逐滴加入B溶液中,在24-26℃的恒温水浴振荡器中振荡8-16 h,磁铁收集反应产物,用蒸馏水清洗反应产物,即得磁性荧光双功能纳米材料。
3.一种高效率的离子探针,其特征是:取100μL权利要求1或2中所述的磁性荧光双功能纳米材料,其中复合纳米晶的浓度为2×10-4~2×10-3 mol/L,加入1.8 mL pH=7.4,浓度为0.01 mol/L 的缓冲溶液中,同时加入最高浓度为2×10-5~2×10-4 mol/L的铜、汞、银或铅金属离子,制得用于检测痕量金属离子的荧光探针。
4.根据权利要求1或2所述的一种磁性荧光双功能纳米材料的制备,其特征在于,所述的磁性纳米颗粒(MNPs)为超顺磁、顺磁或铁磁性的金属及金属氧化物,选自Fe3O4、Fe2O3、Fe3O4、MeFe2O4(Me=Co、Mn、Ni)、化合物钕铁硼、钐钴等、金属Fe、Co、Ni以及合金Fe2Co、Ni2Fe的金属氧化物的纳米颗粒;所述的磁性荧光复合纳米微球的粒径为10-220 nm;所述的磁性纳米颗粒的制备方法包括共沉淀法、水热法;所述磁性纳米颗粒表面含有羟基、氨基、羧基中的至少一种。
5.根据权利要求1或2所述的一种磁性荧光复合纳米微球,其特征在于,所述的量子点为表面带有亲水基团的水溶性量子点,量子点为II-VI,III-V族半导体材料,或者为II-VI和III-V族半导体材料形成的复合材料,所述量子点粒径为1.5-10 nm;优选的量子点为ZnSe、CdSe、CdTe、CdS、ZnSe/ZnS、CdS/ZnS、CdSe/ZnS、CdTe/ZnS、ZnXCd1-XSe、CdSe1-XSX、CdSe1-XTeX、CdSe/ZnSe、CdS/ZnSe、CdTe/ZnSe、CdSe/CdS、CdTe/CdS、CdS/ZnXCd1-XS、ZnSe/ZnXCd1-XS、CdSe/ZnXCd1-XS、CdTe/ZnXCd1-XS,其中0<X<1。
6.根据权利要求2所述的一种磁性荧光双功能纳米材料的制备,其特征在于,步骤(a)中氨基化硅烷偶联剂包括三甲氧基胺丙基硅烷(APS)、3-氨丙基三乙氧基硅烷(APTES)、三乙氧基胺丙基硅烷、氨丙基三甲氧基硅烷、2-氨乙基-氨丙基三甲氧基硅烷、二乙烯三氨基丙基三甲氧基硅烷、氨乙基氨丙基甲基二甲氧基硅烷。
7.根据权利要求2所述的一种磁性荧光双功能纳米材料的制备,其特征在于,步骤(a)氨基化修饰磁性纳米颗粒过程是:将磁性纳米颗粒溶于无水乙醇,加入氨基化硅烷偶联剂,恒温水浴振荡器中振荡5-12 h,磁铁收集反应产物,用蒸馏水和无水乙醇交替洗涤反应产物,即得氨基化修饰磁性纳米颗粒,其中无水乙醇与氨基化硅烷偶联剂的体积比为200:1-50:1;
步骤(a)所述的弱酸溶液包括蚁酸、冰醋酸、酒石酸、柠檬酸;步骤(a)所述醛类交联剂包括甲醛、乙二醛、戊二醛,浓度为4%-15%。
8.根据权利要求2所述的一种磁性荧光双功能纳米材料的制备,其特征在于,步骤(b)中所述聚阴离子型高分子有机物包括多聚磷酸钠、羧甲基纤维素钠、纤维素硫酸钠、纤维素羧酸钠、羧酸纤维素、羧甲基纤维素钾、羧甲基纤维素钠钾、纳米纤维素中的一种;步骤(b)中壳聚糖修饰的磁性纳米复合物与量子点的摩尔比为1:1-1:30。
9.根据权利要求3所述的荧光探针的制备方法,其特征在于:缓冲溶液体系包括磷酸二氢钾-磷酸氢二钠(PBS)、硼酸-硼砂、甘氨酸-氢氧化钠、三羟甲基氨基甲烷盐酸盐(Tris-HCl)或醋酸-醋酸钠。
10.根据权利要求5所述的水溶性量子点的制备,其特征是:所述量子点表面含有巯基、羧基、氨基中的至少一种; 半导体量子点合成中所使用的亲水基团配体包括3-巯基丙酸、巯基乙酸、L-半胱氨酸、2-巯基丙酸、巯基丁酸、巯基戊酸、巯基己酸、巯基丁二酸、巯基乙醇、巯基丙醇、巯基乙胺。
CN201510048731.8A 2014-07-02 2015-01-30 一种磁性荧光双功能纳米离子探针及其制备方法 Expired - Fee Related CN104745192B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710083648.3A CN106833650B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料
CN201510048731.8A CN104745192B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米离子探针及其制备方法
CN201710083537.2A CN106833613B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料的制备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2014103114451 2014-07-02
CN201410311445 2014-07-02
CN201510048731.8A CN104745192B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米离子探针及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201710083648.3A Division CN106833650B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料
CN201710083537.2A Division CN106833613B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料的制备

Publications (2)

Publication Number Publication Date
CN104745192A true CN104745192A (zh) 2015-07-01
CN104745192B CN104745192B (zh) 2017-03-01

Family

ID=53585461

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710083537.2A Expired - Fee Related CN106833613B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料的制备
CN201710083648.3A Expired - Fee Related CN106833650B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料
CN201510048731.8A Expired - Fee Related CN104745192B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米离子探针及其制备方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201710083537.2A Expired - Fee Related CN106833613B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料的制备
CN201710083648.3A Expired - Fee Related CN106833650B (zh) 2014-07-02 2015-01-30 一种磁性荧光双功能纳米材料

Country Status (1)

Country Link
CN (3) CN106833613B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400517A (zh) * 2015-10-30 2016-03-16 玉林师范学院 检测镉离子的双功能磁性荧光探针制备方法及其应用
CN105510287A (zh) * 2015-11-30 2016-04-20 环境保护部华南环境科学研究所 一种信号放大的高灵敏水环境中Hg2+检测方法
CN105866101A (zh) * 2016-05-23 2016-08-17 中国科学院生态环境研究中心 一种基于核酸适配体标记的重金属汞离子检测方法
CN105903978A (zh) * 2016-04-20 2016-08-31 中国科学院新疆理化技术研究所 一种硅烷稳定的荧光铜团簇的制备方法与用途
CN106243365A (zh) * 2016-07-29 2016-12-21 中国人民武装警察部队福州指挥学院 一种CNFs、CPFD纳米杂化气凝胶的制备方法及其应用
CN106645074A (zh) * 2017-03-10 2017-05-10 泉州师范学院 一种胱氨酸片中胱氨酸含量的直接荧光光谱检测方法
CN107228848A (zh) * 2017-06-16 2017-10-03 上海市第十人民医院 宽荧光光谱和mri双影像功能微球示踪间充质干细胞及应用
CN108254346A (zh) * 2018-01-19 2018-07-06 苏州大学 以dna为模板的磁性荧光共聚物纳米探针及应用
CN108690058A (zh) * 2018-06-20 2018-10-23 咸阳师范学院 一种铅离子荧光传感材料、制备方法及使用方法
CN109019662A (zh) * 2018-08-29 2018-12-18 合肥学院 一种多层状碱式碳酸锌微晶的制备方法及应用
CN109100339A (zh) * 2018-07-30 2018-12-28 四川大学 一种用于选择性检测Pb离子和Ag离子浓度的试剂盒及检测方法
CN109187447A (zh) * 2018-07-23 2019-01-11 湖北省农业科学院农业质量标准与检测技术研究所 快速检测铜离子的荧光探针及其定量分析方法
CN110376105A (zh) * 2019-07-10 2019-10-25 赛莱克斯(深圳)科技有限公司 一种用于确定临床样品中小颗粒特性和浓度的方法及装置
WO2021072637A1 (zh) * 2019-10-15 2021-04-22 诸暨易联众创企业管理服务有限公司 一种银纳米晶/半导体量子点复合纳米材料
CN113045672A (zh) * 2021-02-09 2021-06-29 甘肃省科学院传感技术研究所 一种用于检测基质金属蛋白酶-2的磁性荧光复合探针及其制备方法和应用
CN113984726A (zh) * 2021-10-20 2022-01-28 上海大学 一种氨基苯硼酸功能化磁珠/乙二醛修饰dna检测汞离子的方法
TWI795409B (zh) * 2017-06-19 2023-03-11 英商安全保護生技系統公司 三維聚合物網絡及其用途
CN116023932A (zh) * 2022-12-09 2023-04-28 山西大学 一种用于谷胱甘肽检测的荧光探针及其制备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688011B (zh) * 2017-06-28 2020-01-10 昆明理工大学 磁固相微萃取结合碳量子点荧光增敏检测牛奶中氧氟沙星方法
RU2685669C1 (ru) * 2018-08-01 2019-04-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана
CN110887962A (zh) * 2019-12-05 2020-03-17 中国人民解放军军事科学院军事医学研究院 一种双层量子点外壳结构磁性复合纳米材料的制备及免疫层析应用
TR201920231A2 (tr) * 2019-12-13 2020-06-22 Cukurova Teknoloji Gelistirme Boelgesi Yoenetici A S Sağlik alani ve üreti̇m sanayi̇si̇nde i̇laç hedefleme, enzi̇m ve i̇laç bağlanabi̇lme özelli̇ği̇ne sahi̇p çok yönlü nano bi̇yomalzeme

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608020A (zh) * 2008-06-20 2009-12-23 中国科学院理化技术研究所 用水热法制备得到的磁性Fe3O4聚合物亚微米球及用途
CN103525414A (zh) * 2013-10-21 2014-01-22 北京理工大学 碳量子点磁性荧光双功能纳米材料及其制备方法
CN103525405A (zh) * 2013-10-21 2014-01-22 北京理工大学 基于天然高分子的磁性荧光双功能纳米材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948383B (zh) * 2005-10-14 2010-08-18 中国科学院化学研究所 磁性荧光复合材料及制备方法与应用
CN100357389C (zh) * 2006-04-20 2007-12-26 上海交通大学 荧光磁性多功能纳米材料的制备方法
CN101503623B (zh) * 2009-02-27 2012-09-26 中山大学 一种磁性荧光复合纳米粒子及其制备方法与应用
CN102127586A (zh) * 2010-12-08 2011-07-20 苏州同科生物材料有限公司 一种磁性荧光双功能纳米生物探针及其制备方法
CN103571493B (zh) * 2013-08-20 2016-02-24 苏州科技学院 聚苯胺磁性微球连接荧光量子点制备磁性荧光双功能微球
CN103571494B (zh) * 2013-08-20 2016-02-24 苏州科技学院 甘露寡糖磁性微球连接荧光量子点制备磁性荧光双功能微球

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608020A (zh) * 2008-06-20 2009-12-23 中国科学院理化技术研究所 用水热法制备得到的磁性Fe3O4聚合物亚微米球及用途
CN103525414A (zh) * 2013-10-21 2014-01-22 北京理工大学 碳量子点磁性荧光双功能纳米材料及其制备方法
CN103525405A (zh) * 2013-10-21 2014-01-22 北京理工大学 基于天然高分子的磁性荧光双功能纳米材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伊希斌; 沈晓冬; 崔升; 李永梅: "Fe_3O_4/SiO_2/CMCH/CdTe荧光磁性微球的合成与表征(英文)", 《纳米技术与精密工程 》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400517A (zh) * 2015-10-30 2016-03-16 玉林师范学院 检测镉离子的双功能磁性荧光探针制备方法及其应用
CN105400517B (zh) * 2015-10-30 2018-03-13 玉林师范学院 检测镉离子的双功能磁性荧光探针制备方法及其应用
CN105510287A (zh) * 2015-11-30 2016-04-20 环境保护部华南环境科学研究所 一种信号放大的高灵敏水环境中Hg2+检测方法
CN105510287B (zh) * 2015-11-30 2019-01-29 环境保护部华南环境科学研究所 一种信号放大的高灵敏水环境中Hg2+检测方法
CN105903978B (zh) * 2016-04-20 2017-12-15 中国科学院新疆理化技术研究所 一种硅烷稳定的荧光铜团簇的制备方法与用途
CN105903978A (zh) * 2016-04-20 2016-08-31 中国科学院新疆理化技术研究所 一种硅烷稳定的荧光铜团簇的制备方法与用途
CN105866101A (zh) * 2016-05-23 2016-08-17 中国科学院生态环境研究中心 一种基于核酸适配体标记的重金属汞离子检测方法
CN106243365B (zh) * 2016-07-29 2019-04-05 中国人民武装警察部队福州指挥学院 一种CNFs、CPFD纳米杂化气凝胶的制备方法及其应用
CN106243365A (zh) * 2016-07-29 2016-12-21 中国人民武装警察部队福州指挥学院 一种CNFs、CPFD纳米杂化气凝胶的制备方法及其应用
CN106645074A (zh) * 2017-03-10 2017-05-10 泉州师范学院 一种胱氨酸片中胱氨酸含量的直接荧光光谱检测方法
CN106645074B (zh) * 2017-03-10 2020-04-14 泉州师范学院 一种胱氨酸片中胱氨酸含量的直接荧光光谱检测方法
CN107228848A (zh) * 2017-06-16 2017-10-03 上海市第十人民医院 宽荧光光谱和mri双影像功能微球示踪间充质干细胞及应用
CN107228848B (zh) * 2017-06-16 2020-09-08 上海市第十人民医院 宽荧光光谱和mri双影像功能微球示踪间充质干细胞及应用
TWI795409B (zh) * 2017-06-19 2023-03-11 英商安全保護生技系統公司 三維聚合物網絡及其用途
CN108254346A (zh) * 2018-01-19 2018-07-06 苏州大学 以dna为模板的磁性荧光共聚物纳米探针及应用
CN108690058A (zh) * 2018-06-20 2018-10-23 咸阳师范学院 一种铅离子荧光传感材料、制备方法及使用方法
CN108690058B (zh) * 2018-06-20 2020-10-27 咸阳师范学院 一种铅离子荧光传感材料、制备方法及使用方法
CN109187447A (zh) * 2018-07-23 2019-01-11 湖北省农业科学院农业质量标准与检测技术研究所 快速检测铜离子的荧光探针及其定量分析方法
CN109100339B (zh) * 2018-07-30 2020-03-10 四川大学 用于选择性检测Pb离子和Ag离子浓度的试剂盒及检测方法
CN109100339A (zh) * 2018-07-30 2018-12-28 四川大学 一种用于选择性检测Pb离子和Ag离子浓度的试剂盒及检测方法
CN109019662A (zh) * 2018-08-29 2018-12-18 合肥学院 一种多层状碱式碳酸锌微晶的制备方法及应用
CN110376105B (zh) * 2019-07-10 2022-06-03 赛莱克斯(深圳)科技有限公司 一种用于确定临床样品中小颗粒特性和浓度的方法及装置
CN110376105A (zh) * 2019-07-10 2019-10-25 赛莱克斯(深圳)科技有限公司 一种用于确定临床样品中小颗粒特性和浓度的方法及装置
WO2021072637A1 (zh) * 2019-10-15 2021-04-22 诸暨易联众创企业管理服务有限公司 一种银纳米晶/半导体量子点复合纳米材料
CN113045672A (zh) * 2021-02-09 2021-06-29 甘肃省科学院传感技术研究所 一种用于检测基质金属蛋白酶-2的磁性荧光复合探针及其制备方法和应用
CN113984726A (zh) * 2021-10-20 2022-01-28 上海大学 一种氨基苯硼酸功能化磁珠/乙二醛修饰dna检测汞离子的方法
CN113984726B (zh) * 2021-10-20 2024-02-02 上海大学 一种氨基苯硼酸功能化磁珠/乙二醛修饰dna检测汞离子的方法
CN116023932A (zh) * 2022-12-09 2023-04-28 山西大学 一种用于谷胱甘肽检测的荧光探针及其制备
CN116023932B (zh) * 2022-12-09 2024-03-12 山西大学 一种用于谷胱甘肽检测的荧光探针及其制备

Also Published As

Publication number Publication date
CN106833613B (zh) 2019-02-12
CN106833650A (zh) 2017-06-13
CN106833650B (zh) 2019-09-27
CN106833613A (zh) 2017-06-13
CN104745192B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
CN104745192A (zh) 一种磁性荧光双功能纳米离子探针及其制备方法
Goswami et al. Highly luminescent thiolated gold nanoclusters impregnated in nanogel
Zhang et al. Exploring heterostructured upconversion nanoparticles: from rational engineering to diverse applications
CN104762085B (zh) 一种磁性荧光复合纳米生物探针及其制备方法
CN100558824C (zh) 磁性/金属/荧光复合二氧化硅纳米粒子及其制备方法
Qiu et al. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification
Schärtl Current directions in core–shell nanoparticle design
CN103374352B (zh) 荧光磁性复合微球与氧化石墨烯复合材料及其制备方法
Guo et al. Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c
CN111423878B (zh) 一种荧光磁性复合纳米颗粒、其制备方法以及由该荧光磁性复合纳米颗粒制备的生物探针
CN102051177A (zh) 水溶性荧光磁性纳米微粒及其制备方法
CN109705840A (zh) 基于亲和组装的高发光量子点荧光微球的制备方法
CN107964400B (zh) 一种新型磁性荧光纳米复合材料的制备方法
CN104844839B (zh) 一种磁性荧光复合纳米颗粒的制备方法
Makhluf et al. Labeling of sperm cells via the spontaneous penetration of Eu3+ ions as nanoparticles complexed with PVA or PVP
Katwal A review: Properties and diverse applications of smart magnetic quantum dots
Khan et al. Bifunctional nanomaterials: magnetism, luminescence and multimodal biomedical applications
Liu et al. Sandwich immunoassays of multicomponent subtrace pathogenic DNA based on magnetic fluorescent encoded nanoparticles
Ma et al. A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver
CN110507829B (zh) 铁钨复合氧化物纳米晶团簇的制备方法及其应用
KR101195771B1 (ko) 초상자성 클러스터-나노입자-기공체 복합 비드 및 그 제조방법
Schneider et al. Synthesis, characterization and biological applications of water-soluble ZnO quantum dots
CN106620716B (zh) 一种兼具荧光可视、磁靶向和pH敏感的多功能复合空心微球药物载体及其制备方法
Tan et al. Surface modification: how nanoparticles assemble to molecular imaging probes
Wan et al. Facile and efficient synthesis of magnetic fluorescent nanocomposites based on carbon nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170301

Termination date: 20210130