RU2685669C1 - Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана - Google Patents

Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана Download PDF

Info

Publication number
RU2685669C1
RU2685669C1 RU2018128244A RU2018128244A RU2685669C1 RU 2685669 C1 RU2685669 C1 RU 2685669C1 RU 2018128244 A RU2018128244 A RU 2018128244A RU 2018128244 A RU2018128244 A RU 2018128244A RU 2685669 C1 RU2685669 C1 RU 2685669C1
Authority
RU
Russia
Prior art keywords
chitosan
quantum dots
solution
zinc selenide
zinc
Prior art date
Application number
RU2018128244A
Other languages
English (en)
Inventor
Сергей Александрович Безносюк
Ирина Андреевна Штоббе
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет"
Priority to RU2018128244A priority Critical patent/RU2685669C1/ru
Application granted granted Critical
Publication of RU2685669C1 publication Critical patent/RU2685669C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/04Binary compounds including binary selenium-tellurium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение относится к получению квантовых точек, используемых в качестве биологических маркеров. Способ получения коллоидных полупроводниковых квантовых точек селенида цинка в оболочке хитозана включает взаимодействие хлорида цинка с селенид-ионами в присутствии аммиака и покрывающего агента. В раствор хитозана, полученный смешением 0,5 г сухого порошка хитозана и 50 мл 2%-ной уксусной кислоты, при комнатной температуре и постоянном перемешивании вводят 8,0 мл 0,008 М водного раствора хлорида цинка. Затем добавляют 1,5 мл 0,1 М водного раствора аммиака. После этого по каплям при постоянном энергичном перемешивании в течение одного часа медленно прибавляют к полученному раствору 0,12 мл 0,25 М раствора селеносульфата натрия. Изобретение позволяет получать квантовые точки селенида цинка, покрытые хитозаном, при комнатной температуре без использования токсичных реагентов и сложного оборудования, обеспечить лучшее взаимодействие квантовых точек с биологическими объектами. 3 ил.

Description

Изобретение относится к области нанотехнологии, а именно нано-технологии интерактивного взаимодействия, датчиков или приведения в действие, например, квантовых точек в качестве био-маркеров.
Известен коллоидный способ (Аналог 1) получения квантовых точек сульфида цинка, покрытых хитозаном (F.P. Ramanery, А.Р. Mansur, H.S. Mansur One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates / Ramanery et al. Nanoscale Research Letters, 8:512 (2013)), который заключается во взаимодействии хлорида цинка с сульфидом натрия в растворе хитозана в присутствии соляной кислоты и гидроксида натрия при комнатной температуре в течение 24 часов. Раствор хитозана получали путем растворения порошка хитозана в водном растворе уксусной кислоты. Недостатками этого способа является большая продолжительность по времени и невысокий выход получаемых квантовых точек.
Известен способ синтеза (Аналог 2) квантовых точек селенида цинка (Uzma В. Memon, U. Chatterjee, M.N. Gandhi Synthesis of ZnSe quantum dots with stoichiometric ratio difference and study of its optoelectronic property /Procedia materials Science, 5 (2014), 1027-1033), заключающийся во взаимодействии безводного ацетата цинка с металлическим элементарным селеном в присутствии этиленгликоля и гидразин гидрата. Его недостатками является использование токсичных сред для проведения синтеза, высоких температур и продолжительного времени, поэтому способ неэкологичен, энергозатратен и долог по времени.
Из известных технических решений наиболее близким по назначению и технической сущности к заявленному изобретению является низкотемпературный водный способ (Прототип) получения полупроводниковых квантовых точек на основе ZnCdS, покрытых оболочкой карбоксиметилцеллюлозы (КМЦ) (Alexandra А.Р. Mansur, Fernanda G. de Car-valho, Rafael L. Mansur Carboxymethylcellulose/ZnCdS fluorescent quantum dot nanoconjugates for cancer cell bioimaging / International Journal of Biological Macromolecules, 96 (2017), 675-686). Способ заключается во взаимодействии хлорида цинка и шестиводного перхлората кадмия с девятиводным сульфидом натрия в среде водного раствора КМЦ при постоянном перемешивании в течение 10 минут при комнатной температуре. К недостаткам прототипа относятся использование в качестве покрывающего агента КМЦ, являющейся полисахаридом, довольно медленно растворяющимся в воде и обладающим невысокими защитными свойствами по отношению к кристаллическим частицам в коллоидных растворах, что препятствует простоте получения квантовых точек в полимерной оболочке, а также получению устойчивых во времени коллоидных растворов квантовых точек.
Целью настоящего изобретения является разработка технически простого, экономичного, нетоксичного, низкотемпературного, водного способа получения квантовых точек селенида цинка, покрытых оболочкой хитозана, которые возможно использовать в качестве биологических маркеров. Наличие оболочки хитозана на поверхности селенида цинка обеспечивает лучшее взаимодействие квантовых точек с биологическими объектами. В отличие от прототипа, использующего в качестве покрывающего агента КМЦ, в заявляемом изобретении применяется хитозан, обладающий лучшими защитными свойствами по отношению к коллоидным частицам, чем КМЦ, что обеспечивает лучшую стабилизацию частиц в коллоидных растворах. А также положительным отличием от прототипа является отсутствие в процессе синтеза дорогостоящего, сложного оборудования.
Сущность способа получения коллоидных квантовых точек селенида цинка в оболочке хитозана заключается во взаимодействии ионов цинка, распределенных в водном растворе хитозана, используемого в качестве покрывающего агента, в кислой среде, создаваемой раствором уксусной кислоты, с селенид-ионами, образующимися из раствора селеносульфата натрия, при комнатной температуре и постоянном перемешивании в течение одного часа.
В качестве источника ионов Se2- использовали водный раствор селеносульфата натрия, приготовленный по способу, заключающемуся в том, что 2,36 г порошка сухого элементарного селена при постоянном перемешивании и нагревании до 80°С растворяли в водном растворе натрия сернистокислого, предварительно приготовленного из 9,48 г безводного Na2SO3 и 120 мл деионизованной воды. Водный раствор селеносульфата натрия в качестве источника ионов селена был выбран из соображений наименьшей токсичности данного вещества.
В качестве источника ионов Zn2+ использовали соль хлорида цинка, как нетоксичное, хорошо растворяющееся в воде соединение цинка (II), подходящее для проведения синтеза в водной среде при комнатной температуре.
Хитозан выступал в качестве стабилизирующего агента, адсорбирующегося на поверхности коллоидных частиц.
Осуществление изобретения достигается следующим образом. В раствор хитозана, полученный смешением 0,5 г сухого порошка хитозана и 50 мл 2%-ной уксусной кислоты, при комнатной температуре и постоянном перемешивании вводят 8,0 мл 0,008 М водного раствора хлорида цинка, затем добавляют 1,5 мл 0,1 М водного раствора аммиака. После чего по каплям при постоянном энергичном перемешивании медленно прибавляют к полученному раствору 0,12 мл 0,25 М раствора селеносульфата натрия. Синтез продолжается в течение одного часа при комнатной температуре. Бесцветный раствор постепенно становится светло-оранжевым и прозрачным, что свидетельствует об образовании колло-идного раствора селенида цинка.
Масса хлорида цинка и объем приливаемого селеносульфата были найдены в результате предварительной работы по подбору оптимального соотношения содержания ионов цинка и селенид-ионов и анализа спектров поглощения получаемых образцов. Объем и концентрация аммиака были выбраны так, чтобы обеспечить щелочную реакцию среды, в которой проходит взаимодействие ионов цинка с селенид-ионами.
Синтез наночастиц селенида цинка в оболочке хитозана проходил согласно следующим химическим реакциям:
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Растворенные в воде молекулы хитозана во время синтеза осуществляют концентрирование ионов цинка: ионы металла замещают подвижные ионы водорода в NH3 + группах протонированного полимера, образуя с хитозаном комплексное соединение CHI-NH2Zn2+. Затем, после введения в раствор ионов селена, на основе хитозановой матрицы происходит зарождение центров кристаллизации и рост полупроводниковых частиц селенида цинка. В конечном итоге полимерные молекулы хитозана обволакивают образовавшиеся нанокристаллы, формируя на их поверхности естественную защитную оболочку.
Адсорбция молекул хитозана на поверхности образующихся наночастиц впоследствии обеспечивает их хорошую растворимость в водных средах, что позволяет использовать их в качестве флуорофоров внутри живых организмов.
Полученные наночастицы селенида цинка, покрытого оболочкой хитозана, исследованы на атомно-силовом микроскопе «SOLVER NEXT» для изучения морфологии и примерной оценки размеров частиц. На фиг. 1 представлено изображение поверхности осажденных на стеклянной подложке частиц селенида цинка в оболочке хитозана, полученное с помощью атомно-силового микроскопа. АСМ-изображение имеет размер 200×200 нм. На топографии АСМ-изображения высота рельефа отражается в тональности красно-оранжевого цвета: чем выше, тем светлее, поэтому положению наночастиц соответствуют светлые области на более темном фоне. Как видно из фиг 1, высота наночастиц не превышает 10 нм (на области слева резкий подъем высоты рельефа объясняется откликом прибора на внешние случайные "шумы").
Наличие на поверхности частиц адсорбированного хитозана доказывается ИК-спектром образца квантовых точек селенида цинка, покрытых хитозаном (фиг. 2), снятых на ИК-спектрометре «Инфралюм FT-801» в диапазоне от 500 до 4000 см-1. На фиг 2 показан ИК-спектр синтезированных квантовых точек селенида цинка, покрытых хитозаном. Характерные полосы поглощения в областях 3538,2 см-1 и 1653,5 см-1 относятся к колебаниям аминогруппы. При этом широкая полоса при 3538,2 см-1 является областью перекрывания колебаний NH2-группы с колебаниями свободного гидроксила и колебаниями водородных связей
Figure 00000007
. Сильная полоса в области 1157-1029,7 см-1, расщепленная на три компонента относится к валентным симметричным и валентным асимметричным колебаниям группы С-О-С. Средняя полоса в области 1653,5-1597,3 см-1, расщепленная на два компонента относится к деформационным колебаниям NH3 +-группы. Колебание в области 895,48 см-1 является деформационным колебанием C1-H в β-сахарах.
Таким образом, в результате ИК-спектроскопического исследования доказано присутствие на поверхности наночастиц селенида цинка молекул хитозана.
Спектр поглощения (фиг. 3) водного раствора квантовых точек селенида цинка, покрытых оболочкой хитозана, сняты на УФ-спектрометре Agilent Technologies Сагу 60 UV-Vis. По данному спектру определена ширина запрещенной зоны полупроводниковых квантовых точек и по формуле 7 рассчитан средний диаметр частиц.
Figure 00000008
где Eg - энергия запрещенной зоны объемного селенида цинка; Е - энергия запрещенной зоны квантовых точек селенида цинка, рассчитанная по формуле Е=hc/λ, где λ - это длина волны поглощения квантовых точек (рис. 3); h - постоянная Планка; m* - эффективная масса экситона в селениде цинка, равная 1,21⋅10-31 кг.
Максимум поглощения приходится на длину волны 345 нм, что соответствует ширине запрещенной зоны 3,5 эВ, таким образом средний диаметр квантовых точек составляет 7,3 нм.
Максимум поглощения при 345 нм соответствует ширине запрещенной зоны 3,5 эВ. Объемный материал селенида цинка поглощает при 460 нм (2,7 эВ). Таким образом, у квантовых точек селенида цинка, по сравнению с объемным образцом, наблюдается сдвиг максимума поглощения в область более коротких волн и уширение запрещенной зоны. Наблюдаемый сдвиг может быть объяснен наличием состояния сильного конфайнмента в малых по размеру частицах вещества, а это является доказательством того, что полученные наночастицы селенида цинка являются именно квантовыми точками.
Рассчитан средний объем квантовой точки V по формуле (8). Для квантовых точек ZnSe, полученных представленным способом и имеющих средний радиус r=3,65 нм, он оказался равен 2,04⋅10-25 м3.
Figure 00000009
Средняя масса одной квантовой точки, рассчитанная по формуле (9), составила 1,08⋅10-18 г.
Figure 00000010
где m - средняя масса квантовой точки, г; ρ - плотность селенида цинка, равная 5,27⋅106 г/м3; r - средний радиус квантовой точки селенида цинка, равный 3,65 нм.
Тогда число двухатомных ZnSe-единиц в одной квантовой точке среднего радиуса в 3,65 нм, согласно формуле (10), составит 4515 штук.
Figure 00000011
где N - число двухатомный ZnSe-единиц в одной квантовой точке; ρ - плотность селенида цинка, равная 5,27⋅106 г/м3; r - средний радиус квантовой точки селенида цинка, равный 3,65 нм; NA - число Авогадро, равное 6,02⋅1023 моль-1; MZnSe - молярная масса селенида цинка, равная 144 г/моль.
Таким образом, все проведенные исследования подтверждают то, что полученное вещество является селенидом цинка в оболочке хитозана, адсорбированной на его поверхности. Доказан нанометровый размер полученных частиц, их сферическая форма, а также тот факт, что эти наночастицы являются именно квантовыми точками. Показано, что даже без применения повышенных температур и агрессивных органических сред в процессе синтеза может быть получен селенид цинка нанометрового масштаба.

Claims (1)

  1. Способ получения коллоидных полупроводниковых квантовых точек селенида цинка в оболочке хитозана, основанный на взаимодействии хлорида цинка с селенид-ионами в присутствии аммиака и покрывающего агента, отличающийся тем, что в раствор хитозана, полученный смешением 0,5 г сухого порошка хитозана и 50 мл 2%-ной уксусной кислоты, при комнатной температуре и постоянном перемешивании вводят 8,0 мл 0,008 М водного раствора хлорида цинка, затем добавляют 1,5 мл 0,1 М водного раствора аммиака, после чего по каплям при постоянном энергичном перемешивании в течение одного часа медленно прибавляют к полученному раствору 0,12 мл 0,25 М раствора селеносульфата натрия.
RU2018128244A 2018-08-01 2018-08-01 Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана RU2685669C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018128244A RU2685669C1 (ru) 2018-08-01 2018-08-01 Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018128244A RU2685669C1 (ru) 2018-08-01 2018-08-01 Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана

Publications (1)

Publication Number Publication Date
RU2685669C1 true RU2685669C1 (ru) 2019-04-22

Family

ID=66314385

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018128244A RU2685669C1 (ru) 2018-08-01 2018-08-01 Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана

Country Status (1)

Country Link
RU (1) RU2685669C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661826A (zh) * 2020-06-04 2020-09-15 南京耶拿光电技术有限公司 一种高耐热硒化锌材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2381304C1 (ru) * 2008-08-21 2010-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт прикладной акустики" Способ синтеза полупроводниковых квантовых точек
US9073751B2 (en) * 2008-09-03 2015-07-07 Emory University Quantum dots, methods of making quantum dots, and methods of using quantum dots
RU2601451C1 (ru) * 2015-04-23 2016-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" Способ получения коллоидных полупроводниковых квантовых точек селенида цинка
RU2607405C2 (ru) * 2015-03-06 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Способ синтеза наночастиц полупроводников
CN106833650A (zh) * 2014-07-02 2017-06-13 济南大学 一种磁性荧光双功能纳米材料
US20180107065A1 (en) * 2015-03-27 2018-04-19 Nexdot Core-shell nanoplatelets film and display device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2381304C1 (ru) * 2008-08-21 2010-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт прикладной акустики" Способ синтеза полупроводниковых квантовых точек
US9073751B2 (en) * 2008-09-03 2015-07-07 Emory University Quantum dots, methods of making quantum dots, and methods of using quantum dots
CN106833650A (zh) * 2014-07-02 2017-06-13 济南大学 一种磁性荧光双功能纳米材料
RU2607405C2 (ru) * 2015-03-06 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Способ синтеза наночастиц полупроводников
US20180107065A1 (en) * 2015-03-27 2018-04-19 Nexdot Core-shell nanoplatelets film and display device using the same
RU2601451C1 (ru) * 2015-04-23 2016-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" Способ получения коллоидных полупроводниковых квантовых точек селенида цинка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEPPERT et al., Structural and Optical Characteristics of ZnSe Nanocrystals Synthesized in the Presence of a Polymer Capping Agent, Materials Science and Engineering, 1998, v. B 52, pp. 89-92. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661826A (zh) * 2020-06-04 2020-09-15 南京耶拿光电技术有限公司 一种高耐热硒化锌材料及其制备方法
CN111661826B (zh) * 2020-06-04 2022-05-24 南京耶拿光电技术有限公司 一种高耐热硒化锌材料及其制备方法

Similar Documents

Publication Publication Date Title
Sundarrajan et al. One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles
Kaur et al. Size tuning of MAA capped CdSe and CdSe/CdS quantum dots and their stability in different pH environments
Ma et al. Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature
EP1866381A1 (en) Surface modified nanoparticle and method of preparing same
US20110262646A1 (en) Surfactant-Assisted Inorganic Nanoparticle Deposition on a Cellulose Nanocrystals
Raleaooa et al. Analysis of the structure, particle morphology and photoluminescent properties of ZnS: Mn2+ nanoparticulate phosphors
Dris et al. A study of cadmium sulfide nanoparticles with starch as a capping agent
RU2685669C1 (ru) Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана
Oskam et al. Synthesis of ZnO and TiO 2 nanoparticles
Vanaja et al. Copper-doped zinc oxide nanoparticles for the fabrication of white LEDs
US20150311386A1 (en) Methods for Making Water Soluble Quantum Dots
Gong et al. Hydrothermal synthesis and photoluminescence properties of Cu-doped ZnSe quantum dots using glutathione as stabilizer
RU2601451C1 (ru) Способ получения коллоидных полупроводниковых квантовых точек селенида цинка
JP6146715B2 (ja) オゾンを利用する酸化亜鉛粒子の製造方法
Preda et al. Morphology-controlled synthesis of ZnO structures by a simple wet chemical method
RU2695130C1 (ru) Способ получения коллоидных квантовых точек селенида кадмия в оболочке хитозана
Wu et al. Chemical synthesis of ZnO nanocrystals
Mubeen et al. Enhancing the FRET by tuning the bandgap of acceptor ternary ZnCdS quantum dots
JPWO2011013477A1 (ja) 酸化亜鉛ロッド状結晶のツイン連結構造体、ツイン連結構造膜、及びツイン連結構造膜の製造方法
Wang et al. One-step and rapid synthesis of composition-tunable and water-soluble ZnCdS quantum dots
de Azevedo et al. Laser ablation in liquid: an unconventional, fast, clean and straightforward technique for material preparation
Moos et al. Influence of plasmon coupling on the photoluminescence of ZnS/Ag nanoparticles obtained by laser irradiation in liquid
Lesnichaya et al. Synthesis and luminescent properties of water-soluble nanobiocomposite CdSe/polysaccharide quantum dots
Srinivasan et al. Enhanced green emission from La0. 4F3: Ce0. 45, Tb0. 15/TiO2 core/shell structure
Tiwari et al. Synthesis, surface characterization and optical properties of 3-thiopropionic acid capped ZnS: Cu nanocrystals