WO2021072637A1 - 一种银纳米晶/半导体量子点复合纳米材料 - Google Patents

一种银纳米晶/半导体量子点复合纳米材料 Download PDF

Info

Publication number
WO2021072637A1
WO2021072637A1 PCT/CN2019/111259 CN2019111259W WO2021072637A1 WO 2021072637 A1 WO2021072637 A1 WO 2021072637A1 CN 2019111259 W CN2019111259 W CN 2019111259W WO 2021072637 A1 WO2021072637 A1 WO 2021072637A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
solution
quantum dot
nanocrystal
quantum dots
Prior art date
Application number
PCT/CN2019/111259
Other languages
English (en)
French (fr)
Inventor
何洪波
Original Assignee
诸暨易联众创企业管理服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诸暨易联众创企业管理服务有限公司 filed Critical 诸暨易联众创企业管理服务有限公司
Priority to PCT/CN2019/111259 priority Critical patent/WO2021072637A1/zh
Publication of WO2021072637A1 publication Critical patent/WO2021072637A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the invention belongs to the technical field of metal nanomaterials, and specifically relates to a silver nanocrystal/semiconductor quantum dot composite nanomaterial and a preparation method thereof.
  • nano-luminescent materials using metal nanocrystals and semiconductor quantum dots as activating ions have attracted the attention of many domestic and foreign scholars due to their superior optical properties and potential wide-ranging applications in the fields of microelectronics, chemical engineering, and bioengineering. . Studies have found that through proper material combination, the optical, electrical, and magnetic properties of nanomaterials can be greatly improved.
  • quantum dots Due to the quantum size effect, the optical properties of semiconductor quantum dots are completely different from those of normal-sized semiconductors, resulting in a series of interesting phenomena, such as size-dependent photoluminescence and Coulomb blockade, and the influence of discrete energy levels in these structures.
  • photoluminescence is derived from the radiation recombination of excitons (ie electron-hole recombination), but other non-radiative recombination will reduce the efficiency of radiation recombination.
  • the photoluminescence process of quantum dots depends on the local density of states, and the radiative recombination process in the microcavity is also limited to the open space.
  • the purpose of the present invention is to provide a silver nanocrystal/semiconductor quantum dot composite nano material and a preparation method thereof.
  • the present invention proposes a silver nanocrystal/semiconductor quantum dot composite nano material, which includes silver nanocrystals and Cd/S quantum dots, and the silver nanocrystals and Cd/S quantum dots are combined by electrostatic interaction.
  • the diameter of the silver nanocrystal is 30-50 nanometers
  • the diameter of the Cd/S quantum dots is 12-16 nanometers.
  • the silver nanocrystal/semiconductor quantum dot composite nanomaterial is formed by effectively combining water-soluble silver nanocrystals and oil-soluble quantum dots prepared under normal temperature and pressure.
  • the present invention also proposes a preparation method of silver nanocrystal/semiconductor quantum dot composite nanomaterial, which includes the following steps:
  • step (3) Take a certain amount of silver chloride solution and add it to the mixed solution obtained in step (2), stir evenly, seal the beaker with tin foil, and stir magnetically in the dark to obtain a silver nanocrystal dark brown solution;
  • the dosage ratio of the silver nanocrystals and the Cd/S quantum dots is 2:9-1:2.
  • the water-soluble silver nanocrystals prepared under normal temperature and pressure are effectively combined with oil-soluble quantum dots.
  • the preparation method of the present invention includes the preparation steps of Ag nanocrystals and the combining steps of water-soluble Ag nanocrystals and oil-soluble quantum dots. Compared with the prior art, the present invention is carried out under normal temperature and normal pressure, the preparation method is simple and feasible, the experiment cost is low, and the prepared composite nano material has good stability.
  • the composite material of Ag nanocrystals and quantum dots proposed by the present invention becomes an ideal material for studying the interaction between surface plasmon resonance and quantum dots at different wavelengths.
  • Ag nanocrystals can control the radiation lifetime of semiconductor quantum dots and change their fluorescence intensity.
  • nanomaterials combined with silver nanocrystals and oil-soluble quantum dots have the advantages of low toxicity and stability, and can maintain excellent optical properties at room temperature and pressure.
  • the method of directly preparing silver nanocrystals in an aqueous solution has low preparation cost, simple and easy operation, and good material stability.
  • the Ag-Cd/S composite nano material particles prepared by the method of the invention have uniform morphology, good dispersion and high luminous efficiency.
  • the combination of silver nanocrystals and oil-soluble quantum dots has excellent optical properties and can be widely used in electronics, chemical, biological engineering and other fields.
  • the preparation method of the invention is carried out under normal temperature and pressure, has simple operation, easy control, low preparation cost, and is suitable for wide application.
  • the preparation method of the silver nanocrystal/semiconductor quantum dot composite nanomaterial of the present invention includes the following steps:
  • Example 1 Preparation of silver nanocrystal/semiconductor quantum dot composite nanomaterial

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本发明公开了一种银纳米晶/半导体量子点复合纳米材料,其包括银纳米晶和CdS量子点,所述银纳米晶和CdS量子点之间由静电作用结合而成,其颗粒形貌均一,分散性良好,发光效率高。本发明还公开了银纳米晶/半导体量子点复合纳米材料的制备方法,该方法可在常温常压下进行,简单易行,成本低,适于广泛应用。

Description

一种银纳米晶/半导体量子点复合纳米材料 技术领域
本发明属于金属纳米材料技术领域,具体涉及一种银纳米晶/半导体量子点复合纳米材料及其制备方法。
技术背景
近几年来,以金属纳米晶、半导体量子点为激活离子的纳米发光材料,由于其优越的光学特性,在微电子、化工、生物工程等领域潜在的广泛应用,开始受到许多国内外学者的关注。研究发现,通过适当的材料结合,能够很大程度上提高纳米材料的光、电、磁等性能。
由于量子尺寸效应,半导体量子点的光学特性与正常尺寸的半导体完全不同,因此而产生了一系列有趣的现象,如尺寸相关的光致发光和库仑阻塞以及这些结构中离散能级的影响。在量子点中,光致发光源于激子的辐射复合(即电子-空穴复合),但其他非辐射复合会降低辐射复合的效率。量子点的光致发光过程依赖于局部态密度,微腔中辐射复合过程也与开放空间有限制区别。
发明内容
本发明的目的在于提供一种银纳米晶/半导体量子点复合纳米材料及其制备方法。
本发明提出的一种银纳米晶/半导体量子点复合纳米材料,其包括银纳米晶和Cd/S量子点,所述银纳米晶和Cd/S量子点之间由静电作用结合而成。其中,所述银纳米晶的直径为30-50纳米,所述Cd/S量子点的直径为12-16纳米。所述银纳米晶/半导体量子点复合纳米材料是通过在常温常压下制备的水溶性银纳米晶与油溶性量子点有效结合在一起而形成的。
本发明还提出了一种银纳米晶/半导体量子点复合纳米材料的制 备方法,包括以下步骤:
(1)常温常压下,在烧杯中加入去离子水和聚乙烯吡咯烷酮,待完全溶解后,依次加入硝酸银溶液、氯化钠溶液;用锡箔纸将烧杯密封,在黑暗中磁性搅拌,得到了氯化银溶液;
(2)分别配制抗坏血酸溶液、氢氧化钠溶液,混合后搅拌均匀,得到混合溶液。
(3)取一定量的氯化银溶液加入至步骤(2)中得到的混合溶液中,搅拌均匀后用锡箔纸将烧杯密封,在黑暗中磁性搅拌,得到银纳米晶黑褐色溶液;
(4)取银纳米晶溶液,经离心、清洗、干燥后得到银纳米晶;
(5)将制备得到的银纳米晶完全溶解在甲苯中,加入Cd/S量子点甲苯溶液,经超声离心清洗,真空烘干后得到产物银纳米晶/半导体量子点复合纳米材料。
本发明制备方法中,所述银纳米晶与所述Cd/S量子点的用量比例为2:9-1:2。
本发明制备方法中,把常温常压下制备的水溶性银纳米晶与油溶性的量子点有效结合。
本发明制备方法包括了Ag纳米晶的制备步骤、以及水溶性Ag纳米晶与油溶性量子点的结合步骤。与现有技术相比,本发明在常温常压下进行,制取方法简单易行,实验成本低,而且制备的复合纳米材料稳定性好。
本发明提出的Ag纳米晶和量子点的复合材料成为研究在不同波长表面等离子体激元共振和量子点之间相互作用的理想材料。Ag纳米晶能调控半导体量子点的辐射寿命,改变其荧光强度。与传统金属量子点结合材料相比,银纳米晶与油溶性量子点结合的纳米材料具有 低毒、稳定的优点,能够在常温常压下保持优秀的光学特性。直接在水溶液中制备银纳米晶的方法制备成本低,操作简单易行,材料稳定性好。本发明方法制备的Ag-Cd/S复合纳米材料颗粒形貌均一,分散性良好,发光效率高。银纳米晶与油溶性量子点结合后光学性能优异,能广泛应用于电子、化工、生物工程等领域。本发明制备方法在常温常压下进行,操作简单,易于控制,制备成本低,适于广泛应用。
具体实施方式
结合以下具体实施例,对本发明作进一步的详细说明,本发明的保护内容不局限于以下实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
具体实施中,本发明银纳米晶/半导体量子点复合纳米材料的制备方法包括如下步骤:
(1)常温常压下,在500毫升的烧杯中依次加入200毫升去离子水和0.85克聚乙烯吡咯烷酮,完全溶解后在溶液中依次添加0.85克的硝酸银(AgNO3),5.0摩尔每升的氯化钠(NaCl)溶液2毫升;然后在溶液中放置一个磁性棒,用锡箔纸将烧杯密封,在黑暗中磁性搅拌15分钟,得到了白色AgCl溶液。
(2)分别配制0.05摩尔每升的抗坏血酸(C6H8O6)溶液200毫升,以及0.5摩尔每升的氢氧化钠(NaOH)溶液22毫升,将它们混合后搅拌均匀,得到混合溶液。
(3)用量筒量取25毫升的AgCl溶液,加入上述混合溶液,搅拌均匀后用锡箔纸将烧杯密封,在黑暗中磁性搅拌2小时,得到黑褐色 溶液,即Ag纳米晶溶液;
(4)取一定量的Ag纳米晶溶液,在转速为每分钟7000转的离心机中离心15分钟,然后用去离子水、丙酮对产物清洗、离心多次后在空气中干燥后得到的产物即银纳米晶;
(5)将前述得到的银纳米晶溶解在一定量(例如2毫升)的甲苯中,超声30分钟以保证银纳米颗粒完全溶解,加入0.35摩尔每升的Cd/S量子点0.5毫升,超声2小时后离心清洗,真空烘干后即得到银纳米晶/半导体量子点复合纳米材料。
实施例1:银纳米晶/半导体量子点复合纳米材料的制备
(1)常温常压下,在500毫升的烧杯中依次加入200毫升去离子水(H2O)和0.85克聚乙烯吡咯烷酮,完全溶解后在溶液中依次添加0.85克的硝酸银(AgNO3),5.0摩尔每升的氯化钠(NaCl)溶液2毫升;然后在溶液中放置一个磁性棒,用锡箔纸将烧杯密封,在黑暗中磁性搅拌15分钟,得到了白色溶液AgCl溶液。
(2)分别配制0.05摩尔每升的抗坏血酸(C6H8O6)溶液200毫升,以及0.5摩尔每升的氢氧化钠(NaOH)溶液22毫升,将它们混合后搅拌均匀,得到混合溶液。
(3)用量筒量取25毫升的AgCl溶液,加入上述混合溶液,搅拌均匀后用锡箔纸将烧杯密封,在黑暗中磁性搅拌2小时,得到黑褐色溶液,即Ag纳米晶溶液;
(4)取60毫升的Ag纳米晶溶液,在转速为每分钟7000转的离心机中离心15分钟,然后用去离子水、丙酮对产物清洗、离心多次后在空气干燥后得到产物即银纳米晶;
(5)将前述得到的银纳米晶溶解在1.5毫升的甲苯中,超声30分钟以保证银纳米颗粒完全溶解,加入0.35摩尔每升的Cd/S量子点 0.5毫升,超声2小时后离心清洗,真空烘干后即得到银纳米晶/半导体量子点复合纳米材料。
实施例2:银纳米晶/半导体量子点复合纳米材料的制备
(1)常温常压下,在500毫升的烧杯中依次加入200毫升去离子水(H2O)和0.85克聚乙烯吡咯烷酮,完全溶解后在溶液中依次添加0.85克的硝酸银(AgNO3),5.0摩尔每升的氯化钠(NaCl)溶液2毫升;然后在溶液中放置一个磁性棒,用锡箔纸将烧杯密封,在黑暗中磁性搅拌15分钟,得到了白色溶液AgCl溶液。
(2)分别配制0.05摩尔每升的抗坏血酸(C6H8O6)溶液200毫升,以及0.5摩尔每升的氢氧化钠(NaOH)溶液22毫升,将它们混合后搅拌均匀,得到混合溶液。
(3)用量筒量取25毫升的AgCl溶液,加入上述混合溶液,搅拌均匀后用锡箔纸将烧杯密封,在黑暗中磁性搅拌2小时,得到黑褐色溶液,即Ag纳米晶溶液;
(4)取100毫升的Ag纳米晶溶液,在转速为每分钟7000转的离心机中离心15分钟,然后用去离子水、丙酮对产物清洗、离心多次后在空气干燥后得到产物即银纳米晶;
(5)将前述得到的银纳米晶溶解在2毫升的甲苯中,超声30分钟以保证银纳米颗粒完全溶解,加入0.35摩尔每升的Cd/S量子点0.5毫升,超声2小时后离心清洗,真空烘干后即得到Ag/量子点复合纳米材料。

Claims (3)

  1. 一种银纳米晶/半导体量子点复合纳米材料的制备方法,其特征在于,包括以下步骤:
    (1)常温常压下,在烧杯中加入去离子水和聚乙烯吡咯烷酮,待完全溶解后,依次加入硝酸银溶液、氯化钠溶液;用锡箔纸将烧杯密封,在黑暗中磁性搅拌,得到了氯化银溶液;
    (2)分别配制抗坏血酸溶液、氢氧化钠溶液,混合后搅拌均匀,得到混合溶液。
    (3)将步骤(1)得到的溶液I加入至步骤(2)得到的溶液II中,搅拌均匀后用锡箔纸将烧杯密封,在黑暗中磁性搅拌,得到银纳米晶黑褐色溶液;
    (4)取步骤(3)得到的溶液III,经离心、清洗、干燥后得到银纳米晶;
    (5)将步骤(4)制备得到的银纳米晶完全溶解在甲苯中,加入CdS量子点,经超声离心清洗,真空烘干后得到银纳米晶/半导体量子点复合纳米材料;
    所述银纳米晶/半导体量子点复合纳米材料,其包括银纳米晶和CdS量子点,所述银纳米晶和CdS量子点之间由静电作用结合而成。
  2. 如权利要求1所述的制备方法,其特征在于,所述银纳米晶与所述CdS量子点的用量比例为2:9-1:2。
  3. 如权利要求1所述的制备方法,其特征在于,所述银纳米晶/半导体量子点复合纳米材料中,所述银纳米晶的直径为30-50纳米,所述CdS量子点的直径为12-16纳米。
PCT/CN2019/111259 2019-10-15 2019-10-15 一种银纳米晶/半导体量子点复合纳米材料 WO2021072637A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111259 WO2021072637A1 (zh) 2019-10-15 2019-10-15 一种银纳米晶/半导体量子点复合纳米材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111259 WO2021072637A1 (zh) 2019-10-15 2019-10-15 一种银纳米晶/半导体量子点复合纳米材料

Publications (1)

Publication Number Publication Date
WO2021072637A1 true WO2021072637A1 (zh) 2021-04-22

Family

ID=75537403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111259 WO2021072637A1 (zh) 2019-10-15 2019-10-15 一种银纳米晶/半导体量子点复合纳米材料

Country Status (1)

Country Link
WO (1) WO2021072637A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146288A (zh) * 2011-01-05 2011-08-10 中国科学院宁波材料技术与工程研究所 水溶性具有核壳结构或核冕壳结构的材料的制备方法
CN102709348A (zh) * 2012-06-08 2012-10-03 上海师范大学 一种纳米晶/量子点敏化硅基电池片及其制备方法
CN103805200A (zh) * 2014-01-26 2014-05-21 华东师范大学 银纳米晶/半导体量子点复合纳米材料及其制备方法
CN104745192A (zh) * 2014-07-02 2015-07-01 济南大学 一种磁性荧光双功能纳米离子探针及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146288A (zh) * 2011-01-05 2011-08-10 中国科学院宁波材料技术与工程研究所 水溶性具有核壳结构或核冕壳结构的材料的制备方法
CN102709348A (zh) * 2012-06-08 2012-10-03 上海师范大学 一种纳米晶/量子点敏化硅基电池片及其制备方法
CN103805200A (zh) * 2014-01-26 2014-05-21 华东师范大学 银纳米晶/半导体量子点复合纳米材料及其制备方法
CN104745192A (zh) * 2014-07-02 2015-07-01 济南大学 一种磁性荧光双功能纳米离子探针及其制备方法

Similar Documents

Publication Publication Date Title
Goswami et al. Highly luminescent thiolated gold nanoclusters impregnated in nanogel
Kalele et al. Nanoshell particles: synthesis, properties and applications
CN111569794B (zh) 一种自修复与自润滑型双功能微胶囊及其制备方法
WO2017036221A1 (zh) 银修饰的螺旋形二氧化钛纳米纤维光催化剂的制备和应用
Miao et al. Double‐Template Synthesis of CdS Nanotubes with Strong Electrogenerated Chemiluminescence
Yin et al. Preparation of a novel core–shell Ag-Graphene@ SiO2 nanocomposite for fluorescence enhancement
Shandilya et al. Metal and carbon quantum dot photocatalysts for water purification
CN110669506A (zh) 半胱胺和n-乙酰l-半胱氨酸共同保护的水溶性金纳米团簇荧光材料的制备方法
Mallakpour et al. Grafted nano-ZnO, TiO2 and CuO by biosafe coupling agents and their applications for the green polymer nanocomposites fabrication
CN106186046A (zh) 一种低成本一维氧化锌纳米粉体的制备方法
Ge et al. Fast synthesis of fluorescent SiO 2@ CdTe nanoparticles with reusability in detection of H 2 O 2
CN106966430B (zh) 一种金属钒酸盐纳米材料的制备方法
Zhang et al. Work function: a determining factor of the photodegradation rate of methyl orange via hollow octadecahedron Cu 2 O crystals
WO2021072637A1 (zh) 一种银纳米晶/半导体量子点复合纳米材料
CN109160494B (zh) 一种毛球状CdSe纳米材料的制备方法
CN105195736B (zh) 一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法
CN105181662B (zh) 一种定性检测负载在多糖微球中功能纳米颗粒分布的方法
Frayne et al. Growth and properties of CdSe nanoparticles on ellagic acid biotemplates for photodegradation applications
CN103805200B (zh) 银纳米晶/半导体量子点复合纳米材料及其制备方法
Duo et al. Novel hybrid self-assembly of an ultralarge ZnO macroflower and defect intensity-induced photocurrent and photocatalytic properties by facile hydrothermal synthesis using CO (NH2) 2–N2H4 as alkali sources
Li et al. Alpha-calcium sulfate hemihydrate used as a water-soluble template for the synthesis of ZnO hollow microspheres
CN104558602A (zh) 一步法制备聚吡咯微/纳米中空球
Azmina et al. Enhanced photocatalytic performance of silver decorated zinc oxide nanoparticles grown on silica microparticles
Zhang et al. Biogenic synthesis of photocatalytically active ZnS/ESM composites
Fan et al. Controllable synthesis of two different morphologies of Cu 2 O particles with the assistance of carbon dots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949389

Country of ref document: EP

Kind code of ref document: A1