CN104736725A - 用于检测生物组分的方法和系统 - Google Patents

用于检测生物组分的方法和系统 Download PDF

Info

Publication number
CN104736725A
CN104736725A CN201380053258.1A CN201380053258A CN104736725A CN 104736725 A CN104736725 A CN 104736725A CN 201380053258 A CN201380053258 A CN 201380053258A CN 104736725 A CN104736725 A CN 104736725A
Authority
CN
China
Prior art keywords
droplet
pcr
reagent
methods according
drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380053258.1A
Other languages
English (en)
Inventor
A·R·阿贝特
D·J·伊斯特本
A·R·夏穆比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to CN201911041486.2A priority Critical patent/CN110643681A/zh
Publication of CN104736725A publication Critical patent/CN104736725A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/159Microreactors, e.g. emulsion PCR or sequencing, droplet PCR, microcapsules, i.e. non-liquid containers with a range of different permeability's for different reaction components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/629Detection means characterised by use of a special device being a microfluidic device
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Abstract

提供了用于检测来自生物样本的组分的方法。在某些方面,所述方法可用于检测和/或定量生物样本如肿瘤细胞(例如,循环肿瘤细胞)中的特定组分。还提供了用于实施本主题方法的系统和装置。

Description

用于检测生物组分的方法和系统
相关申请的交叉引用
本申请要求2012年8月13日提交的美国临时申请号61/682,707和2013年3月14日提交的美国临时申请号61/784,754的优先权,所述申请出于所有目的以全文引用的方式并入本文中。
介绍
来自受试者的生物样本通常含有多种不同的组分。例如,受试者的血液样本可含有自由浮动的DNA和RNA、循环细胞和许多其它组分。生物样本中的这些组分的数目和多样性通常复杂化或阻止所述样本内目标特定组分的精确鉴定和/或定量,所述精确鉴定和/或定量将使得能够诊断或监测受试者中的病状,例如癌症。
例如,循环肿瘤细胞(CTC)是从进入受试者的血流中的肿瘤脱落的细胞。一旦进入血液中,这些细胞就可以在受试者的身体中循环,在受试者的身体中它们可以侵入其它组织并生长新的肿瘤。因此CTC与转移有关联,这是癌症受试者死亡的主要原因。对CTC进行计数的努力受到CTC极其难以检测的事实的阻碍:它们非常罕见,并且可能难以与健康细胞相区分。目前用于检测CTC的方法依赖于免疫测定,其中使用抗体来靶向CTC表面上的特定生物标志物。然而,这些方法在灵敏度和/或特异性方面存在限制,导致许多健康细胞被错误表征为癌性,并且许多癌细胞在分析中被遗漏。
概述
提供了用于检测来自生物样本的组分的方法。在某些方面,所述方法可用于检测和/或定量生物样本中的特定组分,如肿瘤细胞(例如,循环肿瘤细胞或CTC)。还提供了用于实施本发明的方法的系统和装置。
本公开的方法包括用于检测生物样本中的细胞,例如肿瘤细胞的方法。使用微流体学,可将生物样本的组分封装到微滴中,所述微滴是直径范围一般为0.1至1000μm的溶液的微小球体,其可用于封装细胞、多核苷酸、多肽和其它组分。封装在每个微滴中的组分可如本文更充分描述来测定。
所述方法的方面可包括将获自受试者的血液样本的细胞封装在微滴中,其中在所述微滴中存在至少一个细胞;裂解所述细胞;将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括与一种或多种寡核苷酸(例如,致癌基因)杂交的一个或多个引物;以及通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示PCR扩增产物的存在。在某些方面,裂解细胞的步骤包括将裂解剂引入所述微滴中并且在有效使细胞裂解的条件下孵育所述微滴。所述方法可包括至少部分地基于其中检测到PCR产物的微滴的数目,确定受试者的血液样本中存在的循环肿瘤细胞(CTC)的数目。在其它方面,所述方法可包括至少部分地基于其中检测到PCR产物的微滴的数目,确定来自受试者的固体组织样本中存在的肿瘤细胞的数目。
在其它方面,用于检测细胞的方法包括在其中大多数微滴含有零或一个细胞的条件下将多个细胞封装在多个微滴中,其中所述多个细胞获自受试者的血液样本;使所述多个微滴富集含有一个细胞的微滴;裂解所述细胞;将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述多个微滴中并在允许PCR扩增的条件下孵育所述多个微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种寡核苷酸(例如,致癌基因)杂交的一个或多个引物;通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在;以及至少部分地基于其中检测到所述PCR扩增产物的微滴的数目来确定受试者的血液样本中存在的细胞数目;其中一个或多个步骤是在微流体控制下进行的。在某些方面,所述细胞是肿瘤细胞,并且所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物。裂解所述细胞的步骤可包括将裂解剂引入所述微滴中并且在有效使细胞裂解的条件下孵育所述微滴。
本公开的方法还包括用于对细胞(包括肿瘤细胞)进行基因分型的方法。在某些方面,用于对细胞进行基因分型的方法包括将获自受试者的生物样本的细胞封装在微滴中,其中所述微滴中存在一个细胞;将裂解剂引入所述微滴中并且在有效使细胞裂解的条件下孵育所述微滴;将聚合酶链式反应(PCR)试剂和多个PCR引物引入所述微滴中,并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物;将多个探针引入所述微滴中,其中所述探针与一种或多种目标突变杂交并在不同波长下发荧光;以及通过探针荧光的检测来检测特定PCR扩增产物的存在或不存在,其中检测到荧光指示所述PCR扩增产物的存在;其中一个或多个步骤在微流体控制下进行。所述多个探针可包括一个或多个探针。
本公开的方法还包括用于检测癌症的方法,所述方法包括将获自受试者的生物样本的寡核苷酸封装在微滴中,其中所述微滴中存在至少一种寡核苷酸;将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;以及通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在。受试者中的癌症的检测可能基于一种或多种致癌基因的PCR扩增产物的存在。
在其它方面,本公开的方法包括将获自受试者的生物样本的寡核苷酸封装在微滴中,其中所述微滴中存在至少一种寡核苷酸;将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物;以及通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示PCR扩增产物的存在;其中一个或多个步骤在微流体控制下进行。
在实施主题方法时,可采用若干变型。例如,可采用范围广泛的不同的基于PCR的测定,例如定量PCR(qPCR)。这些测定中使用的引物的数目和性质可至少部分地基于所进行测定的类型、生物样本的性质和/或其它因素而改变。在某些方面,可加入微滴中的引物的数目可为1至100个或更多,和/或可包括用于检测约1至100种或更多不同的基因(例如,致癌基因)的引物。除了这些引物之外或代替这些引物,在实施主题方法时可采用一个或多个探针(例如,探针)。
所述微滴本身可能变化,包括尺寸、组成、内含物等。微滴一般可具有约0.001至1000皮升或更大的内部容积。此外,微滴可能被或可能未被表面活性剂和/或粒子稳定化。
将试剂加入微滴的方法可能极大地变化。试剂可在一个步骤或在多个步骤中加入,例如2个或更多的步骤、4个或更多的步骤或10个或更多的步骤。在某些方面,可使用包括小滴聚结、皮可注射(picoinjection)、多小滴聚结等技术来加入试剂,如本文将更充分描述。在某些实施方案中,通过其中注射流体本身充当电极的方法来加入试剂。所述注射流体可含有一种或多种类型的允许其原样使用的溶解电解质。在注射流体本身充当电极时,可消除出于向小滴中加入试剂的目的而对于微流体芯片中的金属电极的需要。在某些实施方案中,注射流体不充当电极,而是利用一种或多种液体电极来代替金属电极。
使用多种不同的检测组分,可采用检测PCR产物的不存在或存在的多种方式。目标检测组分包括(但不限于)荧光素和其衍生物;若丹明和其衍生物;花青和其衍生物;香豆素和其衍生物;瀑布蓝(Cascade Blue)和其衍生物;荧光黄和其衍生物;BODIPY和其衍生物等。示例性荧光团包括吲哚羰花青(C3)、吲哚二羰花青(C5)、Cy3、Cy3.5、Cy5、Cy5.5、Cy7、德克萨斯红(Texas Red)、太平洋蓝(Pacific Blue)、俄勒冈绿(Oregon Green)488、Alexa fluor-355、Alexa Fluor 488、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor-555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、JOE、丽丝胺(Lissamine)、若丹明绿(RhodamineGreen)、BODIPY、异硫氰酸荧光素(FITC)、羧基-荧光素(FAM)、藻红蛋白、若丹明、二氯若丹明(dRhodamine)、羧基四甲基若丹明(TAMRA)、羧基-X-若丹明(ROX)、LIZ、VIC、NED、PET、SYBR、PicoGreen、RiboGreen等。检测组分可包括珠粒(例如,磁性或荧光珠粒,例如Luminex珠粒)等。在某些方面,检测可包括在热循环期间将微滴保持在固定位置,以使得其可以反复成像。这样的反复成像可能涉及使用Megadroplet阵列,如本文将更充分地描述。在某些方面,检测可包括将一个或多个细胞固定和/或渗透在一个或多个微滴中。
适于本文公开的方法的受试者包括哺乳动物,例如,人。所述受试者可为表现出疾病状态的临床表现者或已被诊断患有疾病者。在某些方面,受试者可以是已被诊断患有癌症者,表现出癌症的临床表现者,或由于一种或多种因素例如家族史、环境暴露、基因突变、生活方式(例如,饮食和/或吸烟)、一种或多种其它疾病状态的存在等而判定处于发展癌症的风险中者。
本公开还提供了微流体系统和装置。在某些方面,所述微流体装置包括细胞装载区域,以将待分析的细胞封装在微滴中;与所述细胞装载区域流体连通的第一腔室,所述第一腔室具有用于向所述微滴加入第一试剂的构件,和加热元件;与所述第一腔室流体连通的第二腔室,所述第二腔室具有用于向所述微滴加入第二试剂的构件,和加热元件,其中所述加热元件可在一种或多种温度下加热所述微滴;和与所述第二腔室流体连通的检测区域,其检测来自第一或第二腔室的反应产物的存在或不存在。
附图简述
当结合附图阅读时,根据以下详细描述可更好地理解本发明。所述附图中包括下列图:
图1是本公开的微流体系统的简化描绘。在所描绘的系统中,所述微流体系统可用于对生物样本的组分进行检测和/或基因分型。当应用于检测这种特定系统中的肿瘤细胞时,使用封装装置将有核血细胞封装在单独的小滴中(左)。向所述小滴中注射裂解缓冲液并在37℃下孵育以加速细胞裂解。向其中注射含有靶向特征性致癌突变的引物的PCR混合物(中)。使小滴流过蜿蜒通过维持在65℃和95℃的区域的通道。随着小滴移动通过所述区域,它们的温度按照PCR所需循环。在这种PCR反应期间,如果小滴含有具有为检测而设计引物的突变的肿瘤细胞的基因组,则将起始扩增,从而产生荧光输出,其使小滴发荧光。然后使用流式细胞术对小滴进行光学扫描并使用小滴分选进行分选以将其回收(右)。所述小滴可被存储或用于进一步分析,例如进行测序(例如,用作下一代测序器的输入,或提供给测序设施)。
图2的图A-E描绘使用荧光测定密封在微滴中的单细胞。酵母细胞(黑色斑点)从最左边进入并被封装在液滴中,以低放大率(4倍物镜;图A)和高放大率(10倍物镜;图B)显示。将液滴孵育以允许酵母分泌其产物(图C);这在液滴中产生荧光化合物,因此含有高效产生剂的液滴很快地变得发荧光(图D)。然后使用微流体分选仪对液滴进行分选以抽取出最高效的酵母(图E)。比例尺表示80mm。
图3描绘使用经荧光团FAM标记的PCR探针对BRAF的数字检测,所述荧光团FAM与来自人BRAF基因的一部分的扩增子互补。荧光液滴指示来自纯化的人基因组DNA的BRAF基因的扩增,而非荧光液滴不含所述基因。
图4的图A-B描绘用于检测CTC的二元PCR反应。图A:将正向和反向引物封装在靶向致癌序列的液滴中。如果存在致癌序列,则PCR反应产生双链PCR产物(图A,上方),而如果不存在,则没有产物产生(图A,下方)。液滴中也可能存在插入染色剂(例如,SybrGreen)。图B:如果产生双链产物,则染料插入其中,变得发荧光,并且使液滴发荧光(图B,上方);相比之下,如果不产生双链产物,则染料仍然非荧光,产生暗淡的液滴(图B,下方)。
图5是在连续的平分装置中的大规模并行液滴形成的光学显微镜图像。不含细胞的去离子水从左侧注射。沿顶部和底部箭头流动的溶液是含2重量%的氟碳表面活性剂的HFE-7500氟碳油。在连续的平分后,最右侧显示的所得液滴的直径是25μm。
图6是显示CTC的基于小滴的检测程序的示意性微流体装置和数据。将血细胞和罕见的CTC封装在具有含蛋白酶K的裂解缓冲液的微滴中。将液滴在55℃下孵育以裂解细胞并消化细胞蛋白质。然后将液滴分裂成最佳用于成像的尺寸,并且将蛋白酶K热灭活。然后向液滴皮可注射PCR试剂和探针,接着在Megadroplet阵列上热循环和成像。基于通过多重探针荧光检测的CTC特异性转录物的存在来鉴定CTC。
图7示出通过蛋白酶K处理对细胞裂解物介导的RT-PCR抑制的解除。用蛋白酶K和裂解缓冲液或仅用裂解缓冲液处理增加浓度的细胞。然后将细胞在55℃下、接着在95℃下孵育。以若干液滴相关浓度将整个细胞裂解物直接加入RT-PCR反应物中。在蛋白酶K处理的裂解物中在1个细胞/200pL的最终细胞浓度下可见裂解物对PCR抑制的强烈解除,但在仅具有裂解物的裂解缓冲液中并非如此。在溴化乙锭染色的琼脂糖凝胶上显现PCR产物。
图8的图1-3示出用于细胞封装/溶解、裂解和液滴分裂的集成微流体系统(中心图像)。图1:共同流动模块依赖于含蛋白酶K的裂解缓冲液和细胞悬浮溶液的层流以将细胞封装在液滴中而在形成液滴之前不存在细胞的过早裂解或混合;层流边界仅可见于细胞与裂解缓冲液流之间。图2:含有细胞的液滴流过55℃孵育通道持续20分钟以裂解细胞并消化抑制蛋白。图3:将液滴分裂以允许2X RT-PCR试剂的有效皮可注射并在小滴阵列上成像。
图9的图A-C示出在皮可注射后液滴中的RT-PCR。向含有来自前列腺癌细胞系PC3的总RNA的有限稀释液的液滴中注射相等体积的2X RT-PCR试剂和靶向EpCAM的探针(图A)。在皮可注射后,将液滴热循环并针对荧光成像(图B)。发现荧光液滴的数目与泊松分布的预测一致,从而证实检测液滴中的单转录物分子的充分敏感性。图C:为了进一步证实结果,来自图B的液滴化学破裂并且其内含物在琼脂糖凝胶上跑电泳以观察PCR产物在未注射RT-PCR酶的阴性对照液滴(-)和接收RT和Taq的实验液滴(+)中的存在。在不具有皮可注射的管中进行的对照反应和皮可注射反应产生类似强度的谱带,从而表明反应效率相当。白色星形标记出皮可注射的液滴。
图10示出来自小滴封装的MCF7乳腺癌细胞的EpCAM转录物的检测。使用图8的图1-3中描绘的装置,将MCF7细胞封装在液滴中,裂解并且分裂液滴。然后向含有裂解物的液滴中皮可注射RT-PCR试剂和探针。然后将液滴热循环并针对荧光成像。明场和荧光通道显示合并。
图11描绘与探针多重化的数字化小滴RT-PCR。将来自Raji细胞(B淋巴细胞)和PC3前列腺癌细胞的总RNA的有限稀释物与RT-PCR试剂和对CD45(蓝色)、CD44(红色)和EpCAM(绿色)具特异性的探针一起封装在液滴中。橙色液滴指示通过多重反应检测的CD44和EpCAM转录物的存在。还已经见到其它探针多重化组合(数据未示出)。荧光通道单独以虚线框区域的放大插图形式显示。
图12的图A-C示出用于对细胞单独地进行多重qPCR分析的装置的示意图。所述装置由缩进位于热系统上方的PDMS通道中的约1000万个捕集器的阵列组成(图A)。微流体通道的高度小于液滴的直径,从而造成液滴采用压扁的扁平形状。当液滴流过未占用的缩进槽时,它采用较低的更积极有利的曲率半径,从而产生将液滴完全拉入捕集器的力(图B)。通过使液滴以密堆积形式流动,确保阵列上的所有捕集器被占用,如图C中所示。将整个装置热循环并使用微阵列扫描仪在循环之间成像。
图13描绘图12的图A-C中所描绘类型的用于多重qPCR分析的Megadroplet阵列。将液滴抽吸并密封在透明的玻璃/环氧腔室中并使用微制造孔阵列固定到位(顶部)。将整个芯片夹至金属块并使用珀尔帖(Peltier)加热器在铜块下热循环。使用温度计、散热器、风扇(顶部)和数字控制器来调节并循环温度(底部)。利用通过构成装置顶部的透明板对阵列成像来实时监测扩增。
图14的图A-B描绘经由荧光用于检测液滴中的PCR扩增产物的单色流式细胞仪的使用。图A:检测器的示意图,其由指向物镜的背面并聚焦在小滴流过的微流体通道上的488nm激光器组成。所述激光器激发液滴内的荧光染料,并且通过物镜捕捉任何发射的光并在其通过分色镜和520±5nm带通滤波器过滤后成像在光电倍增管(PMT)上。图B:液滴以强度随着时间变化的峰形式出现,如由PMT的输出电压所示,对于所检测的荧光液滴,其与发射光随时间变化的强度成比例。
图15的图A-C示出装置设置的示意图。图A:经由注射泵向PDMS装置中引入液滴、间隔油和1M NaCl。使用空气压力控制泵引入皮可注射流体。将来自高电压放大器的电极连接至浸没在皮可注射流体中的电线以及含有1M NaCl“Faraday Mote”的注射器的金属针。图B:小滴间隔物和皮可注射位点的放大视图。图C:在注射孔口处显示流体隆起的皮可注射位点的其它放大视图。
图16的图A-B示出皮可注射位点的明场显微镜图像。在不存在电场的情况下(图A),表面活性剂防止注射流体聚结并且在小滴/注射流体界面处可见明显的边界。当施加电场时,所述边界消失并且随着小滴通过而注射试剂(图B)。
图17的图A-C示出(图A)100mM、(图B)50mM和(图C)25mM注射流体在注射后的液滴尺寸的体积分数增加(Vf)。较强的电场更容易使油/水界面破裂,从而允许在较大长度的通过小滴上注射,以及更大的注射体积。对于给定电压,更高摩尔浓度的溶解电解质在注射位点产生更强的电场,也增加了注射体积。误差线表示在任一方向上在每个点取样的>1200个液滴的1个标准偏差。
图18是示出注射体积随着施加的电压和所溶解NaCl在注射流体中的摩尔浓度而变化的热图。箭头/勾号指示数据点。注射体积可在0-36pL范围内调整,其中在施加信号的100V增量下,分辨率为约2.6pL 5(4%Vf)。最大注射体积为3000V与100mM流体。高于此的电场增加允许电润湿,造成液滴在皮可注射器处自发形成,从而不利地影响注射功效和一致性。
图19示出溴化乙锭染色的2%琼脂糖凝胶。将从MCF7人细胞系分离的总RNA封装在液滴中并皮可注射含有(+)或不含有50(-)逆转录酶(RT)和Taq DNA聚合酶的RT-PCR反应混合物。并行进行非乳化对照反应。仅接收酶的反应产生预期的100bp扩增子。阳性对照和皮可注射的反应均产生PCR产物,从而证实在皮可注射期间产生的电场是55,与DNA、逆转录酶和Taq生物相容。
图20的图A-B示出经由多重小滴聚结加入试剂。图A:用于经由多重小滴聚结加入试剂的微流体装置的示意图。将待加入的试剂与油一起从底部引入到非常小的液滴制造器中。这导致以高频率产生一系列的非常小的液滴。将待加入有试剂的液滴从左侧注射,被油间隔,然后液流在通道与微小液滴制造器的出口相交处组合。因为试剂液滴远远小于目标液滴,所以它们以高速频率引入,并且对于每一个目标液滴注射很多个(数十个或更多)这些液滴。由于它们的尺寸小,它们相比于较大液滴更快地流动并在其后收集,直到它们到达它们接触的电极通道并且可被电场聚结。图B:这种微流体装置中的聚结区域的特写。液滴从左至右流动。一系列微滴形成在其待加入的小滴后。一旦微滴和小滴通过聚结区域,电极造成微滴合并成小滴。右侧的所得输出是含有微滴中所存在的试剂的小滴。
图21示出可用以纯化微滴的微流体装置的示意图。也就是说,液滴中的大多数流体被纯化溶液置换,而不去除可封装在液滴中的任何离散试剂,例如细胞或珠粒。首先向微滴中注射溶液以稀释其中的任何杂质。然后使稀释的微滴流过使用电极施加有电场的微流体通道。由于电场产生的介电电泳力,随着细胞或其它离散试剂通过电场,它们将在流动中发生位移。然后使液滴分裂,以使得所有物体终止于一个微滴。因此,初始微滴已经洗涤,因为污染物可被去除,而在所得微滴中可封装在小滴内的离散试剂例如珠粒或细胞的存在和/或浓度得到维持。
图22的图A-B显示分选。小滴从右侧进入并且流向左侧,经过电极。因此基于特定特性的存在(图A;小滴流入顶部输出)或不存在(图B;小滴流入底部输出)分选液滴。
图23示出聚结过程的示意图,从在亲水性通道中由再注射单乳液(E1)形成双重乳液(E2)起始(顶部,左侧)。这些在疏水性接点处变成三重乳液(E3)(底部,左侧),然后使用电场聚结成反向E2(E2',底部,右侧)。
图24的图A-D示出(a)双重乳液(E2)形成、(b)三重乳液(E3)形成、(c)E3聚结和(d)最终的反向E2(E2')产物的显微镜图像。比例尺适用于所有图像。
图25的图A-B示出两个快速相机时间系列,其示出E3聚结成E2'。内部E1的油壳是假色蓝。
图26的图A-C示出用于实施例5的研究中的微流体装置和数字RT-PCR工作流程。(A)用微流体T形接点和载体油产生含有RNA和RT-PCR试剂的液滴。液滴形成的明场显微镜图像示于下方,中间图像示出从单一反应混合物产生一个液滴群体,并且下面是由两种混合物产生两个群体。(B)在形成后,使用由电场触发的皮可注射通道向液滴中皮可注射逆转录酶,所述电场由与皮可注射器直接相对的电极通道施加。(C)将皮可注射的液滴收集到管中,热循环,并用荧光显微镜成像。
图27的图A-C示出在逆转录酶的皮可注射后在微流体液滴中的数字RT-PCR测定。(A)将含有PC3细胞总RNA的对照RT-PCR反应物在T形接点液滴制造器上乳化,热循环并成像。FAM(绿色)荧光指示EpCAM转录物的检测并且Cy5(红色)指示CD44转录物的检测。相同液滴的明场图像(BF)示于图像图中的最右侧。(B)将缺乏逆转录酶的RT-PCR反应物在T形接点液滴制造器上乳化并且随后皮可注射逆转录酶。在示意图中左侧,皮可注射流体被描绘为深灰色。明场图像显示,在皮可注射后的液滴尺寸大致加倍。(C)经受了省略逆转录酶情况下的皮可注射的RT-PCR反应物针对EpCAM和CD44不显示信号,证实了测定的特异性。红色箭头指示乳液在示意图中的流动方向。比例尺=100μm。
图28的图A-B示出对照液滴与皮可注射有逆转录酶的液滴之间的数字RT-PCR检测率的比较。(A)对照样本(左)和皮可注射样本(右)的FAM和Cy5液滴强度的散点图。关于信号用于将液滴标记成阳性或阴性的选通阈值由线划分,并将散点图分成如下象限:(-,-)、(-,+)、(+,-)、(+,+)。(B)条形图示出相对于对照群体的CD44和EpCAM测定的标准化计数,在皮可注射下的平均阳性液滴计数。数据表示四个独立的实验重复的平均值。
图29的图A-B示出皮可注射使得能够分析离散的液滴群体。(A)非皮可注射的液滴。将含有混合的PC3细胞总RNA和Raji细胞总RNA的对照RT-PCR反应物用T形接点液滴制造器乳化,热循环并成像。示出合并的FAM和HEX荧光图像,其中FAM(绿色)荧光指示EpCAM转录物的检测并且HEX(红色)指示PTPRC转录物的存在。黄色液滴指示多重测定的存在,其中EpCAM和PTPRC转录物共同封装在相同液滴中。明场图像(BF)示于图中右侧。(B)皮可注射的液滴。双重T形接点液滴制造器同时产生立即皮可注射的两种液滴群体。一种液滴制造器产生仅含有Raji细胞RNA的液滴,并且其它液滴仅含有PC3细胞RNA。两种液滴类型最初缺乏逆转录酶,其在液滴制造器下游经由皮可注射加入。绝大多数的液滴不显示多重化,证实在皮可注射期间的物质转移非常罕见。红色箭头指示乳液在示意图中的流动方向。比例尺=100μm。
图30的图A-B示出双重转录物检测分析,指示在皮可注射期间的最小交叉污染。(A)共同封装的对照样本(左)和双重群体皮可注射样本(右)的FAM和HEX液滴强度的散点图。使用这种分析,在双重群体皮可注射液滴中几乎不存在的共同封装对照物中鉴定出大量的多重液滴(选通散点图的右上象限)。(B)相对于共同封装对照物和双重群体皮可注射的总明场计数的不同的明场液滴群体的条形图。数据代表三个实验重复的平均值。
图31的图A-B示出RNA液滴的双重群体可以离线储存并在稍后皮可注射。(A)制造由两个群体的液滴组成的乳液,一个群体含有从Raji细胞回收的RNA,而另一个来自PC3细胞。将液滴收集在注射器中,离芯片孵育,然后再引入微流体装置中以皮可注射。然后将液滴收集,热循环并成像。这些液滴相比于在它们形成的相同装置上皮可注射的液滴具稍微更大的多分散性并且显示更高的多重化率(1%),这最有可能是由于一些液滴在孵育和再注射期间的合并。在孵育后再注射乳液以加入试剂的能力可能对于众多的基于小滴的分子生物学测定是重要的。(B)皮可注射乳液的明场图像。比例尺=100μm。
图32示出如本文所述的单细胞RT-PCR微流体装置的实施方案。
图33示出在小滴形成接点下游的微流体装置通道中包括脊结构的作用。左侧示出不具有脊的T形接点液滴制造器。随着流量比增加,液滴制造器停止形成液滴,而是形成长的射流。这是由于射流润湿通道壁并粘附,从而防止液滴形成。在右侧,示出具有脊结构的类似T形接点。所述脊捕集接近壁的合适相,例如疏水性油相,使得水相难以润湿。这使得装置以远远更高的流量比形成液滴,随后其最终在R=0.9下润湿。这示出,脊的包括允许液滴制造器在比忽略脊的情况下远远更宽的范围内起作用。通道宽度是30微米并且脊的峰是约5-10微米。顶部和底部两组图像对应于利用不同微流体装置进行的实验。
图34提供示出如本文所述的液体电极的实施方案的一般制造流程的流程图。
图35提供在与用盐水填充电极通道不同的时间所取的一系列三个图像(时间过程从左至右进行;图A-C)。将盐水引入通道入口并加压,从而使其缓慢地填充通道。最初在通道中的空气被推入PDMS中,因此最后它完全被液体填充。
图36示出模拟各种液体电极构型的电场线。模拟的是示出三个不同几何形状的等电位线的正电极和接地电极。
图37提供利用液体电极将大液滴与小液滴合并的小滴合并装置的两个图像。为了合并液滴,使用盐-水电极施加电场。当电场关闭时,不发生合并(右)并且当其打开时,液滴合并(左)。
图38提供示出可用于在双重乳液中封装单乳液的装置的三维示意图的两个不同视图。其包括其中引入单乳液的通道,所述通道开通到其中加入另外的水相的大通道中。这聚焦于通过孔口的注射液滴,从而使其封装在油滴中并形成水包油包水双重乳液。
图39提供可用于构建双重乳化装置的PDMS板的两个示意图。左侧的板拥有具有两种高度的通道,短通道用于小滴再注射和收缩通道(参见前图)和高通道用于水相和出口。右侧的板仅具有高通道。为了完成装置,将板对齐并密封在一起以使得通道相对。使用等离子体氧化来粘结装置。
图40提供将再注射单乳液封装到双重乳液中的双重乳化装置的显微镜图像。再注射单乳液从上方进入并且封装在装置中心中所示的收缩器中。然后它们以双重乳液形式离开,其中四个显示朝向装置底部。
图41提供荧光双重乳液的荧光显微镜图像。左侧的图像示出通过振荡流体形成的双重乳液,其产生大量的多分散性和少量的具有适当尺寸的液滴以供FACS分选。右侧的图像示出由本文公开的微流体方法制造的双重乳液,其具有远远更大的单分散性。
图42提供振荡的双重乳液相对于装置产生的双重乳液的液滴区域的柱状图。装置产生的双重乳液具有远远更大的单分散性,如由峰所示。
图43示出根据本公开的微流体装置产生的双重乳液的FACS荧光和散射数据。上方曲线图示出如用FACS的FITC通道(约520nm)测量的群体的强度柱状图。下方曲线图示出根据FITC信号选通的液滴的正向和侧向散射。
图44示出振荡的双重乳液的FACS荧光和散射数据。上方曲线图示出如用FACS的FITC通道(约520nm)测量的群体的强度柱状图。下方曲线图示出根据FITC信号选通的液滴的正向和侧向散射。
图45提供对于四种不同浓度的封装染料如用FACS(FITC通道)读出的小滴强度的柱状图。所述染料由荧光标记的BSA组成。
图46示出设计用于测试FACS操作液滴的检测率的实验的结果。产生两个液滴群体,一个具有520nm下的标记BSA荧光,另一个具有647nm下的BSA荧光。然后将两种群体以限定比率混合并且在FACS上操作样本。发现所测量的比率与已知比率一致,证实FACS测量结果在这个范围上是准确的。
图47示出含有三种不同浓度的DNA的乳液。所有液滴都含有针对DNA靶标的探针,但所述靶标以有限的浓度封装,因此只有得到靶标的液滴发生扩增。当靶标浓度降低时,荧光液滴的分数下降。下方曲线图示出在封装于双重乳液中并利用FACS筛选后的液滴。
图48示出含有三种低于前图中的浓度的DNA的乳液。所有液滴都含有针对DNA靶标的探针,但所述靶标以有限的浓度封装,因此只有得到靶标的液滴发生扩增。当靶标浓度降低时,荧光液滴的分数下降。下方曲线图示出在封装于双重乳液中并利用FACS筛选后的液滴。
图49示出关于图47和图48在三个图的最低DNA浓度下的乳液。下方曲线图示出在封装于双重乳液中并利用FACS筛选后的液滴。
图50示出使用荧光显微镜通过双重乳液的FACS分析所检测的阳性数目相对于通过在双重乳化前对液滴成像所检测的阳性数绘制的曲线图。在所测试的两组(一组十个)中,结果彼此一致。
图51提供示出阳性液滴分数随着log-2浓度变化的曲线图。随着DNA的浓度上升,更多液滴变得发荧光,因为其中更多至少含有单个分子。
图52提供示出其中已用封装的Azospira进行PCR反应的液滴的图像。上方图像对应于其中产生110bp扩增子的反应,而下方图像对应于147bp扩增子。
图53示出显示对应于两个PCR反应的扩增子的谱带的凝胶的图像,一个是464bp扩增子并且一个是550bp扩增子。
图54示出验证可通过向含有细菌的样本中加入多个引物组而多重化的PCR反应的凝胶的图片。
图55示出Azospira扩增子的PCR扩增(左)和含有Azospira的双重乳液的FACS分析(右)的结果。
详述
提供了用于检测来自生物样本的组分的方法。在某些方面,所述方法可用于检测和/或定量生物样本例如肿瘤细胞(例如,循环肿瘤细胞)中的特定组分。还提供了用于实施本发明的方法的系统和装置。
所述主题方法和装置可用于广泛多种应用中,例如检测癌症、检测来自母体血流中循环的DNA的非整倍性、监测疾病进程、分析细胞的DNA或RNA含量,和其中需要检测和/或定量生物样本中的特定组分的多种其它应用。
在更详细地描述本发明之前,应了解,本发明不限于所述特定实施方案,并且其当然可改变。还应了解,本文所用的术语仅出于描述特定实施方案的目的,而不欲具限制性,因为本发明的范围将仅由所附权利要求限制。
在提供值的范围时,应了解,除非上下文另外明确说明,否则还特定公开在所述范围的上限与下限之间的每个中间值(至下限的单位的十分之一)。在所述范围中的任何所述值或中间值与所述范围中的任何其它所述或中间值之间的每个较小范围都涵盖在本发明内。这些较小范围的上限和下限可独立地包括或不包括在所述范围中,并且其中任一、无一或两个限值包括在较小范围中的每个范围也涵盖在本发明内,依据所述范围中的任何特定排除限值。在所述范围包括一个或两个限值时,不包括那些所包括限值的任一或两个的范围也包括在本发明中。
除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常所理解相同的含义。尽管与本文所述的那些类似或等效的任何方法和材料可用于实施或测试本发明,但现在可描述一些潜在和示例性的方法和材料。本文提及的任何和所有出版物以引用的方式并入本文中,以公开和描述结合其引用出版物的方法和/或材料。应了解,在存在冲突的程度上,本公开优先于所并入出版物的任何公开内容。
必须注意到,如本文所用以及在所附权利要求中,除非上下文另外明确说明,否则单数形式“一”和“所述”包括复数个提及物。因此,例如,对“一个微滴”的提及包括多个这种微滴并且对“所述微滴”的提及包括对一个或多个微滴的提及等。
此外注意到,可制定权利要求书以排除可能任选的任何要素。因此,这种陈述意在用作结合权利要求要素的叙述使用如“仅仅”、“仅”等排除性术语或使用“负面”限制的前提基础。
本文讨论的公开案仅在本申请的提交日期之前为其公开内容而提供。本文没有任何内容被解释为承认本发明无权由于先前发明而先于所述公开案。此外,所提供的公布日期可能不同于实际的公布日期,其可能需要独立证实。在这些公开案可能阐述与本公开的明确或隐含定义相冲突的术语定义的程度上,以本公开的定义为准。
如本领域技术人员在阅读了本公开后所显而易见,本文所描述和说明的单独的实施方案各自具有离散的组分和特征,其可能容易地与任何其它若干实施方案的特征分离或组合,而不偏离本发明的范围或精神。任何所述方法可以所述事件的次序或以逻辑上可能的任何其它次序进行。
方法
如上文所概述,本发明的方面包括用于检测来自生物样本的组分的方法。方面包括对细胞,例如正常细胞(即,非肿瘤细胞)、肿瘤细胞或CTC进行检测、定量和/或基因分型的方法。
如本文所用,短语“生物样本”涵盖获自个体的多种样本类型并且可用于诊断或监测测定中。所述定义涵盖血液和生物来源的其它液体样本、固体组织样本例如活检标本或组织培养物或源自其的细胞和其后代。所述定义还包括已经在其采购后以任何方式处理的样本,例如用试剂处理、增溶或富集特定组分例如多核苷酸。术语“生物样本”涵盖临床样本,并且还包括培养细胞、细胞上清液、细胞裂解物、细胞、血清、血浆、生物流体和组织样本。“生物样本”包括细胞;生物流体,例如血液、脑脊髓液、精液、唾液等;胆汁;骨髓;皮肤(例如,皮肤活检);和获自个体的抗体。
如本文更充分地描述,在多个方面中,所述主题方法可用于检测来自这些生物样本的多种组分。目标组分包括(但未必限于)细胞(例如,循环细胞和/或循环肿瘤细胞)、多核苷酸(例如,DNA和/或RNA)、多肽(例如,肽和/或蛋白质),和可能存在于生物样本中的许多其它组分。
如本文所用的“多核苷酸”或“寡核苷酸”是指核苷酸单体的线性聚合物,并且可互换使用。多核苷酸和寡核苷酸可具有多种结构构型中的任一种,例如,单链、双链或两者的组合,以及具有更高阶的分子内或分子间二级/三级结构,例如,发夹、环、三链区等。多核苷酸通常尺寸范围为几个单体单元(当它们通常被称为“寡核苷酸”时,例如5-40)至数千个单体单元。当多核苷酸或寡核苷酸由一系列字母(大写或小写)表示时,例如“ATGCCTG”,应了解,除非另外说明或从上下文明显可知,否则核苷酸从左至右为5'→3'顺序,并且“A”表示脱氧腺苷,“C”表示脱氧胞苷,“G”表示脱氧鸟苷,并且“T”表示胸苷,“I”表示脱氧肌苷,“U”表示尿苷。除非另外说明,否则术语和原子编号惯例将遵循Strachan和Read,Human Molecular Genetics 2(Wiley-Liss,New York,1999)中所公开的那些。
本文互换使用的术语“多肽”、“肽”和“蛋白质”是指任何长度的氨基酸的聚合物形式。NH2是指在多肽的氨基末端存在的自由氨基。COOH是指在多肽的羧基末端存在的自由羧基。为符合标准多肽命名法,使用J.Biol.Chem.,243(1969),3552-3559。
在某些方面,提供用于对细胞进行计数和/或基因分型的方法,所述细胞包括正常细胞或肿瘤细胞,例如CTC。这些方法的特征是使用微流体学。
图1呈现本公开的一种类型的微流体系统和方法的非限制性简化示意图。图1中描绘的特定应用是对来自生物样本的细胞(例如肿瘤细胞)进行检测和/或基因分型。在一种此类方法中,有核血细胞可获自受试者的生物样本。使用封装装置将有核血细胞封装在单独的液滴中(左)。然后可向所述液滴中注射裂解缓冲液并在加速细胞裂解的条件下(例如,在37℃下)孵育所述液滴。可向所述液滴中注射PCR混合物,所述PCR混合物包括一种或多种靶向特征性致癌突变的引物(中)。可使含有所述PCR混合物的液滴流过在有效进行PCR的条件下孵育小滴的通道。在该图中,这通过使液滴流过蜿蜒通过维持在65℃和95℃的多个区域的通道来实现。随着液滴移动通过所述区域,它们的温度按照PCR所需循环。在PCR反应期间,如果小滴含有具有为检测而设计引物的突变的细胞的基因组,则起始扩增。这些特定PCR产物的存在可通过例如使液滴发荧光的荧光输出来检测(图3-4)。因而例如可通过使用流式细胞术对液滴进行扫描来检测荧光液滴的存在(图14,图A-B)。在某些方面,还可使用例如小滴分选来分选液滴以回收目标液滴(右)。使用本公开的命名法,上述步骤因此“在微流体控制下”进行。也就是说,所述步骤是在一个或多个微流体装置上进行。
图2的图A-E描绘包括许多上述一般原理和步骤的微流体系统。此处,酵母细胞(黑色斑点)从最左边进入并被封装在液滴中,以低放大率(4倍物镜;图A)和高放大率(10倍物镜;图B)显示。将液滴孵育以允许酵母分泌其产物(图C);这在液滴中产生荧光化合物,因此含有高效产生剂的液滴很快地变得发荧光(图D)。然后使用微流体分选仪对液滴进行分选以抽取出最高效的酵母(图E)。
对于来自生物样本的组分的封装可通过任何便利方法实现。图5呈现一个可能的实例,其中以大规模并行方式在连续的平分装置中形成小滴。例如,含细胞溶液可从左侧注射并形成大液滴,其流入连续的平分阵列中并被分裂成小液滴;最右侧所示的液滴的直径为25mm。目标封装方法还包括(但不限于)流体力学触发的液滴形成和Link等,Phys.Rev.Lett.92,054503(2004)所述的那些,所述文献的公开内容以引用的方式并入本文中。
如由图1、图4和图6所证明,本公开的某些方法的特征是使用基于聚合酶链式反应(PCR)的测定来检测细胞中存在的某些寡核苷酸和/或致癌基因的存在。目标基于PCR的测定的实例包括(但不限于)定量PCR(qPCR)、定量荧光PCR(QF-PCR)、多重荧光PCR(MF-PCR)、实时PCR(RT-PCR)、单细胞PCR、PCR-RFLP/RT-PCR-RFLP、热启动PCR、巢式PCR、原位聚合酶克隆(in situ polony)PCR、原位滚环扩增(RCA)、桥式PCR、picotiter PCR和乳液PCR。其它合适的扩增方法包括连接酶链式反应(LCR)、转录扩增、自持续序列复制、目标多核苷酸序列的选择性扩增、共有序列引物聚合酶链式反应(CP-PCR)、随机引物聚合酶链式反应(AP-PCR)、简并寡核苷酸引物PCR(DOP-PCR)和基于核酸的序列扩增(NABSA)。
可使用基于PCR的测定来检测特定基因,例如特定致癌基因的存在。图4的图A-B描绘了基于PCR的测定来检测致癌基因。在这种测定中,使一种或多种对每个目标致癌基因具特异性的引物与每个细胞的基因组反应。这些引物具有对特定致癌基因具特异性的序列,因此仅当它们与细胞的基因组互补时,它们将杂交并起始PCR。如果存在致癌基因并且引物匹配,则产生大量许多拷贝的致癌基因。为了测定是否存在致癌基因,可通过如下测定检测PCR产物:例如通过用插入染料如SybrGreen或溴化乙锭将溶液染色来探测液滴的液体,使所述PCR产物与固体基底例如珠粒(例如,磁性或荧光珠粒,例如Luminex珠粒)杂交,或通过分子间反应例如FRET对其检测。这些染料、珠粒等是“检测组分”的各个实例,所述术语被广泛使用并且在本文中一般是指用于检测PCR产物的存在或不存在的任何组分。
现将在下文更详细地概述这些基本方法的多种变化。
检测罕见细胞(例如,肿瘤细胞)
所述主题方法的方面包括检测生物样本中的一种或多种细胞(例如,肿瘤细胞)子集的存在。这种流程描绘于图6中。为了使用这种方法来检测肿瘤细胞,可使用任何便利方法从受试者中回收生物样本(例如,全血)。可使用例如处理步骤如离心、过滤等来处理所述生物样本以去除除细胞之外的组分。
然后使用微流体装置,例如图5和/或图8中所示者,将生物样本中的每个细胞封装在小滴中。使用来自图5的实例,将含细胞的溶液从左侧注射并形成大的液滴,大的液滴流入连续的平分阵列中并被分裂成较小的小滴。本领域中已知将细胞封装到小滴中的其它方法。在需要时,可在将细胞封装到液滴中之前用一种或多种抗体和/或探针将所述细胞染色。如本文所用,术语“液滴”、“小滴”和“微滴”可互换使用,以指代含有水相(例如,水)的微小球体,直径一般在0.1至1000μm范围内,其可用于封装细胞、DNA、酶和其它组分。因此,所述术语可用于指在微流体装置中、在微流体装置上或通过微流体装置产生的小滴。
在可造成细胞爆裂的条件下,还可将一种或多种裂解剂加入含有细胞的小滴中,从而释放其基因组。所述裂解剂可在将细胞封装入微滴中之后加入。可采用任何便利的裂解剂,例如蛋白酶K或细胞毒素。在特定的实施方案中,可将细胞与含有清洁剂例如Triton X100和/或蛋白酶K的裂解缓冲液共同封装在液滴中。取决于所用的特定裂解剂,可造成细胞爆裂的特定条件将改变。例如,如果蛋白酶K是作为裂解剂并入,则可将微滴加热至约37-60℃持续约20分钟以裂解细胞并且允许蛋白酶K消化细胞蛋白质,随后可将它们加热至约95℃持续约5-10分钟以使蛋白酶K失活。
在某些方面,细胞裂解还可或反而依赖于不包括加入裂解剂的技术。例如,可通过可采用各种几何特征的机械技术来实现裂解以实现细胞的穿孔、剪切、研磨等。还可使用其它类型的机械破坏例如声学技术。此外,还可使用热能来裂解细胞。任何实现细胞裂解的便利方法都可用于本文所述的方法中。
对于待检测的每个基因,例如致癌基因,可将引物引入小滴中。因此,在某些方面,所有致癌基因的引物可同时存在于小滴中,从而提供多重测定。使小滴温度循环以使得含有癌细胞的小滴例如将进行PCR。在此期间,仅对应于基因组中存在的致癌基因的引物将诱导扩增,从而在小滴中产生这些致癌基因的许多拷贝。检测这些PCR产物的存在可通过多种方式实现,例如通过使用FRET、用插入染料染色或将其连接至珠粒。关于此的不同选项的更多信息,参见描述所述技术的变型的章节。可对小滴进行光学探测以检测PCR产物(图14)。对小滴的光学探测可包括对初始群体中存在的肿瘤细胞的数目进行计数,和/或允许鉴定每个肿瘤细胞中存在的致癌基因。
所述主题方法可用于确定生物样本是否含有目标特定细胞,例如肿瘤细胞。在某些方面,所述主题方法可包括对生物样本中存在的目标细胞,例如肿瘤细胞的数目进行定量。生物样本中存在的目标细胞,例如肿瘤细胞的数目的定量可至少部分地基于其中检测到PCR扩增产物的微滴的数目。例如,可在其中预期大多数小滴含有零或一个细胞的条件下产生微滴。可使用本文更充分描述的技术去除不含任何细胞的那些小滴。在进行上文概述的PCR步骤后,可对检测含有PCR产物的微滴的总数进行计数,以定量生物样本中的目标细胞,例如肿瘤细胞的数目。在某些方面,所述方法还可包括对微滴总数进行计数,以测定生物样本中的目标细胞,例如肿瘤细胞的细胞分数或百分比。
PCR
如上文所概述,在实施本发明的方法时,可使用基于PCR的测定来检测细胞中存在的某些目标基因,例如致癌基因的存在。这些基于PCR的测定的条件可以一种或多种方式改变。
例如,可加入微滴中的PCR引物的数目可改变。术语“引物”可能是指不止一个引物并且是指天然存在的寡核苷酸,如在经过纯化的限制消化物中;或合成产生的寡核苷酸,其当放置在其中与核酸链互补的引物延伸产物的合成被催化的条件下时能够充当沿着互补链合成的起始点。这些条件包括在合适的缓冲液(“缓冲液”包括作为辅因子或影响pH、离子强度等的取代基)中,和在合适的温度下,四种不同的三磷酸脱氧核苷和聚合诱导剂例如DNA聚合酶或逆转录酶的存在。对于最大的扩增效率,引物优选是单链的。
如本文所用的核酸序列的互补序列是指当与核酸序列比对时使得一个序列的5'端与另一个序列的3'端配对且处于“反平行关系”的寡核苷酸。互补性无需是完美的;稳定的双链体可含有错配碱基对或未匹配的碱基。核酸技术领域中的技术人员可在考虑到许多变量的情况下凭经验确定双链体稳定性,所述变量包括例如寡核苷酸的长度、寡核苷酸中的胞嘧啶和鸟嘌呤碱基的百分比浓度、离子强度和错配碱基对的发生率。
可加入微滴中的PCR引物的数目可具有如下范围:约1至约500个或更多,例如,约2至100个引物、约2至10个引物、约10至20个引物、约20至30个引物、约30至40个引物、约40至50个引物、约50至60个引物、约60至70个引物、约70至80个引物、约80至90个引物、约90至100个引物、约100至150个引物、约150至200个引物、约200至250个引物、约250至300个引物、约300至350个引物、约350至400个引物、约400至450个引物、约450至500个引物或约500个引物或更多。
这些引物可含有针对一种或多种目标基因,例如致癌基因的引物。所加入的目标基因的引物的数目可为约1至500个,例如,约1至10个引物、约10至20个引物、约20至30个引物、约30至40个引物、约40至50个引物、约50至60个引物、约60至70个引物、约70至80个引物、约80至90个引物、约90至100个引物、约100至150个引物、约150至200个引物、约200至250个引物、约250至300个引物、约300至350个引物、约350至400个引物、约400至450个引物、约450至500个引物或约500个引物或更多。目标基因和致癌基因包括(但不限于)BAX、BCL2L1、CASP8、CDK4、ELK1、ETS1、HGF、JAK2、JUNB、JUND、KIT、KITLG、MCL1、MET、MOS、MYB、NFKBIA、EGFR、Myc、EpCAM、NRAS、PIK3CA、PML、PRKCA、RAF1、RARA、REL、ROS1、RUNX1、SRC、STAT3、CD45、角蛋白、CEA、CD133、HER2、CD44、CD49f、CD146、MUC1/2和ZHX2。
这些引物和/或试剂可以一个步骤,或以不止一个步骤加入微滴中。例如,所述引物可以两个或更多步骤、三个或更多步骤、四个或更多步骤或五个或更多步骤加入。不考虑所述引物是以一个步骤加入还是以不止一个步骤加入,它们可在加入裂解剂之后、加入裂解剂之前或加入裂解剂的同时加入。当在加入裂解剂之前或之后加入时,所述PCR引物可以不同于加入裂解剂的步骤加入。
一旦引物已加入微滴中,就可在允许PCR的条件下孵育所述微滴。可在与用于加入引物相同的微流体装置上孵育微滴,或可在另一个装置上孵育微滴。在某些实施方案中,在允许PCR扩增的条件下孵育微滴是在与用于封装细胞和裂解细胞相同的微流体装置上进行。微滴的孵育可采用多种形式。在某些方面,可使含有PCR混合物的液滴流过在有效进行PCR的条件下孵育小滴的通道。使微滴流过通道可包括蜿蜒通过维持在有效进行PCR的温度下的各种温度区域的通道。这些通道可例如在两个或更多的温度区上循环,其中至少一个区域维持在约65℃并且至少一个区域维持在约95℃。随着液滴移动通过这些区域,它们的温度按照PCR所需循环。区域的精确数目和每个区域的个别温度可容易由本领域技术人员确定以实现所需的PCR扩增。
在其它实施方案中,微滴的孵育可包括使用图12的图A-C和图13中描绘的一般类型的装置;这种一般类型的装置可在本文中被称为“Megadroplet阵列”。在这种装置中,数百个、数千个或数百万个缩进通道(例如,PDMS通道)中的捕集器的阵列位于热系统上方(图12,图A)。所述通道可被加压,从而防止气体逸出。微流体通道的高度小于液滴的直径,从而造成液滴采用压扁的扁平形状。当液滴流过未占用的缩进槽时,其采用较低的、更积极有利的曲率半径,产生将液滴完全拉入捕集器中的力(图12,图B)。通过使液滴以密堆积形式流动,确保阵列上的所有捕集器被占用,如图12的图C中所示。整个装置可使用加热器进行热循环。
在某些方面,加热器包括珀尔帖板、散热器和控制计算机。所述珀尔帖板允许通过控制所施加的电流在高于或低于室温下加热或冷却芯片。为了确保受控和可重现的温度,计算机可使用集成的温度探针来监测阵列的温度,并且可按需要调节所施加的电流来加热和冷却。金属(例如铜)板允许在冷却循环期间热量的均匀施加和过量热量的消散,从而能够在约一分钟内从约95℃冷却至约60℃。
本发明的方法还可包括将一个或多个探针引入微滴。如本文关于核酸所用,术语“探针”是指由于探针中至少一个序列与靶区域中的序列的互补性,与靶核酸中的序列形成双链体结构的标记寡核苷酸。所述探针优选不含与用于引发聚合酶链式反应的序列互补的序列。可加入的探针的数目可为约1至500个,例如,约1至10个探针、约10至20个探针、约20至30个探针、约30至40个探针、约40至50个探针、约50至60个探针、约60至70个探针、约70至80个探针、约80至90个探针、约90至100个探针、约100至150个探针、约150至200个探针、约200至250个探针、约250至300个探针、约300至350个探针、约350至400个探针、约400至450个探针、约450至500个探针或约500个探针或更多。所述探针可在加入一个或多个引物之前、随后或之后引入微滴中。目标探针包括(但不限于)探针(例如,如Holland,P.M.;Abramson,R.D.;Watson,R.;Gelfand,D.H.(1991)."Detection of specific polymerase chain reactionproduct by utilizing the 5'----3'exonuclease activity of Thermus aquaticusDNA polymerase".PNAS,88(16):7276-7280中所述)。
在某些实施方案中,可使用基于RT-PCR的测定来检测细胞中存在的目标特定转录物,例如致癌基因的存在。在这些实施方案中,除了用于进行本文所述的PCR的试剂之外,向微滴中加入cDNA合成所必需的逆转录酶和任何其它试剂(统称为“RT-PCR试剂”)。使用任何本文所述的方法向微滴中加入所述RT-PCR试剂。一旦RT-PCR试剂已加入微滴中,就可在允许反转录的条件下,接着在允许如本文所述的PCR的条件下孵育微滴。所述微滴可在与加入RT-PCR试剂所用相同的微流体装置上孵育,或者可在另一个装置上孵育。在某些实施方案中,在允许RT-PCR的条件下孵育微滴在与封装细胞并裂解细胞所用相同的微流体装置上进行。
在某些实施方案中,向用于RT-PCR或PCR的微滴中所加入的试剂进一步包括能够检测实时RT-PCR或PCR产物的荧光DNA探针。可使用任何合适的荧光DNA探针,包括(但不限于)SYBR Green、Molecular Beacons和Scorpion探针。在某些实施方案中,向微滴中加入的试剂包括不止一个DNA探针,例如,两个荧光DNA探针、三个荧光DNA探针或四个荧光DNA探针。多个荧光DNA探针的使用允许在单个反应中同时测量RT-PCR或PCR产物。
双重PCR
为了扩增罕见的转录物,如本文所述已经历第一步RT-PCR或PCR反应的微滴可进一步进行第二步PCR反应。在一些实施方案中,从微滴中提取出已经历第一步RT-PCR或PCR反应的微滴的一部分并与含有其它PCR试剂的小滴聚结,所述其它PCR试剂包括(但不限于)酶(例如DNA聚合酶)、DNA探针(例如荧光DNA探针)和引物。在某些实施方案中,含有其它PCR试剂的小滴大于已经历第一步RT-PCR或PCR反应的微滴。这可能是有利的,例如,因为它允许可能抑制第二步PCR的细胞组分的稀释。第二步PCR反应可在与进行第一步反应所用相同的微流体装置上或在不同的微流体装置上进行。
在一些实施方案中,在第二步PCR反应中使用的引物是与第一步RT-PCR或PCR反应中所用相同的引物。在其它实施方案中,在第二步PCR反应中使用的引物是与第一步反应中所用不同的引物。
多重化
在所述主题方法的某些实施方案中,可针对特定细胞检测并分析多种生物标志物。所检测的生物标志物可包括(但不限于)在细胞的基因组中的一种或多种蛋白质、转录物和/或基因标志或其组合。利用标准的基于荧光的检测,可同时询问的生物标志物的数目可能限于可独立地在每个微滴内可视化的荧光染料的数目。在某些实施方案中,可在特定微滴内单独检测的生物标志物的数目可增加。例如,这可通过染料与微滴的不同部分的分离来实现。在特定实施方案中,可将与染料和探针(例如,核酸或抗体探针)结合的珠粒(例如珠粒)封装在微滴中以增加所分析的生物标志物的数目。在另一个实施方案中,针对单一细胞的不同生物标志物,可使用荧光偏振来实现更大数目的可检测信号。例如,可将荧光染料连接至各种探针并且可在不同偏振条件下使微滴可视化。以这种方式,可利用相同颜色的染料来提供针对单一细胞的不同探针靶标的信号。固定和/或渗透细胞(如下文更详细地讨论)的使用也允许多重化水平增加。例如,可使用标记抗体来靶向定位于细胞组分的蛋白质靶标,同时在微滴内不含标记的PCR和/或RT-PCR产物。这允许相同颜色的染料用于抗体并用于由RT-PCR产生的扩增子。
微滴的类型
在实施本发明的方法时,微滴的组成和性质可变化。例如,在某些方面,可使用表面活性剂来稳定化微滴。因此,微滴可包括表面活性剂稳定的乳液。可使用允许在液滴中进行的所需反应的任何便利的表面活性剂。在其它方面,微滴并未被表面活性剂或粒子稳定化。
所用的表面活性剂取决于多种因素,例如用于乳液的油相和水相(或其它合适的不混溶相,例如,任何合适的疏水相和亲水相)。例如,当在氟碳油中使用水性小滴时,表面活性剂可具有亲水性嵌段(PEG-PPO)和疏水性氟化嵌段(Krytox FSH)。然而,如果油被切换为烃油,则例如将选择表面活性剂以使得其具有疏水性烃嵌段,如表面活性剂ABIL EM90。在选择表面活性剂时,在选择表面活性剂中可考虑的所需特性可包括以下一项或多项:(1)表面活性剂具有低粘度;(2)表面活性剂与用于构建装置的聚合物不混溶,并且因此它不会溶胀装置;(3)生物相容性;(4)测定试剂不可溶于表面活性剂中;(5)表面活性剂展现有利的气体溶解性,因为它允许气体进出;(6)表面活性剂具有高于PCR所用温度(例如,95C)的沸点;(7)乳液稳定性;(8)表面活性剂稳定化具有所需尺寸的液滴;(9)表面活性剂可溶于载体相中而非小滴相中;(10)表面活性剂具有有限的荧光特性;和(11)表面活性剂在一定范围的温度下保持可溶于载体相中。
还可预想其它表面活性剂,包括离子性表面活性剂。油中还可包括其它添加剂来稳定化液滴,包括在高于35℃的温度下增加小滴稳定性的聚合物。
向微滴中加入试剂
在实施所述主题方法时,多种试剂可能需要以一个或多个步骤(例如,约2、约3、约4或约5个或更多的步骤)加入微滴中。向微滴中加入试剂的方法可以多种方式变化。相关的方法包括(但不限于)Ahn等,Appl.Phys.Lett.88,264105(2006);Priest等,Appl.Phys.Lett.89,134101(2006);Abate等,PNAS,2010年11月9日,第107卷第45期,19163-19166;和Song等,Anal.Chem.,2006,78(14),第4839-4849页所述的那些;所述文献的公开内容以引用的方式并入本文中。
例如,可通过包括将微滴与含有试剂的第二微滴合并的方法将所述试剂加入微滴中。可通过任何便利的方法,具体包括本文所述的那些,来加入包含在第二微滴中的试剂。这种小滴可与第一微滴合并以产生包括第一微滴与第二微滴的内含物的微滴。
还可以或代替地使用例如小滴聚结或皮可注射的技术来加入一种或多种试剂。在小滴聚结中,可使目标液滴(即,微滴)与含有待加入微滴的试剂的微滴并排流动。可使所述两种微滴流动以使得它们彼此接触,但不接触其它微滴。然后可使这些液滴通过施加电场的电极或其它构件,其中所述电场可使微滴失稳以使得它们合并在一起。
还可以或代替地使用皮可注射来加入试剂。在这种方法中,可使目标液滴(即,微滴)流过含有待加入的试剂的通道,其中所述试剂处于高压下。然而,由于表面活性剂的存在,在不存在电场的情况下,微滴将在不被注射的情况下流过,因为涂覆微滴的表面活性剂可阻止流体进入。然而,如果随着微滴流过注射器而向其施加电场,则含有试剂的流体将被注射至微滴中。加入微滴中的试剂的量可通过若干不同参数控制,例如通过调节注射压力和流动液滴的速度,通过开通和关闭电场等。
在其它方面,还可以或代替地通过不依赖于将两个小滴合并在一起或将液体注射至液滴中的方法将一种或多种试剂加入微滴中。实际上,可通过如下方法将一种或多种试剂加入微滴中,所述方法包括以下步骤:将试剂乳化成非常小液滴的流,和将这些小液滴与目标微滴合并(图20,图A-B)。这些方法将在本文被称为“通过多液滴聚结加入试剂”。这些方法利用如下事实:由于待加入的液滴相比于目标液滴的尺寸小,因此小液滴将比目标液滴更快地流动并在其后收集。然后可通过例如施加电场来合并收集。这种方法还可以或代替地用于通过使用不同流体的小液滴的若干共同流动流来向微滴中加入多种试剂。为了能够有效合并微小液滴和目标液滴,重要的是使微小液滴小于含有目标液滴的通道,以及使得注射目标液滴的通道距施加电场的电极之间的距离足够长,以向微小液滴提供时间来“追上”目标液滴。如果这个通道过短,则并非所有的微小液滴将与目标液滴合并并且相比于所需加入较少试剂。在一定程度上,这可以通过增加电场量值来补偿,这往往使得液滴更难以合并。除了在相同的微流体装置上制造微小液滴之外,如图20的图A-B中所示,它们还可以或代替地使用另一种微流体液滴制造器或通过均质化并且然后将它们注射至含有目标液滴的装置中来离线制造。
因此,在某些方面,通过如下方法将试剂加入微滴中,所述方法包括:将试剂乳化成小滴流,其中所述小滴小于微滴的尺寸;使所述小滴与微滴一起流动;并且将小滴与微滴合并。小滴流中所含的小滴的直径可在微滴直径的约75%或更小的范围内变化,例如,流动小滴的直径是微滴直径的约75%或更小、微滴直径的约50%或更小、微滴直径的约25%或更小、微滴直径的约15%或更小、微滴直径的约10%或更小、微滴直径的约5%或更小或微滴直径的约2%或更小。在某些方面,多个流动小滴可与微滴合并,例如2个或更多个的小滴、3个或更多个、4个或更多个或5个或更多个。这种合并可通过任何便利方法实现,包括(但不限于)通过施加电场,其中所述电场可有效用于合并流动小滴与微滴。
作为上述方法的变型,流体可喷射。也就是说,并非将待加入的流体乳化成流动小滴,而是可形成这种流体的长射流并与目标微滴并排流动。然后可通过例如施加电场来合并这两种流体。结果是具有隆起的射流,其中微滴在合并之前由于瑞利高地不稳定性(Rayleighplateau instability)而可天然分裂成具有目标微滴的大致尺寸的微滴。涵盖多种变型。例如,一种或多种试剂可加入喷射流体中以使其更容易喷射,例如胶凝剂和/或表面活性剂。此外,连续流体的粘度还可被调节以实现喷射,例如Utada等,Phys.Rev.Lett.99,094502(2007)所述,所述文献的公开内容以引用的方式并入本文中。
在其它方面,可使用如下方法来加入一种或多种试剂,所述方法通过利用溶解于溶液中的电解质使用注射流体本身作为电极(图15-19)。这种一般类型的方法更充分地描述于本文实施例3中。
在另一个方面,将试剂加入在较早时间通过将加入有试剂的液滴(即,“目标液滴”)包封在含有待加入的试剂(“目标试剂”)的液滴内部而形成的液滴(例如,微滴)。在某些实施方案中,通过首先将目标液滴封装在合适疏水相(例如油)的外壳中以形成双重乳液来进行这种方法。然后通过含有目标试剂的液滴来封装所述双重乳液以形成三重乳液。为了组合目标液滴与含有目标试剂的液滴,然后使用任何合适的方法使双重乳液爆裂开,所述方法包括(但不限于)施加电场,加入使小滴界面失稳的化学物质,使三重乳液流过收缩器和其它微流体几何结构,施加机械搅拌或超声,提高或降低温度,或通过将磁性粒子封装在可在被磁场牵拉时使双重乳液界面破裂的液滴中。制造三重乳液和将目标液滴与目标试剂组合的方法描述于本文提供的实施例4中。
检测PCR产物
在实施所述主题方法时,可检测PCR产物的方式可变化。例如,如果目标是简单地对群体中存在的特定细胞类型,例如肿瘤细胞的数目进行计数,则这可通过使用简单的二元测定来实现,其中向每个微滴中加入SybrGreen或任何其它染色剂和/或插入染色剂,以使得在存在特征基因(例如,致癌基因)并产生PCR产物的情况下,液滴将变得发荧光。荧光变化可能是由于荧光偏振。检测组分可包括使用插入染色剂(例如,SybrGreen)。
在实施主题方法时可使用多种不同的检测组分,包括使用本领域中已知的荧光染料。荧光染料可通常分成多个家族,例如荧光素和其衍生物;若丹明和其衍生物;花青和其衍生物;香豆素和其衍生物;瀑布蓝和其衍生物;荧光黄和其衍生物;BODIPY和其衍生物等。示例性荧光团包括吲哚羰花青(C3)、吲哚二羰花青(C5)、Cy3、Cy3.5、Cy5、Cy5.5、Cy7、德克萨斯红、太平洋蓝、俄勒冈绿488、Alexafluor-355、Alexa Fluor 488、Alexa Fluor 532、Alexa Fluor 546、AlexaFluor-555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 647、AlexaFluor 660、Alexa Fluor 680、JOE、丽丝胺、若丹明绿、BODIPY、异硫氰酸荧光素(FITC)、羧基-荧光素(FAM)、藻红蛋白、若丹明、二氯若丹明(dRhodamine)、羧基四甲基若丹明(TAMRA)、羧基-X-若丹明(ROX)、LIZ、VIC、NED、PET、SYBR、PicoGreen、RiboGreen等。荧光团和其使用的描述可尤其见于R.Haugland,Handbook ofFluorescent Probes and Research Products,第9版(2002),MolecularProbes,Eugene,Oreg.;M.Schena,Microarray Analysis(2003),JohnWiley&Sons,Hoboken,N.J.;Synthetic Medicinal Chemistry 2003/2004目录,Berry and Associates,Ann Arbor,Mich.;G.Hermanson,Bioconjugate Techniques,Academic Press(1996);和Glen Research2002目录,Sterling,VA。
图14的图A-B描绘单色流式细胞仪的使用,其可用于例如检测含有肿瘤细胞的液滴。图A呈现由488nm激光器组成的检测器的示意图,所述激光器指向物镜的背面,并且聚焦到小滴所流过的微流体通道上。所述激光器可激发液滴内的荧光染料,并且由物镜捕捉任何发射的光并在其通过分色镜和520±5nm带通滤波器过滤后成像到PMT上。转向图B,液滴以强度随着时间变化的峰形式出现,如由PMT的输出电压所示,对于所检测的荧光液滴,其与发射光随时间变化的强度成比例。
图3和图4的图A-B进一步说明这种概念。图3例如是描绘在所测定的微滴中使用PCR测定进行BRAF的数字检测的非限制性实例。荧光液滴指示BRAF基因从人类基因组DNA的扩增,而非荧光液滴不含所述基因。转向图4的图A-B,概括了这种流程。在图4的图A中,呈现了示出将正向和反向引物封装在靶向致癌序列的微滴中的示意图。如果存在致癌序列,则PCR反应产生双链PCR产物(图A,上方),而如果不存在,则不产生产物(图A,下方)。SybrGreen或任何其它类型的插入染色剂也存在于液滴中。结果由图4的图B中的图像描绘,在于如果产生双链产物,则染料插入其中,变得发荧光,并且使液滴发荧光(图4,图B,上方);相比之下,如果不产生双链产物,则染料保持非荧光,产生暗淡的液滴(图4,图B,下方)。
在其它方面,特别是如果目标是进一步表征存在的致癌基因,则可能需要其它测试。例如,在本文更充分描述的多重测定的情况下(实施例2),这可通过具有与在液滴中扩增的基因相关的光输出来实现。另一种方法将是使用二元输出,例如,利用插入染色剂,以简单地确定哪些小滴具有任何致癌基因。然后可将这些分选以回收这些液滴,以使得它们可被更详细地分析以确定它们含有哪些致癌基因。为了测定这种液滴中存在的致癌基因,可使用微流体技术或非微流体技术。使用非微流体技术,可将鉴定为含有致癌基因的小滴放置在多孔板上的孔中,在多孔板中将被稀释成较大的体积,从而释放在多重PCR反应期间产生的所有PCR产物。然后可将来自这个孔的样本转移至其它孔中,向其中每一个加入致癌基因之一的引物。然后将这些孔进行温度循环以引发PCR,此时将加入插入染色剂以造成具有匹配的致癌基因和引物的孔被照亮。
因此,在实施主题方法时,可基于例如荧光变化来检测组分。在某些方面,荧光变化是由于荧光共振能量转移(FRET)。在这种方法中,可使用一组特殊的引物,其中5'引物具有淬灭染料并且3'引物具有荧光染料。这些染料可被布置在引物上的任何地方,在末端或在中间。因为所述引物是互补的,所以它们将以双链体形式存在于溶液中,因此荧光染料的发射将通过淬灭染料来淬灭,因为它们将彼此紧密接近,从而造成溶液显得暗淡。在PCR后,这些引物将被并入长的PCR产物中,并且因此将彼此远离。这将使得荧光染料发光,从而造成溶液变得发荧光。因此,为了检测是否存在特定致癌基因,可在荧光染料的波长下测量小滴的强度。为了检测是否存在不同的致癌基因,这将针对不同引物用不同颜色的染料来进行。这将造成小滴在对应于细胞中存在的致癌基因的引物的所有波长下变得发荧光。
分选
在实施本公开的方法时,可采用一个或多个分选步骤。相关的分析方法包括(但未必限于)包括使用膜阀、分叉通道、表面声波和/或介电电泳的方法。相关的分选方法进一步包括图2和图22的图A-B中所描绘的那些,以及由Agresti等,PNAS第107卷,第9期,4004-4009所述的那些;其公开内容以引用的方式并入本文中。群体可通过分选富集,在于含有具有或不具有所需特性的成员的混合物的群体可通过去除那些不具有所需特性的成员来富集,从而产生具有所需特性的富集群体。
可在本文所述的任何步骤之前或之后应用分选。此外,两个或更多个分选步骤可应用于微滴群体,例如,约2个或更多的分选步骤、约3个或更多个、约4个或更多个、或约5个或更多个等。当应用多个分选步骤时,所述步骤可以一种或多种方式基本上相同或不同(例如,基于不同特性的分选、使用不同技术的分选等)。
此外,可在任何分选步骤之前或之后纯化小滴。图21呈现可纯化微滴的微流体装置的示意图。也就是说,用纯化溶液置换液滴中的大部分流体,而不去除可封装在液滴中的任何离散试剂,例如细胞或珠粒。首先向微滴中注射溶液以稀释其中的任何杂质。然后使稀释的微滴流过使用电极在上面施用有电场的微流体通道。由于所述电场产生的介电电泳力,随着细胞或其它离散试剂通过电场,它们将在流动中被置换。然后液滴分裂,以使得所有物体终止于一个微滴。因此,初始微滴已被纯化,在于污染物可被去除,同时在所得微滴中维持可封装在小滴内的离散试剂例如珠粒或细胞的存在和/或浓度。
可基于一种或多种特性来分选微滴。相关特性包括(但不限于)一种或多种组分的尺寸、粘度、质量、浮力、表面张力、电导率、电荷、磁力和/或存在或不存在。在某些方面,可至少部分地基于微滴中细胞的存在或不存在进行分选。在某些方面,可至少部分地基于PCR扩增产物的存在或不存在的检测来进行分选。
微滴分选可用于例如去除其中不存在细胞的微滴。封装可产生一个或多个微滴,包括其中不存在细胞的大多数微滴。如果这些空液滴留在系统中,则它们将被加工成任何其它液滴,在此期间会浪费试剂和时间。为了实现最高的速度和效率,可利用小滴分选去除这些空液滴。例如,如实施例1中所述,液滴制造器可接近于滴落至喷射转变来操作,以使得在不存在细胞的情况下,形成8μm液滴;相比之下,当存在细胞时,在流动中产生的扰动将触发射流的解体,从而形成直径为25μm的液滴。所述装置因此可产生8μm空液滴和含有单细胞的25μm液滴的双分散群体,其然后可通过使用例如流体动力学分选仪进行尺寸分选以仅回收较大的含单细胞的液滴。
相关的无源分选仪包括流体动力学分选仪,基于小液滴和大液滴穿过微流体通道的不同方式,其根据尺寸将微滴分选到不同的通道中。还相关的是批量分选仪,它的一个简单实例是在重力场中含有不同质量的液滴的管。通过对所述管进行离心、搅动和/或振荡,具有更大浮力的较轻的液滴将自然地迁移到容器顶部。可以类似的方法分选具有磁性的液滴,不同之处是通过向容器施加磁场,具有磁性的液滴将根据那些特性的量值自然地朝向所述容器迁移。如主题方法中所用的无源分选仪还可包括相对大的通道,其将基于液滴的流动特性同时分选大量的液滴。
还可以使用皮可注射来改变液滴的电特性。这可例如用于通过加入离子来改变液滴的电导率,其然后可用于例如使用介电电泳对液滴进行分选。可选地,还可以使用皮可注射来使液滴带电荷。这可通过将带电荷的流体注射至液滴中来实现,因此在注射后,液滴将带电荷。这将产生液滴的集合,其中一些带电荷而其它没有,并且带电荷的液滴然后可通过使其流过电场区域来提取,所述电场将基于其电荷量使液滴偏转。通过调节皮可注射来注射不同量的液体,或通过调节电压以针对固定注射体积来注入不同电荷,可调节液滴上的最终电荷,以产生具有不同电荷的液滴。然后这些液滴在电场区域中偏转不同量,从而使它们分选到不同的容器中。
合适的受试者
所述主题方法可应用于从多种不同受试者中获取的生物样本。在许多实施方案中,受试者是“哺乳类”或“哺乳动物”,其中这些术语广泛地用于描述哺乳纲内的生物体,包括食肉目(例如,狗和猫)、啮齿目(例如,小鼠、豚鼠和大鼠)和灵长目(例如,人、黑猩猩和猴)。在许多实施方案中,受试者是人。所述主题方法可应用于两种性别和处于任何发育阶段的人受试者(即,新生儿、婴儿、少年、青少年、成人),其中在某些实施方案中,人受试者是少年、青少年或成人。而本发明可应用于人受试者,应了解,所述主题方法还可对其它动物受试者(即,在“非人受试者”中)进行,例如(但不限于)鸟、小鼠、大鼠、狗、猫、家畜和马。因此,应了解,根据本公开需要评估的任何受试者都是合适的。
此外,合适的受试者包括已诊断患有病状如癌症的受试者和未诊断患有病状如癌症的受试者。合适的受试者包括显示一种或多种癌症的临床表现的那些受试者和未显示一种或多种癌症的临床表现的那些受试者。在某些方面,受试者可能是由于以下一种或多种因素而处于患上癌症的风险中的受试者,所述因素例如家族史、化学和/或环境暴露、基因突变(例如,BRCA1和/或BRCA2突变)、激素、感染剂、辐射暴露、生活方式(例如,饮食和/或吸烟)、一种或多种其它疾病病状的存在等。
如上文更充分描述,多种不同类型的生物样本可获自这些受试者。在某些实施方案中,从受试者抽取全血。需要时,可在实施主题方法之前处理全血,例如通过离心、分级分离、纯化等。从受试者抽取的全血样本的体积可为100mL或更少,例如,约100mL或更少、约50mL或更少、约30mL或更少、约15mL或更少、约10mL或更少、约5mL或更少或约1mL或更少。
本文提供的主题方法和装置与固定细胞和活细胞相容。在某些实施方案中,用活细胞实施所述主题方法和装置。在其它实施方案中,用固定细胞实施所述主题方法和装置。细胞样本的固定允许从待洗涤的样本提取可能干扰下游分析的小分子和脂质。此外,细胞的固定和渗透允许细胞用针对表面蛋白质以及细胞内蛋白质的抗体染色。与本文所述的RT-PCR方法组合,这种染色可用于实现高的多重化水平,因为抗体被定位于细胞样本,而微滴内不含RT-PCR产物。这样的构型允许相同颜色的染料用于抗体和用于由RT-PCR产生的扩增子。任何合适的方法可用于固定细胞,包括(但不限于)使用甲醛、甲醇和/或丙酮固定。
可通过首先稀释微滴以及对稀释微滴样本进行RT-PCR反应来进行对微滴中所封装的固定细胞进行的RT-PCR。细胞样本的这种稀释可有助于限制将干扰RT-PCR的任何细胞化合物。在其它实施方案中,在样本不存在任何稀释的情况下将RT-PCR试剂直接加入“一锅”反应中含有固定细胞的微滴中。在某些实施方案中,使用蛋白酶和清洁剂在RT-PCR之前将固定细胞增溶。
细胞的基因分型
如上文所概述,本发明的方面还包括对来自生物样本的组分进行基因分型的方法。“基因分型”意指对特定细胞中的两种或多种寡核苷酸(例如,致癌基因)的检测。方面包括对细胞,例如肿瘤细胞(包括CTC)进行基因分型的方法。
在某些这样的方面中,所述方法包括将获自受试者的血液样本的细胞封装在微滴中,其中在所述微滴中存在一个细胞;将裂解剂引入所述微滴中并且在有效使细胞裂解的条件下孵育所述微滴;将聚合酶链式反应(PCR)试剂和多个PCR引物引入所述微滴中,并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;将多个探针引入所述微滴中,其中所述探针与一种或多种目标突变杂交并在不同波长下发荧光;以及通过探针荧光的检测来检测特定PCR扩增产物的存在或不存在,其中检测到荧光指示所述PCR扩增产物的存在;其中一个或多个步骤是在微流体控制下进行的。
在其它方面,所述方法可包括将获自受试者的血液样本的细胞封装在微滴中,其中所述微滴中存在一个细胞;将裂解剂引入所述微滴中并且在有效使细胞裂解的条件下孵育所述微滴;将聚合酶链式反应(PCR)试剂和多个PCR引物引入所述微滴中,并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物,所述引物包括含有标记的正向引物,和含有捕捉序列的反向引物;将荧光珠粒引入所述微滴中,其中所述珠粒包括与捕捉序列互补的核苷酸序列;以及通过所述珠粒的荧光和引物荧光的检测来检测所述PCR扩增产物的存在或不存在,其中检测到荧光指示所述PCR扩增产物的存在;其中一个或多个步骤是在微流体控制下进行的。
在实施用于对细胞进行基因分型的方法时,可对本文所述的一般步骤作出任何变化,例如可加入的引物的数目、加入试剂的方式、合适的受试者等。
检测癌症
根据本发明的方法还包括用于检测癌症的方法。这些方法可包括将获自受试者的生物样本的寡核苷酸封装在微滴中,其中所述微滴中存在至少一种寡核苷酸;将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;以及通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在。
检测到对应于一种或多种致癌基因的一种或多种PCR扩增产物可能指示所述受试者患有癌症。加入微滴中的特定致癌基因可能改变。在某些方面,所述致癌基因可对特定类型的癌症,例如乳腺癌、结肠癌等具特异性。
此外,在实施主题方法时,待检测其中组分的生物样本可改变,并且可能至少部分地基于寻求检测的特定癌症类型。例如,在某些情况下,如果需要确定受试者是否患有乳腺癌等,则乳腺组织可用作生物样本。
在实施用于检测癌症的方法时,可对本文所述的一般步骤作出任何变化,例如可加入的引物的数目、加入试剂的方式、合适的受试者等。
装置
如上文所示,本发明的实施方案使用微流体装置。本发明的微流体装置可以多种方式表征。在某些实施方案中,例如,微流体装置具有至少一个“微”通道。这些通道可具有毫米或更小量级的至少一个横截面尺寸(例如,小于或等于约1毫米)。显然,对于某些应用,这种尺寸可调节;在一些实施方案中,至少一个横截面尺寸是约500微米或更小。在一些实施方案中,此外随着应用允许,横截面尺寸是约100微米或更小(或甚至约10微米或更小-有时甚至约1微米或更小)。横截面尺寸是大致垂直于中心线流动方向的尺寸,但应了解,当流动通过倾向于改变流动方向的肘部或其它特征件时,所用的横截面尺寸无需严格垂直于流动。还应了解,在一些实施方案中,微通道可具有两个或更多个横截面尺寸,例如矩形横截面的高度和宽度或者椭圆形横截面的长轴和短轴。可针对此次呈现的尺寸比较这些尺寸中的任一种。注意到,在本发明中使用的微通道可具有相差悬殊的两种尺寸-例如,矩形横截面具有约100-200微米的高度和在厘米或更高量级上的宽度。当然,某些装置可采用如下通道,其中两个或更多个轴在尺寸上非常相似或甚至相同(例如,具有正方形或圆形横截面的通道)。
在一些实施方案中,本发明的微流体装置是使用微制造技术制造的。这种技术通常用于制造集成电路(IC)、微机电装置(MEMS)、显示装置等。在可用于制造微流体装置中的小尺寸图案的微制造工艺类型中,制造是光刻法(包括X射线光刻法、电子束光刻法等)、自对准沉积和蚀刻技术、各向异性沉积和蚀刻工艺、自组装掩模形成(例如,形成疏水性-亲水性共聚物的层)等。
鉴于上述,应了解,本文所述的一些原理和设计特征可扩大规模至更大的装置和系统,包括采用达到毫米或甚至厘米规模通道横截面的通道的装置和系统。因此,当将一些装置和系统描述为“微流体”时,预期在某些实施方案中,所述描述同样适用于一些较大规模的装置。
当提及微流体“装置”时,它一般预期表示其中一个或多个通道、储集器、平台等共用连续基底的单一实体,其可能是或可能不是整体的。微流体“系统”可包括一个或多个微流体装置和相关的流体连接、电气连接、控制/逻辑特征等。微流体装置的方面包括一个或多个具有如本文所讨论的尺寸的流体流动路径(例如,通道)的存在。
在某些实施方案中,本发明的微流体装置提供流体介质的连续流动。流过微流体装置中的通道的流体展现许多有趣的特性。通常,无因次雷诺数(dimensionless Reynolds number)非常低,导致流动始终保持层流。此外,在这种方式中,两种结合的流体将不会容易地混合,并且仅扩散可驱动两种化合物的混合。
现将描述适于本发明使用的微流体装置组件的各种特征和实例。
基底
微流体系统中使用的基底是提供流体传输的必要元件的支撑物。基本结构可为整体、层状或者分区的。通常,基底包括一个或多个充当分子库和试剂的导管的微通道(如果必要的话)。它们还可包括输入端口、输出端口和/或辅助流动控制的特征件。
在某些实施方案中,基底选择可能取决于装置的应用和设计。一般针对它们与多种操作条件的相容性来选择基底材料。在微制造工艺中对于给定材料的限制也是在选择合适基底时的相关考虑。有用的基底材料包括例如玻璃、聚合物、硅、金属和陶瓷。
聚合物是用于微流体装置的标准材料,因为它们适于具成本效益和高量生产。聚合物可根据其模制行为分成三个类别:热塑性聚合物、弹性体聚合物和硬塑性聚合物。热塑性聚合物可在高于玻璃化转变温度下模制成型,并且在冷却至低于玻璃化转变温度后仍将保持这些形状。弹性体聚合物可在施加外力后被拉伸,但在外力去除后将恢复到原始状态。弹性体在达到其分解温度之前不会熔融。硬塑性聚合物必须浇铸成其最终形状,因为它们在温度达到其分解温度之前少量软化。
在可用于本发明的微制造装置中的聚合物中包括聚酰胺(PA)、聚对苯二甲酸丁二酯(PBT)、聚碳酸酯(PC)、聚乙烯(PE)、聚甲基丙烯酸甲酯(PMMA)、聚甲醛(POM)、聚丙烯(PP)、聚苯醚(PPE)、聚苯乙烯(PS)和聚砜(PSU)。聚合物的化学和物理特性可限制其在微流体装置中的使用。特别是与玻璃相比,较低的耐化学品性、老化、机械稳定性和UV稳定性可限制聚合物对于特定应用的使用。
也可用作基底材料的玻璃在特定操作条件下具有特定优点。因为玻璃对大部分液体和气体呈化学惰性,所以对于采用具有溶解塑料的趋势的特定溶剂的应用是特别适当的。另外,它的透明特性使得玻璃特别适用于光学或UV检测。
表面处理和涂层
表面改性可适用于控制微流体装置的功能机制(例如,流量控制)。例如,它对于保持流体物质免于吸附到通道壁或者将抗体连接至生物组分的检测表面可为有利的。
聚合物装置特别倾向于具疏水性,并且因此通道的装载可为困难的。聚合物表面的疏水特性也使其难以控制电渗流动(EOF)。一种用于涂覆聚合物表面的技术是向通道表面涂覆聚电解质多层(PEM)。PEM包括用正性和负性聚电解质的交替溶液连续地填充通道,从而允许多层形成静电粘结。尽管所述层通常不会粘结至通道表面,但它们即使在长期储存后仍可完全地覆盖通道。另一种用于在聚合物表面上涂覆亲水层的技术包括将聚合物UV接枝到通道表面。通过使所述表面暴露于UV辐射且同时使装置暴露于单体溶液而在表面处产生第一接枝位点、自由基。所述单体反应以形成在反应位点共价键合的聚合物。
玻璃通道一般具有高的表面电荷水平,从而使蛋白质吸附并且可能阻碍分离过程。在一些情况下,在玻璃通道上涂覆聚二甲基硅氧烷(PDMS)和/或表面活性剂涂层可为有利的。可用于阻止表面吸附的其它聚合物包括聚丙烯酰胺、乙二醇基团、聚硅氧烷、甘油基缩水甘油氧基丙基、聚(乙二醇)和羟基乙基化聚(乙烯亚胺)。此外,对于电渗装置,有利的是具有带有电荷的涂层,其可通过操纵装置内部的条件(例如pH)来调节量值。还可基于涂层来选择流动方向,因为所述涂层可能带正电荷或带负电荷。
还可涂覆专门的涂层以固定通道表面上的某些物质-这种方法被本领域中的技术人员称为“将表面功能化”。例如,可用胺涂覆聚甲基丙烯酸甲酯(PMMA)表面以促进多种官能团或靶标的连接。可选地,PMMA表面可通过氧等离子体处理工艺而变成亲水性。
微流体元件
微流体系统可含有多个微通道、阀、泵、反应器、混合器和其它组件。下文讨论这些组件中的一些和其一般结构和尺寸。
各种类型的阀可用于本发明的微流体装置中的流动控制。这些包括(但不限于)被动阀和止回阀(膜、阀瓣、双瓣、泄漏等)。通过这些阀的流速取决于所述阀的各种物理特征,例如表面积、流动通道的尺寸、阀材料等。阀还具有相关的操作和制造优点/缺点,其在微流体装置的设计期间应被考虑到。
与其它微流体组件一样,微泵经受制造限制。在泵设计中的典型考虑包括气泡的处理、堵塞和耐久性。目前可用的微泵包括(但不限于)电气等效泵、固定冲程微位移、蠕动微膜和具有集成止回阀的泵。
大装置依赖于湍流力,例如振荡和搅拌以混合试剂。相比之下,这些湍流力实际上在微装置中不可获得,在微流体装置中的混合一般通过扩散实现。由于通过扩散进行混合可能缓慢且低效,因此微结构通常设计用于增强混合过程。这些结构以增加流体区域之间的界面表面积的方式操纵流体,从而加速扩散。在某些实施方案中,使用微流体混合器。此类混合器可提供在本发明的微流体分离装置上游(并且在一些情况下与其集成)。
微混合器可分成两种一般类别:有源混合器和无源混合器。有源混合器通过在流动区域上施加主动控制来起作用(例如改变压力梯度、电荷等)。无源混合器无需输入能量并且仅使用“流体动力学”(例如压力)来驱动在恒定速率下的流体流动。无源混合器的一个实例涉及将用板隔开的两个流动流堆叠在彼此顶部。一旦去除隔离板,所述流动流就彼此接触。两种液体的堆叠增加了接触面积并降低了扩散长度,从而增强了扩散过程。如果需要热管理,则可将混合和反应装置连接至热转移系统。与大型热交换器一样,微型热交换器可具有顺流、逆流或横流流动方案。微流体装置通常具有在约10μm与约10cm之间的通道宽度和深度。常见的通道结构包括长的主分离通道,和三个较短的终止于缓冲液、样本或废液储集器的“旁枝”侧通道。所述分离通道可以是几厘米长,并且三个侧通道的长度通常只有几毫米。当然,微流体装置的实际长度、横截面面积、形状和分支设计取决于应用以及其它设计考虑因素,例如通量(其取决于流动阻力)、速度分布、滞留时间等。
本文所述的微流体装置可包括电场发生器以执行本文所述方法的某些步骤,包括(但不限于)皮可注射、小滴聚结、选择性小滴融合和小滴分选。在某些实施方案中,使用金属电极产生电场。在特定实施方案中,使用液体电极产生电场。在某些实施方案中,液体电极包括填充有导电液体(例如盐水或缓冲液)并位于微流体装置中需要电场的位置处的液体电极通道。在特定实施方案中,使用电源或高电压放大器将液体电极通电。在一些实施方案中,液体电极通道包括入口端口,以使得导电液体可加入液体电极通道中。这种导电液体可例如通过将填充有液体的管连接至入口端口并施加压力而加入液体电极通道。在特定实施方案中,液体电极通道还包括用于从通道释放导电液体的出口端口。在特定实施方案中,将液体电极用于本文所述的微流体装置的皮可注射、小滴聚结、选择性小滴融合和/或小滴分选方面中。液体电极可用于例如使经由施用电场而注射的物质不带电荷的情况。
如本文所述的液体电极也具有在本文所讨论的特定微流体装置应用之外的适用性。例如,液体电极可用于一般使用金属电极的多种装置中。另外,液体电极可特别充分适用于柔性装置,例如被设计成穿戴在身体上的装置和/或由于其操作而必须弯曲的装置。
在某些实施方案中,紧邻与输入微通道、配对微通道和/或皮可注射微通道中的一个或多个的接点下游的微流体装置通道的一个或多个壁包括一个或多个脊。所述微通道的壁中的这些脊被构造以捕集合适相的层,例如,合适的疏水相(例如,油)并且从而防止不可混溶的相(例如,水相)接触微通道的壁,所述接触可造成通道壁的润湿。这种润湿可能是不合需要的,因为其可导致不可预测的液滴形成和/或允许流体在液滴之间转移,从而导致污染。在某些实施方案中,脊允许以较高的流量比R(Q水相/Q总和)下形成液滴。
在某些实施方案中,微流体装置的微通道(例如,输入微通道、配对微通道、皮可注射微通道和/或这些通道中的一个或多个上游或下游的流动通道)中的一个或多个的宽度为100微米或更小,例如,90微米或更小、80微米或更小、70微米或更小、60微米或更小、50微米或更小,例如,45微米或更小、40微米或更小、39微米或更小、38微米或更小、37微米或更小、36微米或更小、35微米或更小、34微米或更小、33微米或更小、32微米或更小、31微米或更小、30微米或更小、29微米或更小、28微米或更小、27微米或更小、26微米或更小、25微米或更小、20微米或更小、15微米或更小或10微米或更小。在一些实施方案中,上述微通道中的一个或多个的宽度为约10微米至约15微米、约15微米至约20微米、约20微米至约25微米、约25微米至约30微米、约30微米至约35微米、约35微米至约40微米、约40微米至约45微米、或约45微米至约50微米、约50微米至约60微米、约60微米至约70微米、约70微米至约80微米、约80微米至约90微米或约90微米至约100微米。
在某些实施方案中,一个或多个脊各自的底边长度为约10微米至约20微米,例如,长度为约11至约19微米、长度为约12至约18微米、长度为约13至约17微米、长度为约14至约16微米或长度为约15微米。
在某些实施方案中,一个或多个脊各自的峰具有约1至约10微米,例如约1至约9微米、约2至约8微米、约3至约7微米、约4至约6微米或约5微米的宽度。在某些实施方案中,一个或多个脊各自的峰具有约1微米至约2微米、约2微米至约3微米、约3微米至约4微米、约4微米至约5微米、约5微米至约6微米、约6微米至约7微米、约7微米至约8微米、约8微米至约9微米或约9微米至约10微米的宽度。
在某些实施方案中,一个或多个脊各自的高度为约5微米至约15微米,例如,约6微米至约14微米、约7微米至约13微米、约8微米至约12微米、约9微米至约11微米或约10微米。
在某些实施方案中,一个或多个脊各自的底边与一个或多个脊各自的高度的比率为约1.0:0.75至约0.75:1.0。在某些实施方案中,一个或多个脊各自的底边与一个或多个脊各自的峰宽度的比率为约1.0:0.5至约1.0:0.1,例如,约1.0:0.2、约1.0:0.3或约1.0:0.4。
在某些实施方案中,一个或多个脊各自的底边与一个或多个脊各自的高度与一个或多个脊各自的峰宽度的比率为约1:0.75:0.5。
在某些实施方案中,如本文所述的通道具有多个脊,其沿着通道壁延伸一段距离。这个距离可为例如约50微米至约500微米,例如,约50微米至约450微米、约100微米至约400微米、约150微米至约350微米、约200微米至约300微米或约250微米。在某些实施方案中,可提供多个脊,其沿着通道壁延伸一段距离,其中沿着通道壁的距离与通道宽度之间的比率为约10:1至约1:2,例如,约10:1、约9:1、约8:1、约7:1、约6:1、约5:1、约4:1、约3:1、约2:1、约1:1或约1:2。
应注意到,上文讨论的多种尺寸中的一个或多个可在适当时针对特定应用按比例放大或缩小,例如上述尺寸各自可在适当时按比例放大或缩小2、5、10或更大的倍数。
在一些实施方案中,一个或多个通道接点,例如一个或多个小滴形成接点,例如皮可注射器接点,包括“步降”结构。这描绘于例如图26中,其中在皮可注射器接点的流动通道并在皮可注射器接点下游的部分比皮可注射器接点上游的流动通道的部分更宽。这种步降结构促进小滴的夹断并因此促进小滴形成。可基于待形成的小滴的所需尺寸来选择步长,其中较大的步长产生较大的小滴。这样的结构也可有助于避免来自皮可注射器的物质在从皮可注射器注射至小滴中之后滴落。在一些实施方案中,在皮可注射器接点处并在皮可注射器接点下游的流动通道的宽度比紧邻皮可注射器接点上游的流动通道的宽度宽约5%至约50%,例如,宽约5至约10%、宽约10至约20%、宽约20至约30%、宽约30至约40%或宽约40至约50%。
制造方法
根据基底中所用材料的类型和所期望的生产量,微制造工艺有所不同。对于小批量生产或原型,制造技术包括LIGA、粉末喷砂、激光烧蚀、机械加工、放电加工、光成形等。用于微流体装置的大规模生产的技术可使用基于光刻或母版的复制方法。用于从硅/玻璃制造基底的光刻工艺包括通常用于制造半导体装置的湿式和干式蚀刻技术。注塑成型和热压印通常用于塑料基底的大规模生产。
玻璃、硅和其它“硬质”材料(光刻、蚀刻、沉积)
可使用光刻、蚀刻和沉积技术的组合来制造由玻璃、硅和其它“硬质”材料制成的微沟道和微腔。基于上述技术的技术通常应用于制造以0.1-500微米尺度的装置。
基于现有的半导体制造工艺的微制造技术一般在清洁室中进行。所述清洁室的品质按照每立方英寸中尺寸<4μm的粒子数目进行分类。用于MEMS微制造的典型的清洁室种类为1000至10000。
在某些实施方案中,光刻法可用于微制造中。在光刻法中,已沉积在基底上的光致抗蚀剂通过光掩模暴露于光源。常规的光致抗蚀剂方法允许至多10-40μm的结构高度。如果需要更高的结构,则可使用较厚的光致抗蚀剂例如SU-8或聚酰亚胺,其产生高达1mm的高度。
在将掩模上的图案转印至被光致抗蚀剂覆盖的基底后,然后使用湿式或干式工艺将基底蚀刻。在湿式蚀刻中,被掩模保护的基底-区域在液相中经受化学侵蚀。在蚀刻工艺中使用的液体试剂取决于蚀刻是各向同性还是各向异性。各向同性蚀刻一般使用酸来形成三维结构,例如玻璃或硅中的球形腔。各向异性蚀刻使用高碱性溶剂形成平坦的表面,例如孔和沟道。在硅上的湿式各向异性蚀刻产生倾斜的通道轮廓。
干式蚀刻包括用气相或等离子体相的离子攻击基底。干式蚀刻技术可用于产生矩形通道横截面和任意的通道路径。可采用的各种类型的干式蚀刻包括物理蚀刻、化学蚀刻、物理-化学蚀刻(例如,RIE)和利用抑制剂的物理-化学蚀刻。物理蚀刻使用通过电场加速的离子来轰击基底的表面以“蚀刻”结构。化学蚀刻可采用电场以使化学物质迁移至基底的表面。然后使所述化学物质与基底的表面反应以产生空隙和挥发性物质。
在某些实施方案中,在微制造中使用沉积。沉积技术可用于产生金属、绝缘体、半导体、聚合物、蛋白质和其它有机物质的层。大部分沉积技术属于以下两种主要类别之一:物理气相沉积(PVD)和化学气相沉积(CVD)。在PVD的一种方法中,使基底靶材与保持气体(其可例如通过蒸发产生)接触。气体中的某些物质吸附到靶材的表面,形成构成沉积物的层。在通常用于微电子制造行业中的另一种方法中,使用氩离子束或其它适当能源溅射含有待沉积物质的靶材。然后将所溅射的物质沉积在微流体装置的表面上。在CVD中,与靶材接触的物质与表面反应,形成与物体化学键合的组分。其它沉积技术包括:旋涂、等离子体喷涂、等离子体聚合、浸涂、浇铸和Langmuir-Blodgett膜沉积。在等离子体喷涂中,将含有直径为至多100μm的粒子的细粉悬浮在载气中。含有所述粒子的混合物通过等离子体射流加速并加热。熔融粒子飞溅到基底上并凝固以形成致密的涂层。等离子体聚合由含有有机蒸汽的等离子体产生聚合物膜(例如PMMA)。
一旦微通道、微腔和其它特征件已蚀刻于玻璃或硅基底中,蚀刻特征件通常被密封以确保微流体装置“不透水”。当密封时,粘着力可施加在彼此接触的所有表面上。密封过程可能涉及融合技术,例如关于玻璃-硅、玻璃-玻璃或硅-硅之间的粘结而开发的技术。
阳极粘结可用于将玻璃粘结至硅。在玻璃与硅之间施加电压并且将系统的温度升高以诱导表面的密封。电场和高温诱导玻璃中的钠离子迁移至玻璃-硅界面。玻璃-硅界面中的钠离子与硅表面高度反应,从而在表面之间形成实体化学键。所用玻璃的类型应理想地具有与硅接近的热膨胀系数(例如Pyrex Coming 7740)。
熔融粘结可用于玻璃-玻璃或硅-硅密封。首先对基底施力并通过施加高的接触力而对准在一起。一旦接触,原子吸引力(主要是范德华力)将基底保持在一起,因此它们可被放置在炉中并在高温下退火。取决于材料,所用温度范围为约600至1100℃。
聚合物/塑料
根据本发明的实施方案,多种技术可用于微加工塑料基底。其中包括激光烧蚀、立体光刻、氧等离子体蚀刻、粒子喷射烧蚀和微电侵蚀。这些技术中的一些也可用于成形其它材料(玻璃、硅、陶瓷等)。
为了制造微流体装置的多个拷贝,使用复制技术。这些技术包括首先制造含有待复制图案的母版或模具嵌件。然后使用母版通过聚合物复制工艺来大规模生产聚合物基底。
在复制工艺中,将模具中所含的母版图案复制在聚合物结构上。在某些实施方案中,在高温下将聚合物与固化剂的混合物倒在模具上。在将混合物冷却后,聚合物含有模具的图案,然后将其从模具去除。可选地,可将塑料注入含有模具嵌件的结构中。在微注射中,将加热至液态的塑料注入模具中。在分离和冷却后,塑料保持模具的形状。
PDMS(聚二甲基硅氧烷),一种硅基有机聚合物,可用于模制工艺中以形成微流体结构。由于其弹性特性,PDMS充分适于约5至500μm的微通道。PDMS的具体特性使其特别适于微流体目的:
1)它是光学透明的,其允许流动的可视化;
2)PDMS当与适当量的网状剂混合时具有促进保持微流体连接“不透水”的弹性体性质;
3)由于PDMS的弹性,可用其制造使用膜的阀和泵;
4)未被处理的PDMS具疏水性,并且在通过氧等离子体氧化表面后或在浸入强碱中后暂时变成亲水性;氧化的PDMS自身粘附至玻璃、硅或聚乙烯,只要这些表面自身暴露于氧等离子体即可;
5)PDMS可渗透气体。即使当沟道中存在气泡时,也可促进用液体填充通道,因为气泡被迫离开材料。但其也可渗透非极性有机溶剂。
微注射可用于形成在广泛多种微流体设计中使用的塑料基底。在这个过程中,首先在大于塑料的玻璃化转变温度的温度下,在真空和压力下将液体塑料物质注入模具中。然后将塑料冷却至低于所述玻璃化转变温度。在去除模具后,所得塑料结构是模具图案的底片。
另一种复制技术是热压印,其中将聚合物基底和母版加热至高于聚合物的玻璃化转变温度Tg(其对于PMMA或PC为约100-180℃)。然后用预设压缩力将压印母版压向基底。然后将系统冷却至低于Tg并且然后分离模具和基底。
通常,聚合物在从模具工具分离时经受最高物理力,特别是当微结构含有高纵横比和垂直壁时。为了避免对聚合物微结构的破坏,可考虑基底和模具工具的材料特性。这些特性包括:侧壁粗糙度、侧壁角度、压印母版与基底之间的化学界面和温度系数。压印工具的高侧壁粗糙度可破坏聚合物微结构,因为在分离过程中,粗糙度有助于工具与结构之间的摩擦力。如果摩擦力大于聚合物的局部拉伸强度,则微结构可能被破坏。工具与基底之间的摩擦在具有垂直壁的微结构中可为重要的。也可关注母版与基底之间的化学界面。因为压印过程使系统经受高温,所以在母版-基底界面中可形成化学键。这些界面键可能干扰分离过程。工具与基底的热膨胀系数差异可能产生额外的摩擦力。
各种技术可用于形成模具、压印母版和含有用于通过上述复制过程复制塑料结构的图案的其它母版。这些技术的实例包括LIGA(下述)、烧蚀技术和各种其它机械加工技术。类似的技术也可用于小批量产生掩模、原型和微流体结构。用于模具工具的材料包括金属、金属合金、硅和其它硬质材料。
激光烧蚀可用于直接在基底上或通过使用掩模来形成微结构。这种技术使用精确导引激光,其通常具有介于红外线与紫外线之间的波长。可在玻璃和金属基底上以及在聚合物基底上进行激光烧蚀。可通过相对于固定激光束移动基底表面或相对于固定基底移动激光束来进行激光烧蚀。可用激光烧蚀制造各种微孔、沟道和高纵横结构。
某些材料例如不锈钢制造非常耐用的模具嵌件并且可微加工以形成小至10μm范围的结构。存在各种其它用于微制造的微加工技术,包括μ放电加工(μ-EDM)、μ铣削、聚焦离子束铣削。μ-EDM允许在导电材料中制造3维结构。在μ-EDM中,通过在电极(阴极工具)与工件(阳极)之间产生高频放电来去除材料。将工件与工具都浸入介电流体中。这种技术产生比较粗糙的表面,但在材料和几何形状方面提供灵活性。
电镀可用于制造由例如镍合金制成的复制模具工具/母版。所述方法起始于光刻步骤,其中将光致抗蚀剂用于限定的电镀结构。待电镀的区域不含抗蚀剂。对于具有高纵横比和低粗糙度要求的结构,可使用LIGA来产生电镀形式。LIGA是Lithographic(光刻法)、Galvanoformung(电镀)、Abformung(模制)的德语缩写。在LIGA的一种方法中,使厚PMMA层暴露于来自同步加速器源的x射线。通过LIGA产生的表面具有低粗糙度(约10nm RMS)并且所得镍工具对于大部分聚合物具有良好的表面化学。
关于玻璃和硅装置,聚合物微流体装置必须在它们变得具功能性之前被封闭。微流体装置的粘结过程中的常见问题包括通道的阻塞和通道的物理参数的变化。层压是一种用于密封塑料微流体装置的方法。在一种层压方法中,用加热辊将涂覆有熔融粘接层(通常5-10μm)的PET箔(约30μm)辊涂在微结构上。通过这个过程,将盖箔密封在通道板上。若干研究小组已经报道,通过在界面处聚合来粘结,从而将结构加热并在相对侧上施加力以关闭通道。但所施加的力过大可能破坏微结构。对于塑料-塑料和塑料-玻璃界面存在可逆和不可逆的粘结技术。一种可逆密封方法包括首先用甲醇充分冲洗PDMS基底和玻璃板(或第二片PDMS)并且使表面彼此接触,然后干燥。然后将微结构在烘箱中在65℃下干燥10分钟。这种方法不需要清洁室。通过首先用甲醇充分冲洗所述片来实现不可逆密封,然后用氮气流分别将其干燥。然后将两个片放置在空气等离子体清洁器中并在高功率下氧化约45秒。然后使基底彼此接触并且自发形成不可逆密封。
其它可用技术包括激光和超声焊接。在激光焊接中,通过激光产生的热将聚合物接合在一起。这种方法已用于制造微泵。超声焊接是在一些应用中可使用的另一种粘结技术。
此处描述的核酸扩增技术是聚合酶链式反应(PCR)。然而,在某些实施方案中,可使用非PCR扩增技术,例如各种等温核酸扩增技术;例如,实时链置换扩增(SDA)、滚环扩增(RCA)和多重置换扩增(MDA)。
关于PCR扩增模块,向这些模块至少提供用于扩增核酸(例如,足够浓度的四种核苷酸)的构造单元、引物、聚合酶(例如,Taq)和适当的温度控制程序将是必要的。所述聚合酶和核苷酸构造单元可以通过外部端口向扩增模块提供或来自上游来源的缓冲溶液形式提供。在某些实施方案中,向分选模块提供的缓冲液流含有用于核酸扩增的所有原材料中的一些。特别是对于PCR,为了实现高反应效率,对于反应混合物的精确温度控制是极为重要的。一种芯片上热控制方法是焦耳加热,其中使用电极来加热限定位置处模块内部的流体。流体电导率可用作功率控制的温度反馈。
在某些方面,可使含有PCR混合物的液滴流过在有效进行PCR的条件下孵育小滴的通道。使微滴流过通道可包括蜿蜒通过维持在有效进行PCR的温度下的各种温度区域的通道。这些通道可例如在两个或更多个温度区域上循环,其中至少一个区域维持在约65℃并且至少一个区域维持在约95℃。随着液滴移动通过这些区域,它们的温度按照PCR所需循环。区域的精确数目和每个区域的个别温度可容易地由本领域技术人员确定以实现所需的PCR扩增。
在其它实施方案中,微滴的孵育可包括使用Megadroplet阵列。在这种装置中,阵列由通道组成,其中所述通道顶缩进数百万个直径为约25μm的圆形捕集器。使用分配板将液滴分配到捕集通道中-大的通道连接捕集通道的入口(图12,图A)。由于分配通道相比于捕集通道的大尺寸-分配通道的高度和宽度为约100×500μm,相比之下小滴捕集通道仅为约15×100μm-分配通道的流体动力学阻力比捕集通道低约1500倍;这确保了分配通道在捕集通道开始填充之前被液滴填充,从而允许液滴均匀分配到捕集通道中。当液滴流入捕集通道中时,它们呈轻微扁平形,因为通道的垂直高度比液滴短15μm或10μm,如图12的图B中所示。当液滴接近捕集器时,其界面采用更大的、更积极有利的曲率半径。为了将其表面能降至最小,液滴完全填充捕集器,使其采用最小的、最积极有利的平均曲率半径。在捕集器被液滴占据后,没有任何其它液滴能够进入,因为捕集器足够大以仅匹配一个液滴;其它的液滴转向下游,以占据它们遇到的第一个空置捕集器。因为使用密堆积乳液填充阵列,所以每个捕集器将被液滴占据,因为这是在低流动条件下最积极有利的状态。在小滴阵列被填充后,注入油以去除过量的液滴并且将阵列热循环并成像。
可使用多种不同的方式来填充装置的捕集器。例如,浮力作用和离心也可以用于通过关于地球引力场翻转装置来填充和排空捕集器,因为小滴密度是氟碳载体油的63%。也就是说,如果液滴比油相重,则可将孔压印至装置的“地板”,以使得当乳液流过它时,液滴将陷入孔中。乳液的流速可经过调节以将其优化并且液滴尺寸将制成与孔大致相同的尺寸,以使得孔每次只能匹配单个液滴。在其它方面,液滴也可以或代替地储存在不具有孔的大腔室中。
所述装置可使用由珀尔帖板、散热器和控制计算机组成的加热器来实现热循环(图12的图A;图13)。所述珀尔帖板允许通过控制所施加的电流在高于或低于室温下加热和/或冷却芯片。为了确保受控和可重现的温度,计算机使用集成的温度探针来监测阵列的温度,并且按需要调节所施加的电流来加热和冷却。金属(例如,铜)板允许在冷却循环期间热量的均匀施用和过量热量的消散,从而能够在1分钟执行内从95℃冷却至60℃。为了对微滴成像,某些实施方案可并入扫描器平台。在某些方面,所述扫描器平台是Canoscan 9000F扫描器平台。
为了有效地扩增来自目标组分的核酸,微流体系统可包括细胞裂解或病毒蛋白质外壳破坏模块以在向扩增模块提供样本之前释放出核酸。细胞裂解模块可依赖于化学、热和/或机械方式来实现细胞裂解。因为细胞膜由脂质双层组成,含有表面活性剂的裂解缓冲液可使脂质膜增溶。通常,裂解缓冲液将经由外部端口直接引入裂解腔中,以使得细胞在分选或其它上游工艺期间不会过早裂解。在有必要保持细胞器完整性的情况下,化学裂解方法可为不当的。在某些应用中,剪切和磨损对细胞膜的机械破坏是适当的。依赖于裂解模块的机械技术可使用各种几何特征来实现进入模块的细胞的穿孔、剪切、研磨等。其它类型的机械破坏例如声学技术也可产生适当的裂解物。此外,还可使用热能来裂解细胞,例如细菌、酵母和孢子。加热会破坏细胞膜并且释放出细胞内物质。为了实现微流体系统的亚细胞分级,裂解模块还可使用电动技术或电穿孔。通过施加外部电场,电穿孔在细胞膜中产生瞬时或永久的孔,所述电场诱导质膜改变并破坏跨膜电位。在微流体电穿孔装置中,膜可被永久地破坏,并且细胞膜上的孔持续释放所需释放的细胞内物质。
单细胞RT-PCR微流体装置
在另一个方面,本文提供单细胞RT-PCR微流体装置,其在下文关于图32更详细地描述。在某些实施方案中,所述单细胞RT-PCR微流体装置包括输入微通道,其可与流动聚焦液滴制造器偶联,以将微滴引入微流体装置中,其中所述流动聚焦液滴制造器例如通过一定体积的合适疏水相(例如油)隔开输入微通道中的微滴,其中每个微滴可包括细胞裂解物样本。示例性实施方案示于图32(图A)中。
所述微流体装置可进一步包括与输入微通道流体连通的配对微通道和与所述配对微通道流体连通的稀释缓冲液滴制造器。在这些实施方案中,来自输入微通道的微滴流入配对微通道中,其中稀释缓冲液滴制造器产生稀释缓冲液滴,其大于每个微滴并与其配对。在某些实施方案中,稀释缓冲液滴制造器是T形接点液滴制造器。示例性实施方案示于图32(图B)中。
微流体装置还可包括与配对微通道流体连通的合并微通道,所述合并微通道包括与其紧邻定位的电场发生器。在这些实施方案中,配对的微滴和稀释缓冲液滴从配对微通道进入合并微通道并且在通过由电场发生器产生的电场后合并以产生稀释的微滴。可使用任何合适的电场发生器来产生稀释的微滴。在某些实施方案中,通过金属电极产生电场。在其它实施方案中,由如本文所述的液体电极产生电场。示例性实施方案示于图32(图C)中。
微流体装置还可包括与合并微通道流体连通的一系列混合微通道。这些混合微通道允许稀释微滴的内含物的混合。
微流体装置还可包括与混合微通道流体连通的液滴取样器。这种液滴取样器能够对稀释微滴取样,例如,以用于在微流体装置中进行的后续RT-PCR反应中。示例性实施方案示于图32(图D)中。
微流体还可包括包含皮可注射器的皮可注射微通道,其中所述皮可注射微通道可为加压微通道,其能够接收由液滴取样器产生的稀释微滴的样本并允许皮可注射器将RT-PCR试剂皮可注射到样本中。在某些实施方案中,通过施用于皮可注射微通道的电场来辅助皮可注射。任何电场发生器可用于产生用于皮可注射的电场。在某些实施方案中,由金属电极产生电场。在其它实施方案中,通过如本文所述的液体电极产生电场。示例性实施方案示于图32(图E)中。
然后使用本文所述的任何方法,可使已经皮可注射有RT-PCR试剂的稀释微滴的样本经受RT-PCR的条件。单细胞RT-PCR微流体装置有利地允许在加入RT-PCR试剂之前稀释细胞裂解物样本。这种稀释有助于防止可由细胞裂解物的组分造成的RT-PCR的抑制。在某些实施方案中,微流体装置还包括与输入微通道流体连通的封装腔室,以用于将细胞和裂解试剂封装至微滴中。在这些实施方案中,输入微通道能够接收来自封装腔室的微滴。
下文提供本公开的某些非限制性方面:
1.一种用于检测细胞的方法,所述方法包括:
将获自受试者的生物样本的细胞封装在微滴中,其中在所述微滴中存在至少一个细胞;
在有效使细胞裂解的条件下孵育所述微滴;
将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种寡核苷酸杂交的一个或多个引物;以及
通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在;
其中一个或多个步骤在微流体控制下进行。
2.根据1的方法,其中在有效使细胞裂解的条件下孵育所述微滴包括将裂解剂引入所述微滴中。
3.根据1或2的方法,其中所述一种或多种寡核苷酸是致癌基因。
4.根据1-3中任一项的方法,其中所述生物样本是血液并且所述方法包括至少部分地基于其中检测到PCR扩增产物的微滴的数目来确定所述受试者的血液样本中存在的循环肿瘤细胞(CTC)的数目。
5.根据1-4中任一项的方法,其中所有步骤都在微流体控制下进行。
6.根据5的方法,其中所有步骤都在相同的微流体装置上进行。
7.根据上述中任一项的方法,其中所述多个PCR引物包括10个或更多个引物。
8.根据上述中任一项的方法,其中所述多个PCR引物包括20至100个引物。
9.根据上述中任一项的方法,其中所述多个PCR引物包括10种或更多种致癌基因的引物。
10.根据上述中任一项的方法,其中在允许PCR扩增的条件下孵育所述微滴在与封装所述细胞并裂解所述细胞所用相同的微流体装置上进行。
11.根据上述中任一项的方法,其中所述PCR试剂和PCR引物与所述裂解剂同时加入。
12.根据上述中任一项的方法,其中所述PCR试剂在两个步骤或更多个步骤中加入。
13.根据上述中任一项的方法,其进一步包括将探针引入所述微滴中。
14.根据13的方法,其中所述探针在允许PCR扩增的条件下孵育所述微滴之前引入。
15.根据13或14的方法,其中所述探针是探针。
16.根据上述中任一项的方法,其中试剂通过将所述微滴与包括所述试剂的第二微滴合并而加入所述微滴中。
17.根据上述中任一项的方法,其中试剂使用小滴聚结或皮可注射而加入所述微滴中。
18.根据上述中任一项的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
a)将所述试剂乳化成小滴流,其中所述小滴小于所述微滴的尺寸;
b)使所述小滴与所述微滴一起流动;以及
c)合并小滴与所述微滴。
19.根据18的方法,其中所述小滴的直径为所述微滴的直径的25%或更小,并且多个小滴与所述微滴合并。
20.根据18或19的方法,其中所述合并包括施加电场。
21.根据上述中任一项的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
a)将所述试剂喷射至流体射流中;
b)使所述流体射流与所述微滴并排流动;以及
c)合并小滴与所述微滴。
22.根据21的方法,其中合并包括施加电场。
23.根据21或22的方法,其中所述试剂的喷射包括加入增粘剂或表面活性剂。
24.根据上述中任一项的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
25.根据上述中任一项的方法,其中所述检测组分基于荧光变化来检测。
26.根据25的方法,其中所述荧光变化是由于荧光共振能量转移(FRET)。
27.根据25的方法,其中所述荧光变化是由于荧光偏振。
28.根据25或27的方法,其中所述检测组分是插入染色剂。
29.根据上述中任一项的方法,其中检测所述PCR扩增产物的存在或不存在包括使所述微滴反复成像。
30.根据29的方法,其中在所述微滴经受允许PCR扩增的条件以产生PCR扩增产物的同时使所述微滴反复成像。
31.根据上述中任一项的方法,其中在允许PCR扩增的条件下孵育所述微滴和检测所述PCR扩增产物的存在或不存在在Megadroplet阵列上进行。
32.根据上述中任一项的方法,其包括分选微滴。
33.根据32的方法,其中所述分选包括使用膜阀、分叉通道、表面声波或介电电泳。
34.根据32或33的方法,其中所述微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
35.根据32-34中任一项的方法,其包括至少部分地基于PCR扩增产物的存在或不存在的检测来分选。
36.根据32-35中任一项的方法,其中所述微滴在引入PCR试剂之前分选。
37.根据32-36中任一项的方法,其中所述微滴在引入裂解剂之前分选。
38.根据上述中任一项的方法,其进一步包括:
将稀释剂注射至所述微滴中;和
在使所述微滴分裂的条件下,使所述微滴流过施加有电场的微流体通道。
39.根据上述中任一项的方法,其中所述受试者是哺乳动物。
40.根据上述中任一项的方法,其中所述受试者是人。
41.根据上述中任一项的方法,其中所述受试者已被诊断患有癌症。
42.根据上述中任一项的方法,其中所述生物样本是血液样本。
43.根据42的方法,其中所述血液样本是全血。
44.根据42或43的方法,其包括分级分离所述血液样本。
45.根据42-44中任一项的方法,其包括抽取30mL或更少的所述受试者的血液。
46.根据45的方法,其中所述血液样本是15mL或更少。
47.根据上述中任一项的方法,其包括固定和/或渗透所述细胞。
48.根据上述中任一项的方法,其包括引入多个不同的检测组分,和通过所述多个检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示PCR扩增产物的存在。
49.根据上述中任一项的方法,其包括使所述细胞或其组分与可检测标记的抗体接触。
50.一种用于检测肿瘤细胞的方法,所述方法包括:
在其中大多数微滴包括零或一个细胞的条件下将多个细胞封装在多个微滴中,其中所述多个细胞获自疑似含有循环肿瘤细胞(CTC)的受试者的血液样本;
使所述多个微滴富集含有一个细胞的微滴;
将裂解剂引入所述多个微滴中并在有效使细胞裂解的条件下孵育;
将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述多个微滴中并在允许PCR扩增的条件下孵育所述多个微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;
通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在;以及
至少部分地基于其中检测到所述PCR扩增产物的微滴的数目来确定所述受试者的血液样本中存在的CTC的数目;
其中一个或多个步骤在微流体控制下进行。
51.根据50的方法,其中所有步骤都在微流体控制下进行。
52.根据50或51的方法,其中所有步骤都在相同的微流体装置上进行。
53.根据50-52中任一项的方法,其中所述多个PCR引物包括10个或更多个引物。
54.根据50-53中任一项的方法,其中所述多个PCR引物包括10种或更多的致癌基因的引物。
55.根据50-54中任一项的方法,其中所述多个PCR引物包括多个探针。
56.根据55的方法,其中所述探针包括探针。
57.根据50-56中任一项的方法,其中所述PCR试剂在两个步骤或更多个步骤中加入。
58.根据50-57中任一项的方法,其进一步包括将探针引入所述微滴中。
59.根据50-58中任一项的方法,其中试剂通过将微滴与包括所述试剂的第二微滴合并而加入所述多个微滴中。
60.根据50-59中任一项的方法,其中试剂使用小滴聚结或皮可注射而加入所述多个微滴中。
61.根据50-60中任一项的方法,其中试剂通过包括下述步骤的方法加入所述多个微滴中:
a)将所述试剂乳化成小滴流,其中所述小滴小于微滴的尺寸;
b)使所述小滴与所述微滴一起流动;以及
c)合并小滴与所述微滴。
62.根据58的方法,其中所述合并包括施加电场。
63.根据50-62中任一项的方法,其中试剂通过包括下述步骤的方法加入所述多个微滴中:
a)将所述试剂喷射至流体射流中;
b)使所述流体射流与微滴并排流动;以及
c)合并小滴与所述微滴。
64.根据50-63中任一项的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
65.根据50-64中任一项的方法,其包括分选微滴。
66.根据65的方法,其中所述多个微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
67.根据65-66中任一项的方法,其中所述多个微滴在引入PCR试剂之前分选。
68.根据50-67中任一项的方法,其中检测所述PCR扩增产物的存在或不存在包括使所述多个微滴反复成像。
69.根据68的方法,其中在所述多个微滴经受允许PCR扩增的条件以产生所述PCR扩增产物的同时使所述多个微滴反复成像。
70.根据50-69中任一项的方法,其中在允许PCR扩增的条件下孵育所述多个微滴和检测所述PCR扩增产物的存在或不存在在Megadroplet阵列上进行。
71.根据50-70中任一项的方法,其中所述受试者是哺乳动物。
72.根据50-71中任一项的方法,其中所述受试者是人。
73.根据50-72中任一项的方法,其中所述受试者已被诊断患有癌症。
74.一种对细胞进行基因分型的方法,所述方法包括:
将获自受试者的生物样本的细胞封装在微滴中,其中所述微滴中存在一个细胞;
将裂解剂引入所述微滴中并且在有效使细胞裂解的条件下孵育所述微滴;
将聚合酶链式反应(PCR)试剂和多个PCR引物引入所述微滴中,并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;
将多个探针引入所述微滴中,其中所述探针与一种或多种目标突变杂交并在不同波长下发荧光;以及
通过探针荧光的检测来检测特定PCR扩增产物的存在或不存在,其中检测到荧光指示所述PCR扩增产物的存在;
其中一个或多个步骤在微流体控制下进行。
75.根据74的方法,其中所述探针包括探针。
76.根据74或75的方法,其中通过探针荧光的检测来检测特定PCR扩增产物的存在或不存在包括在所述微滴经受允许PCR扩增的条件以产生PCR扩增产物的同时使所述微滴反复成像。
77.根据76的方法,其包括获得时间依赖性荧光信息。
78.根据74-77中任一项的方法,其中试剂通过将所述微滴与包括所述试剂的第二微滴合并而加入所述微滴中。
79.根据74-78中任一项的方法,其中试剂使用小滴聚结或皮可注射而加入所述微滴中。
80.根据74-79中任一项的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
a)将所述试剂乳化成小滴流,其中所述小滴小于所述微滴的尺寸;
b)使所述小滴与所述微滴一起流动;以及
c)合并小滴与所述微滴。
81.根据74-80中任一项的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
a)将所述试剂喷射至流体射流中;
b)使所述流体射流与所述微滴并排流动;以及
c)合并小滴与所述微滴。
82.根据74-81中任一项的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
83.根据74-82中任一项的方法,其包括分选微滴。
84.根据83的方法,其中所述微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
85.根据74-84中任一项的方法,其中所述受试者是哺乳动物。
86.根据74-85中任一项的方法,其中所述受试者是人。
87.根据74-86中任一项的方法,其中所述受试者已被诊断患有癌症。
88.一种用于检测受试者中的癌症的方法,所述方法包括:
将获自所述受试者的生物样本的寡核苷酸封装在微滴中,其中所述微滴中存在至少一种寡核苷酸;
将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;
通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在;以及
至少部分地基于所述PCR扩增产物的存在或不存在来诊断所述受试者患有癌症或不患有癌症;
其中一个或多个步骤在微流体控制下进行。
89.根据88的方法,其中所述多个PCR引物包括10个或更多个引物。
90.根据88-89中任一项的方法,其中所述多个PCR引物包括10种或更多的致癌基因的引物。
91.根据88-90中任一项的方法,其进一步包括将探针引入所述微滴中。
92.根据91的方法,其中所述探针在允许PCR扩增的条件下孵育所述微滴之前引入。
93.根据91或92的方法,其中所述探针是探针。
94.根据88-93中任一项的方法,其中试剂通过将所述微滴与包括所述试剂的第二微滴合并而引入所述微滴中。
95.根据88-94中任一项的方法,其中试剂使用小滴聚结或皮可注射而加入所述微滴中。
96.根据88-95中任一项的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
a)将所述试剂乳化成小滴流,其中所述小滴小于所述微滴的尺寸;
b)使所述小滴与所述微滴一起流动;以及
c)合并小滴与所述微滴。
97.根据88-96中任一项的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
a)将所述试剂喷射至流体射流中;
b)使所述流体射流与所述微滴并排流动;以及
c)合并小滴与所述微滴。
98.根据88-97中任一项的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
99.根据88-98中任一项的方法,其中所述检测组分基于荧光变化来检测。
100.根据88-99中任一项的方法,其中检测所述PCR扩增产物的存在或不存在包括使所述微滴反复成像。
101.根据100的方法,其中在所述微滴经受允许PCR扩增的条件以产生所述PCR扩增产物的同时使所述微滴反复成像。
102.根据88-101中任一项的方法,其包括分选微滴。
103.根据102的方法,其中所述微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
104.根据88-103中任一项的方法,其包括至少部分地基于PCR扩增产物的存在或不存在的检测来分选。
105.根据88-104中任一项的方法,其进一步包括:
将稀释剂注射至所述微滴中;和
在使所述微滴分裂的条件下,使所述微滴流过施加有电场的微流体通道。
106.根据88-105中任一项的方法,其中所述受试者是哺乳动物。
107.根据88-106中任一项的方法,其中所述受试者是人。
108.根据88-107中任一项的方法,其中所述受试者已被诊断患有癌症。
109.一种微流体装置,其包括:
细胞封装装置,其用于将获自受试者的血液样本的细胞封装在微滴中;
与所述细胞封装装置流体连通的第一腔室,所述第一腔室包括用于向所述微滴加入第一试剂的第一试剂注射器元件,和加热元件;
与所述第一腔室流体连通的第二腔室,所述第二腔室包括用于向所述微滴加入第二试剂的第二试剂注射器元件,和加热元件,其中所述加热元件被配置成在两种或更多的温度下加热所述微滴;以及
与所述第二腔室流体连通的检测区域,其检测来自所述第二腔室的反应产物的存在或不存在。
110.如109中所述的微流体装置,其中所述第二腔室的所述加热元件包括珀尔帖板、散热器和控制计算机。
111.如109中所述的微流体装置,其中所述微流体装置包括一个或多个液体电极。
112.一种单细胞RT-PCR微流体装置,其包括:
与液滴制造器偶联的输入微通道,其用于将微滴引入所述微流体装置中;
与所述输入微通道流体连通的配对微通道;
与所述配对微通道流体连通的稀释缓冲液滴制造器,其用于产生体积大于所述微滴的稀释缓冲液滴并用于将单个稀释缓冲液滴与单个微滴配对;
与所述配对微通道流体连通的合并微通道,其用于接受来自所述配对微通道的配对的稀释缓冲液滴和微滴;
沿着所述合并微通道定位的第一电场发生器,其用于产生能够使配对的稀释缓冲液滴与微滴在所述合并微通道中合并以形成稀释微滴的电场;
与所述合并微通道流体连通的混合微通道,其用于接收来自所述合并通道的所述稀释微滴并混合所述稀释微滴的内含物;
与所述混合微通道流体连通的液滴取样器,其用于提取所述稀释微滴的样本;
与所述液滴取样器流体连通的皮可注射微通道,其中所述皮可注射微通道包括皮可注射器并用于接收所述稀释微滴的样本并将RT-PCR试剂皮可注射至所述样本中;
第二电场发生器,其中所述第二电场发生器沿着所述皮可注射微通道定位以产生足以允许所述RT-PCR试剂皮可注射至所述样本中的电场;
与所述皮可注射微通道流体连通的热循环器加热元件,其用于对皮可注射有所述RT-PCR试剂的所述样本进行RT-PCR反应。
113.根据112的微流体装置,其进一步包括与所述输入微通道流体连通的封装腔室,其用于将细胞和裂解试剂封装至微滴中。
114.根据112的微流体装置,其中所述第一和/或第二电场发生器是连接至电源或高电压放大器的液体电极。
115.根据112的微流体装置,其包括在所述输入微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
116.根据112的微流体装置,其包括在所述配对微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
117.根据112的微流体装置,其包括在所述皮可注射微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
118.根据112的微流体装置,其中所述皮可注射微通道被配置成接收已在所述取样器中经历RT-PCR反应的样本并向所述样本中皮可注射PCR试剂。
119.根据118的微流体装置,其中所述热循环器被配置成对皮可注射有所述PCR试剂的样本进行PCR反应。
120.根据118的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包括相同的引物。
121.根据118的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包括不同的引物。
122.根据112的微流体装置,其中所述RT-PCR试剂包括与荧光染料和核酸探针缀合的珠粒。
123.根据112的微流体装置,其中所述RT-PCR试剂包括荧光DNA探针。
124.一种单细胞RT-PCR微流体装置,其包括:
与流动聚焦液滴制造器偶联的输入微通道,其用于将微滴引入所述微流体装置中,其中所述流动聚焦液滴制造器通过一定体积的油间隔所述输入微通道中的所述微滴并且其中每个微滴包括细胞裂解物样本;
与所述输入微通道流体连通的配对微通道;
与所述配对微通道流体连通的稀释缓冲液滴制造器,其用于产生体积大于微滴的稀释缓冲液滴并用于将单个稀释缓冲液滴与单个微滴配对;
与所述配对微通道流体连通的合并微通道,其用于接受来自所述配对微通道的配对的稀释缓冲液滴和微滴;
沿着所述合并微通道定位的第一电场发生器,其用于产生能够使配对的稀释缓冲液滴与微滴在所述合并微通道中合并以形成稀释微滴的跨越所述合并通道的电场;
与所述合并微通道流体连通的混合微通道,其用于接收来自所述合并通道的所述稀释微滴并混合所述稀释微滴的内含物;
与所述混合微通道流体连通的液滴取样器,其用于提取所述稀释微滴的样本;
与所述液滴取样器流体连通的皮可注射微通道,其中所述皮可注射微通道包括皮可注射器并用于接收所述稀释微滴的样本并将RT-PCR试剂皮可注射至所述样本中;
第二电场发生器,其中所述第二电场发生器沿着所述皮可注射微通道定位以产生足以允许所述RT-PCR试剂皮可注射至所述样本中的跨越所述皮可注射微通道的电场;
与所述皮可注射微通道流体连通的热循环器加热元件,其用于对皮可注射有所述RT-PCR试剂的所述样本进行RT-PCR反应。
125.根据124的微流体装置,其进一步包括与所述输入微通道流体连通的封装腔室,其用于将细胞和裂解试剂封装至微滴中。
126.根据124的微流体装置,其中所述第一和/或第二电场发生器是连接至电源或高电压放大器的液体电极。
127.根据124的微流体装置,其包括在所述输入微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
128.根据124的微流体装置,其包括在所述配对微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
129.根据124的微流体装置,其包括在所述皮可注射微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
130.根据124的微流体装置,其中所述皮可注射微通道被配置成接收已在所述取样器中进行RT-PCR反应的样本并向所述样本中皮可注射PCR试剂。
131.根据130的微流体装置,其中所述热循环器被配置成对皮可注射有所述PCR试剂的样本进行PCR反应。
132.根据130的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包括相同的引物。
133.根据130的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包括不同的引物。
134.根据124的微流体装置,其中所述RT-PCR试剂包括与荧光染料和核酸探针缀合的珠粒。
135.根据124的微流体装置,其中所述RT-PCR试剂包括荧光DNA探针。
136.根据1-20中任一项的方法,其中试剂通过如下方式加入所述微滴中:
使所述微滴与油接触以使得所述油封装所述微滴以形成双重乳液;
使所述双重乳液与含有所述试剂的液滴接触以使得含有所述试剂的所述液滴封装所述双重乳液以形成三重乳液;
向所述三重乳液施加电场以使得所述三重乳液的所述流体界面被破坏并允许所述微滴与试剂混合。
137.根据136的方法,其中所述电场由一个或多个液体电极施加。
138.一种微流体装置,其包括:流动通道、与所述流动通道流体连接的微流体接点和紧邻所述微流体接点下游的所述微流体流动通道的一个或多个壁中的脊。
139.根据138的微流体装置,其中所述脊捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
140.根据138的微流体装置,其中所述一个或多个脊各自的底边长度为约10微米至约20微米。
141.根据138的微流体装置,其中所述一个或多个脊各自的峰具有约1至约10微米的宽度。
142.根据138的微流体装置,其中所述一个或多个脊各自的高度为约5微米至约15微米。
143.根据138的微流体装置,其中所述一个或多个脊各自的底边与所述一个或多个脊各自的高度的比率为约1.0:0.75至约0.75:1.0。
144.根据138的微流体装置,其中所述一个或多个脊各自的底边比所述一个或多个脊各自的高度比所述一个或多个脊的峰的宽度为约1:0.75:0.5。
145.根据138的微流体装置,其中所述脊沿着所述通道壁延伸约50微米至约500微米的距离。
146.根据138的微流体装置,其中所述脊沿着所述通道壁延伸一定距离,其中沿着所述通道壁的距离与所述通道的宽度之间的比率是约10:1至约1:2。
实施例
如根据上文提供的公开内容可理解,本公开具有广泛多种应用。因此,阐述下列实施例以向本领域的普通技术人员提供关于如何作出并使用本发明的完全公开内容和描述,并且不欲限制被本发明人视为其发明的范围,并且不欲表示下面的实验是所进行的所有或唯一的实验。本领域的技术人员应容易认识到,可改变或修改多种非关键参数以得到本质上类似的结果。因此,阐述下列实施例以向本领域的普通技术人员提供关于如何作出并使用本发明的完全公开内容和描述,并且不欲限制被本发明人视为其发明的范围,并且不欲表示下面的实验是所进行的所有或唯一的实验。已作出努力来确保关于所用数值(例如,量、温度等)的准确度,但应考虑到一些实验误差和偏差。
实施例1:用于进行单细胞PCR反应的微流体系统
装置制造:使用与上述其它装置相同的在聚二甲基硅氧烷中的光刻工艺来制造芯片。所述芯片的一般示意图示于图1中。由这些芯片进行的一般方法描绘于图6中。
样本制备:经由注射器从受试者抽取5-25mL全血样本。使用芯片上夹持流分级来分离有核细胞,如Lab on a Chip,2005,5,778-784中一般所述;所述文献的公开内容以引用的方式并入本文中。收集有核细胞用于后续分析。
PCR反应:所述测定需要在含有浓缩细胞裂解物的液滴中执行RT-PCR反应;然而,细胞裂解物抑制RT-PCR(图7)。为了克服这种抑制作用,开发了利用蛋白酶K来消化细胞裂解物中的抑制性蛋白的方案。使用蛋白酶K允许在高达1个细胞于50pL的浓度下在裂解物中有效扩增,其中最佳扩增发生在1个细胞于200pL下(图7)。因此,所述系统在这个浓度下操作。
使用集成的微流体系统实现细胞封装、裂解和蛋白酶K消化(图8,图1-3)。使用30×30μm流动聚焦装置将细胞与含有非离子性清洁剂和蛋白酶K的裂解缓冲液共同封装在70μm液滴(200pL)中。重要的是,细胞直至它们被封装在液滴中才暴露于裂解缓冲液,从而确保了在封装之前未发生裂解。这通过微流体通道中的层流条件来实现,其确保扩散性混合相比于流体的对流可忽略。在封装后,密堆积液滴移动通过55℃孵育通道持续20分钟,以允许细胞裂解并且蛋白酶K消化抑制性蛋白。然后使用分层分流器使液滴分裂成相同尺寸的液滴(图5;图8的图3),产生用于皮可注射和Megadroplet阵列成像的具有理想的小尺寸的液滴(图12-13)。
在注射RT-PCR试剂和酶之前,通过将液滴加热至95℃持续10分钟来将蛋白酶K灭活。然后向所述液滴中注射相等体积的2X引物和RT-PCR试剂(图9的图A)。在皮可注射后,将乳液收集到PCR管中并进行热循环。为了确定液滴是否含有癌细胞,还包括与EpCAM扩增子杂交的探针;这允许所述探针通过Taq DNA聚合酶的5'-3'核酸酶活性水解,从而从淬灭3'端修饰释放出5'荧光团,使得液滴发荧光。相比之下,不含癌细胞的液滴不具有EpCAM扩增子,因此探针仍保持淬灭和非荧光(图4的图A-B)。因此,明亮的液滴涉及EpCAM阳性癌细胞的存在(图9的图B-C;图10)。将热循环液滴注射至高度为30μm且面积为54cm2的流动细胞中;流动细胞的狭窄垂直间隙迫使乳液进入单层中,从而允许每个液滴的顺利的落射荧光可视化。对于荧光成像,自动显微镜捕捉整个流动细胞的镶拼图(mosaic)并将图像储存在硬盘驱动器上。利用自定义Matlab代码处理图像,以鉴定荧光液滴并测量其亮度。将所有数据进行数字化存储并使用自定义算法分析。
实施例2:定量多重化测定
为了同时筛选不止一种基因,可利用多重化qPCR反应。最初利用PCR管批量进行反应以优化反应条件。使用这些方法,针对三种探针EpCAM、CD44和CD45在数字化小滴RT-PCR期间实现成功的多重化。这种多重化的实例示于图11中,其中在含有两种目标转录物的液滴中将EpCAM和CD44探针多重化。所有的PCR引物组被设计以跨越大的内含子,使得这些较大的基因组PCR产物在多重反应中极不可能。另外,所有的探针被设计成与外显子-外显子接点杂交。目前的探针组不识别gDNA。
利用Megadroplet阵列的单细胞qPCR:为了对单细胞进行qPCR分析,随着液滴被热循环而对其成像。这需要液滴在热循环期间保持在固定的位置,因此它们可以反复成像。如上文和实施例1中所述制备用于制备液滴的微流体系统。在液滴形成并装载有细胞和qPCR试剂之后,将它们引入Megadroplet阵列中(图12的图A-C;图13)。所述阵列由多个通道组成,所述通道顶缩进数百万个直径为25μm的圆形捕集器。当液滴流入阵列中时,它们呈轻微扁平形,因为流动通道的垂直高度比液滴低15μm或10μm。当液滴接近捕集器时,其界面采用更大的、更积极有利的曲率半径。为了将其表面能降至最小,液滴将完全填充捕集器,使其采用最低的、最积极有利的平均曲率半径。液滴的毛细管压力比由流动所施加的剪切大几个数量级,从而确保液滴保持完整并且局限在捕集器中。在捕集器被液滴占据后,没有其它液滴能够进入,因为捕集器将足够大以仅匹配一个液滴;其它的液滴转向下游,以占据它们遇到的第一个空置捕集器。使用密堆积乳液填充阵列,并且因此每个捕集器被液滴占据。在填充小滴阵列后,注射油以去除过量的液滴并且将阵列热循环并成像。
用于温度循环和成像的热系统:一旦阵列被液滴和细胞填充,就对装置进行热循环,同时对液滴成像,以获得qPCR所必需的时间依赖性信息。使用由珀尔帖板、散热器和控制计算机组成的自定义加热器来实现热循环(图13)。所述珀尔帖板允许通过控制所施加的电流在高于或低于室温下加热或冷却芯片。为了确保受控和可重现的温度,计算机使用集成的温度探针来监测阵列的温度,并且按需要调节所施加的电流来加热和冷却。铜板允许在冷却循环期间热量的均匀施加和过量热量的消散,从而使得在两小时内在1分钟执行的qPCR测定中能够从95℃冷却至60℃。为了在热循环期间对小滴成像,利用具有9600dpi×9600dpi的分辨率的自定义Canoscan 9000F扫描器平台。对于10,000,000个六方堆积的25μm液滴(54cm2),在最高分辨率下需要800,000,000个像素。利用每个液滴20个像素的分辨率,可在3秒内捕捉完全图像。利用不同的激发和发射过滤器在每个循环内对阵列成像若干次以针对多重化探针使不同染料可视化。
实施例3:液滴或微流体液滴的无电极皮可注射
使用软光刻技术在聚(二甲基硅氧烷)(PDMS)中制造微流体装置。所述装置具有30μm的通道高度,对于直径为50μm的油包水小滴的皮可注射最佳。装置设计与先前由Abate等,Proc.Natl.Acad.Sci.U.S.A.,2010,107,19163所述的那些类似;所述文献的公开内容以引用的方式并入本文中。然而,重要的差异是去除了金属焊接电极的通道。此外,实施了“Faraday Mote”(填充有导电水溶液的空通道),其在注射位点与小滴间隔物之间操作,如图15的图B中所示。所述mote将皮可注射位点上游的再注射液滴与从皮可注射器发出的电场进行电隔离,从而防止意外的合并。皮可注射的乳液由溶解在Milli-QH2O中的3.8mM荧光素钠盐(C20H10Na2O5)的单分散小滴组成。将所述小滴悬浮在含2%(wt/wt)溶解的生物相容性表面活性剂的Novec HFE-7500氟化油的载体油中。皮可注射流体由0至500mM范围的一系列NaCl稀释液组成,各自含有3.8mM荧光素钠盐。这个浓度范围反映了大部分生物缓冲液和试剂中存在的溶解离子的摩尔浓度。因此,由于在大部分应用中流体将已经含有所需离子,因此可在不向溶液中加入其它试剂的情况下使用所述技术。
小滴和载体油经由注射泵(New Era)引入并使用上述相同的载体油和表面活性剂混合物间隔(图15的图A-B)。BD Falcon管中含有皮可注射流体。通过Falcon管的盖将线电极浸于流体中,如图15的图A中所示。盖子中的间隙用LocTite UV固化环氧树脂密封。使用输出0至5伏特范围的10kHz正弦信号的函数发生器使皮可注射流体带电荷。这个输出由Trek 609E-6型HV放大器放大1000倍。通过弹簧夹将放大器的正输出连接至浸于皮可注射流体中的线材。将放大器的接地电极连接至含有1M NaCl溶液的注射器的金属针,引入Faraday Mote中(图15的图A)。两个电极从未电接触并且将离开装置的乳液收集到单独的电隔离容器中以避免闭合电路并防止电流流动。
使用由自定义LabVIEW软件控制的空气压力泵(ControlAir Inc.)经由PE-2管道(Scientific Commodities)将皮可注射的试剂输注到装置中。将注射流体加压以使得皮可注射孔口处的油/水界面与小滴通道处于机械平衡;跨越界面的压力差等于Laplace压力,从而造成注射流体隆起到小滴通道中而未分离和形成其自身液滴(图15的图C)。对于这个装置,分别以200和400μL hr-1的流速注射液滴和间隔油。在这些流速下,对于约13psi的施加压力,皮可注射流体界面处于机械平衡中。运载注射流体和充当Faraday mote的溶液的管道的长度受到控制,因为较长的管道具有更高的电阻并且可能衰减所施加的AC信号以触发皮可注射。
为了向液滴中皮可注射试剂,将先前形成的单分散乳液再次注射至皮可注射装置中。以较高的体积分数引入乳液以使得存在很少的载体油并且将液滴堆积在一起。使堆积液滴行进通过迫使它们单行行进的狭窄通道。从两个垂直通道加入其它的含表面活性剂的油,均匀隔开液滴,如图15的图B中所示。也发现简单的T形接点间隔物起作用。小滴然后通过皮可注射器,含有待加入试剂的狭窄通道。为了触发皮可注射,将电压信号施加至浸于注射流体中的电极,从而随着液滴通过注射位点而在皮可注射器处产生电场。这造成液滴与注射流体聚结。随着它们经过,通过在两种流体聚结后形成的液体桥将流体注射至其中。所施加的信号必须具有零偏移以防止带电荷粒子在溶液中的电泳迁移。另外,信号的频率必须足够高以确保在注射动作期间,电场符号在正负之间多次切换,以使得加入小滴中的流体的净电荷大约为零。这确保了离开注射器的小滴具有零净电荷,其对于确保它们保持稳定是重要的。施加10kHz信号。
为了分析皮可注射器的行为,在显微镜下观察注射位点。在不存在电场的情况下,在小滴与注射流体之间观察到明显的边界,如图16的图A中所示。当将250V信号施加至皮可注射器时,边界消失并且可见小滴聚结,如图16的图B中所示。因此,注射流体的带点足以触发皮可注射,这表明不需要电隔离的电极。
为了确定是否有可能使用所施加的电压来改变注射体积,在0-5000V之间改变电压并且测量所得小滴的体积变化。用光学荧光检测设置定量注射体积。随着液滴经过聚焦在皮可注射器下游约1cm的小滴通道上的472nm波长激光器,来自液滴内所含的溶解荧光素的发射荧光信号通过光电倍增管(PMT)放大并转化为用LabVIEWFPGA分析的电压信号。随着液滴经过激光器,其荧光信号类似于随时间变化的方波,其中幅度和宽度分别对应于液滴强度和长度。所述液滴具有大于通道尺寸的球形直径,从而造成它们在形状上为圆柱形。因此,液滴体积约为随长度变化的线性。为了计算体积分数(Vf)增加,测量在皮可注射之前和之后的液滴长度的比率。针对一定范围的所施加电压和NaCl在注射流体中的摩尔浓度来重复这些测量。
图17的图A-C绘出了三种代表性摩尔浓度的注射流体的体积增加随着所施加电压的变化。在所有情况下,注射体积随着所施加电压而增加,但这种作用对于图17的图A中所示的100mM注射溶液最显著。小滴体积对于所施加电压的依赖性可能归因于如下观察结果:小滴在它们穿过皮可注射器时不是完美的圆柱体;相反,它们具有“子弹”形状,其中前缘相比于后缘具有更小的曲率半径。因此,随着液滴经过皮可注射器,将其界面与皮可注射流体的隆起隔开的油层的厚度降低。对于电诱导的薄膜不稳定性,捕捉界面所需的阈值电压取决于薄膜的厚度,随着薄膜变得更薄而降低。因此,因为薄膜厚度随着液滴经过皮可注射器而降低,所以聚结时刻取决于电场量值:对于较高的电场,有可能使较厚的薄膜破裂,从而导致在较早的点进行皮可注射;相反,对于较低的电场,较薄的薄膜破裂,从而造成皮可注射开始于稍后的点。因为所注射的体积取决于皮可注射的持续时间,所以其因此也取决于所施加的电压。这由显示所有摩尔浓度对于所施加电压的依赖性的数据支持(图17的图A-C)。还观察到,将注射体积与所施加电压相关联的曲线对于较低摩尔浓度也较低,如图17的图B和图C中的50mM和25mM数据分别显示。这可能是由于以下事实:较低摩尔浓度溶液具有较低的电导率,并且因此可衰减用于触发注射的AC信号,从而降低对于特定施加电压所注射的体积。
在3000V和100mM上,注射体积开始降低并且液滴尺寸的可变性增加。在这些系统的在这些电压下的图像中,观察到皮可注射流体不再是在皮可注射孔口中保持平衡,而是润湿通道壁并分离出小液滴进入流体通道中。
为了表征无电极皮可注射器对于所有参数的行为,测量注射体积随摩尔浓度和施加电压的变化并且将所得数据绘制在2D热图(图18)上。这种数据表明,所述技术将允许对于大多数生物缓冲液的受控皮可注射,其通常具有在测试范围内的摩尔浓度。
为了研究由高电压信号产生的电场和电流是否可破坏下游测定所需的生物分子,使用皮可注射器来制备用于RT-PCR反应的小滴。向含有从MCF7人细胞系分离的总RNA的液滴中皮可注射含有酶逆转录酶(RT)和Taq DNA聚合酶的RT-PCR反应混合物。向阴性对照液滴中注射不含酶的混合物。与相同的RT-PCR混合物并行进行其它的非乳化阳性和阴性对照反应。在热循环后,使乳液破裂并且使扩增产物在溴化乙锭染色的2%琼脂糖凝胶上可视化。对于预期100bp扩增子长度,阳性对照和皮可注射液滴显示相当强度的PCR带,如图19中可见。相比之下,阴性对照显示无扩增,证实了向皮可注射流体施加触发信号具充分生物相容性,以允许液滴中的下游RT-PCR反应。
实施例4:聚结三重乳液以向小滴中加入试剂
在操作小滴反应中重要的一个步骤是能够向预先存在的液滴中加入试剂。作为实例,如果最终的液滴反应需要可在先前的加热步骤中变性的试剂,则液滴添加可为有利的。如果不使用使液滴稳定化的表面活性剂,则加入试剂可与使液滴与第二试剂填充的液滴接触同样简单。然而,标准的液滴处理和储存通常需要表面活性剂稳定化的液滴,并且局部化电场已用于选择性破坏并合并成对的液滴。合并包括为原始和试剂液滴的流动定时以使得它们配成对并且接触。第二策略使用电场来使经过液滴失稳,因此其可从侧通道注射试剂。这避免了同步问题,但具有如下缺点:每个液滴当与侧通道接合时可能交叉污染。此外,仅可注射小于或等于经过液滴的体积。
并非使试剂与液滴合并或向液滴注射试剂,此处呈现的是不同的流程,其中原始液滴被包封在较大的试剂小滴内并且然后经由施加电场而使两者聚结。在一些实施方案中,这种包封促进一个原始液滴与一个试剂包封的配对。与小滴注射器相比,所包含的混合性质也可限制交叉污染并促进任意体积的加入。
利用表面化学有可能进行液滴包封配对。为了降低界面能量,如果可用的话,亲水性通道将油包覆液滴封装在水性试剂中。随后的疏水性通道然后将其封装在油中,从而在油包水液滴中产生稳定的油包水液滴,或三重乳液(E3)。这种交替通道疏水性技术使得每个低级乳液触发下个高级乳液的形成,甚至有可能产生可靠的五重乳液。触发导致每个包封中一个原始液滴的适当配对。一旦如此,原始液滴表面就与试剂包封的内表面最大接触,从而促进稍后的电聚结。这种接触意味着任何体积的试剂可加入原始液滴中,从分数体积的薄壳试剂包封到大102、103、104倍或更多的包封。
E3流程的详细示意图示于图23中。首先,将预制的油包水乳液(E1)通过亲水性通道再次注射至装置中(图23,左上)。液滴遇到共同流动试剂将其单独收缩的接点,将它们包围以降低表面排斥。E1的油形成容纳每个原始液滴的稳定薄壳。紧邻接点后的通道被设计成包括如本文所述的脊以捕集水性流体袋。这阻止油在开始生长期间与壁接触并可能改变其疏水性。水包油包水双重乳液(E2)然后行进到第二接点,在此它遇到运载有油的疏水性通道(图23,左下)(双重乳液和其形成的其它描述和表征提供于图38-51的描述中)。此处,从壁排斥水性试剂,并且形成E3液滴。在该图中,示出通过弱化试剂流体与亲水性通道的粘着力而接种E3的过程中的E2。通过第一接点处的流速测定试剂与原始E1液滴的体积比。
在形成后,E3被送入狭窄的收缩器并通过电场聚结。在两个含盐溶液的通道、带有高的交流电压的电极和接地沟槽之间产生电场(图23,底部)。收缩器可促进电场施加至液滴,因为试剂包封可能含有可从电场筛选内部的移动离子。如该图中可见,收缩E3将内部液滴推到通道壁。在聚结后,油壳崩塌并且变成反向油-水-油双重乳液(E2')的最内部相。
使用常规的PDMS制造技术构建装置本身。首先,通过如下方式制造母版:将SU-8抗蚀剂层旋涂在硅晶片上并依次使其暴露于UV光(Blakray)和图案化mylar掩模(Fineline Imaging)。在CD-30中显影后,将SU-8母版在PDMS(PDMS制造商)中用10:1聚合物:交联剂混合物覆盖,放置在真空中以去除捕集的空气,并且在75℃下烘烤1小时。然后使装置脱离并用0.75mm活检穿孔得到接入孔。接着,通过将两者暴露于300W等离子体清洁器中的1毫巴O2持续20秒,连接并且然后在75℃下烘烤10分钟而将装置粘结至1mm厚的玻璃载片。
最终的加工步骤产生亲水性和疏水性通道。首先,使反向流过装置,进入液滴出口并离开载体油入口。同时,用15psi空气向液滴再注射器入口加压以防止进入装置的双重乳液、亲水性部分。接着,用PEEK管道(Resolution Systems,TPK.515-5M)堵塞暴露于的相同入口,并且使装置再次暴露于相同清洁器中的1毫巴O2等离子体持续1分钟。等离子体使得暴露通道呈亲水性,同时塞子将疏水性通道保持原样。这种亲水性处理只是半永久性的,并且此处不使用的其它方法能够产生稳固的亲水性通道。
为了操作,将填充有适当流体的注射器经由PE-2管道(ScientificCommodities,#BB31695)和相同的PEEK管道连接至成品装置并使用注射泵(New Era)加压。再次注射液滴由含1%w/w生物相容性表面活性剂的于氟化油(Novec HFE 7500)中的Milli-Q水组成。使液滴以20μL/hr的相对缓慢流速流动,并且使用蛇形通道(图23,左上)来增加流动阻力并过滤任何压力波动。测试试剂是含0.1%普郎尼克表面活性剂(型号#)的PBS缓冲液(型号#),并且载体油与再注射液滴相同。使这些以200μL/hr至1200μL/hr的相同速率流动。向电极和沟槽填充3.0NaCl溶液。利用溶液填充注射器向电极(死端)加压,直至通道中的空气被PDMS吸收。将其连接至在500V下操作的20kHz高电压振荡器(JKL Components Corp,BXA-12579)。应用于合并或注射液滴的这些大的电压已显示具生物相容性。
图24示出操作的E3装置的显微镜图像。从图24的图A顶部行进的再注射E1被完全概括,因为油和水折射率不同使背光弯曲。在E1通过从侧面流动的试剂在接点处封装并变成E2后,内部和外部折射率匹配并且边界变得更暗。这指示油壳的薄度,其不会明显地折射。在图24的图A中,E1由30μm直径液滴(15pL)组成,并且此处的所有通道都具亲水性,为矩形,距侧面30μm。
在图24的图B中可见的下个接点处,当E3在大的矩形疏水性通道中,距侧面60μm时E2离开亲水性通道。与初始乳液一样,这些E3液滴的边缘由于折射不匹配而清晰可见。可以想象,这个步骤可能造成时序问题,因为内部E1需要与大液滴形成同步。然而,因为E1到达接点处而弱化了试剂相与亲水性通道的粘着力并诱导开始生长,所以避免了这个问题。所述方法示于图24的图B的插图中,并造成E1非常规则地装载入E3中。
E3的聚结示于图24的图C中。60μm宽的通道缩窄至15μm,倚着电场可从电极渗透的壁挤压E1。聚结的新E2'产物可见于右侧。塌陷的油残余物以高对比度出现并且具有大约2pL的体积,对应于厚度为1μm的原始油壳。残余物可想象为已在聚结期间与载体油合并,其中例外的是以下事实:倚着不存在油的通道壁挤压E3。在插图中,在无电场下显示收缩。没有发生聚结并且收缩使内相移动到后面。聚结的规则性示于图24的图D中,其顶部示出用于将液滴的水性内含物均质化的混合通道。
使用快速相机测定E3聚结的精确动力学。两个时间系列示于图25中,其中内部E1的油壳以蓝色突出显示(在图25中由箭头指示)。每次起始于时间t=-0.7ms,其中内部E1尚未收缩并且为球形的。当E1倚着收缩壁阻止并轻微压扁时,在破裂之前立即设定时间t=0.0ms。通过下个画面,t=0.1ms,E1破裂。在图25的图A中,破裂向液滴背面喷射出E1的内含物,而在图25的图B中,向前喷射内含物。在高阶乳液中,内部相的非约束表面将在某处与下个最外部相的表面成正切,以降低界面能(即所述相从来没有完美同心)。这种随机定位的接触点有助于合并并且可测定液滴破裂之处。破裂后,如t=1.1ms的画面中所示,油壳塌陷。
这个方法的稳固性取决于适当的通道是亲水性还是疏水性。如果装置的第一部分不具有充分亲水性,则E1的油可在接点后立即润湿通道壁。并非如图24的图A中以球形行进下降到通道中心,它们可以半球形式向下侧行进并滑到载体流体中,在下个接点处,作为单一乳液而非包封。如果装置的第二部分不具有充分疏水性,则在收缩处可能存在电润湿并且小的卫星液滴将在通道E3的尾部分离出。因此,这个流程产生水性液滴,其中含有油(E2'),与先前所述的合并和注射器策略的纯水性液滴(E1)相反。取决于所需产物,这可能是可接受的;否则,可使用各种技术如微流体离心或液滴分裂来去除油。
根据所述研究,三重乳液聚结策略被证明是用于向液滴集合加入试剂的稳固方法。由于通道的表面化学而非小心同步,在液滴或液滴混合无损失的情况下进行这种三重乳液聚结。
实施例5:皮可注射能够利用小滴RT-PCR进行RNA分子的数字检测
大部分生物测定需要在不同时间下逐步加入试剂。对于最广泛使用的微流体技术,用于向液滴加入试剂的稳固程序因此是重要的。一种用于实现此的技术是液滴的电聚结,其中通过使用电场将液滴与试剂液滴合并来加入试剂。另一种技术是皮可注射,其通过使它们流过加压通道并施加电场来将试剂直接注射至液滴中。皮可注射的优点在于,其不需要两个液滴流的同步,使得更易于实施并且在操作中更稳固。然而,不同液滴之间的注射体积可变性和试剂被电场潜在降解可干扰测定。另外,在皮可注射期间,液滴暂时与试剂流体合并,可能允许物质在液滴之间转移,和交叉污染。
这项研究研究了皮可注射对于在液滴中进行的生物测定的影响以及物质在液滴之间转移的程度。使用灵敏性数字化RT-PCR测定,示出皮可注射是用于向液滴加入试剂的稳固方法,从而允许在与不并入皮可注射的反应类似的速率下检测RNA转录物。还确定,液滴之间的物质转移可忽略。并入皮可注射的工作流程优于未并入皮可注射的工作流程的益处在于,皮可注射允许以逐步方式加入试剂,从而打开了将数字化RT-PCR应用于核酸、病毒和细胞的异质群体的分析的新的可能性。
材料和方法
微流体装置制造
所述微流体装置由粘结至玻璃载片的聚二甲基硅氧烷(PDMS)通道组成。为了制造PDMS模具,首先通过如下产生装置母版:将30mm厚光致抗蚀剂(SU-83025)层旋涂在硅晶片上,接着进行图案化UV曝光和抗蚀剂显影。接着,将聚合物和交联剂的未固化混合物(10:1)倒在母版上并在80℃下烘烤1小时。在剥离掉固化模具后,用0.75mm活检取心针在PDMS板中冲压接入孔。将装置用异丙醇洗涤,用空气干燥,然后在300W等离子体清洁器中用1毫巴O2等离子体处理20秒后粘结至玻璃载片。为了使装置具疏水性,用冲洗通道并在80℃下烘烤10分钟。
RNA分离
将人PC3前列腺癌或Raji B淋巴细胞细胞系在37℃和5%CO2下在补充有10%FBS、青霉素和链霉素的适当生长培养基中培养。在RNA分离之前,将Raji细胞沉淀并在磷酸盐缓冲盐水(PBS)中洗涤一次。在沉淀和洗涤之前首先对汇合和粘附的PC3细胞进行胰蛋白酶处理。使用RNeasy Mini试剂盒(Qiagen)从细胞沉淀中分离出总RNA。使用分光光度计对总RNA进行定量并且在随后的25mlRT-PCR反应中使用所示量(150至1000ng)的RNA。
RT-PCR反应
用于RT-PCR反应的扩增引物的序列如下:EpCAM正向5'-CCTATGCATCTCACCCATCTC-3'、EpCAM反向5'-AGTTGTTGCTGGAATTGTTGTG-3';CD44正向5'-ACGGTTAACAATAGTTATGGTAATTGG-3'、CD44反向5'-CAACACCTCCCAGTATGACAC-3';PTPRC/CD45正向5'-CCATATGTTTGCTTTCCTTCTCC-3'、PTPRC/CD45反向5'-TGGTGACTTTTGGCAGATGA-3'。在用于微流体小滴实验中之前用基于管的RT-PCR反应验证所有PCR引物。在琼脂糖凝胶上使来自这些反应的产物跑电泳并且观察每个引物组的预测扩增子尺寸的单谱带。探针的序列如下:EpCAM 5'-/6-FAM/ATCTCAGCC/ZEN/TTCTCATACTTTGCCATTCTC/IABkFQ/-3';CD445'-/Cy5/TGCTTCAATGCTTCAGCTCCACCT/IAbRQSp/-3';PTPRC/CD455'-/HEX/CCTGGTCTC/ZEN/CATGTTTCAGTTCTGTCA/IABkFQ/-3'。预混合扩增引物和探针以来自Integrated DNA Technologies(IDT)的PrimeTime Standard qPCR测定定购并以所建议的IX工作浓度使用。将Superscript III逆转录酶(Invitrogen)直接加入PCR反应以实现第一链cDNA合成。在RT-PCR试剂的乳化或皮可注射后,将液滴收集在PCR管中并转移至T100热循环仪(BioRad)。将反应物在50℃下孵育15分钟,接着在93℃下孵育2分钟,以及41个如下循环:92℃,15秒和60℃,1分钟。
乳液产生和皮可注射
将反应混合物装载于1mL注射器中并使用由自定义Lab VIEW软件控制的注射泵(New Era)注射至微流体T形接点液滴制造器中。调节装置的尺寸和试剂的流速以获得所需的30mm液滴尺寸。为了对皮可注射施加电场,用电导率为约0.1S/cm的3M NaCl溶液填充电极和周围的沟槽通道。使用由经由鳄鱼夹连接至注射器针的荧光光逆变器(JKL Components公司)产生的20kHz、300VAC信号使电极通电。
免疫荧光成像
为了使热循环小滴成像,将10mL乳液抽吸到Countess有腔盖玻片(Invitrogen)中。使用常规宽视场落射荧光和4x物镜在NikonEclipse Ti倒置显微镜上对载片成像。选择荧光过滤器来优化信号强度并由于多重反应中使用的染料的光谱重叠而减轻背景荧光。使用来自Nikon的NIS Elements成像软件捕捉图像。
数据分析
使用自定义MATLAB软件分析小滴图像。对于每个视场,捕捉明场和荧光图像。所述软件首先通过拟合圆形与液滴界面而定位明场图像中的所有液滴。接着,使用限制于在远大于液滴的尺寸尺度上改变的光滑多项式曲面减去荧光图像中的光背景。然后所述软件测量每个小滴的圆形边界内的平均荧光强度。所得强度值偏移,以使得最低强度的丛集(空)具有零的平均值。液滴基于其强度分别处于限定阈值的上方或下方而确定为“阳性”或“阴性”。
结果
皮可注射的液滴中的RNA转录物的检测
当对于RT-PCR测定使用皮可注射时的潜在关注是其可干扰液滴中的反应的可能性;例如,所述方法可导致液滴之间的试剂量的可变性或关键组分在暴露于电场后的降解。为了研究这些问题,使用RT-PCR在皮可注射和非皮可注射的液滴中比较两种癌症相关人转录物EpCAM和CD44的检测(图26)。将用于检测EpCAM的探针结合至荧光团6羧基荧光素(FAM)并且将CD44的探针结合至染料Cy5。探针混合物还含有侧接探针并从这些基因得到约150个碱基扩增子的引物。
为了制备非皮可注射对照液滴,将探针混合物加入含有从人PC3前列腺癌细胞系分离的150ng总RNA的25ml RT-PCR母体混合反应物。用T形接点液滴制造器将RT-PCR溶液乳化成单分散30mm(14pL)液滴,并且将液滴收集到PCR管中并热循环(图26的图A和图26的图C)。在热循环期间,含有至少一个EpCAM或CD44转录物的液滴扩增,在相关FAM和Cy5染料的波长下变得发荧光。相比之下,不含分子的液滴不进行扩增并保持暗淡,如标准的基于的数字化小滴RT-PCR中。在热循环后,将液滴抽吸到有腔载片中并用荧光显微镜成像。为了测量EpCAM和CD44在原始溶液中的浓度,对具有FAM或Cy5荧光的液滴数目进行计数。反应显示EpCAM和CD44探针的数字化荧光信号,指示这些转录物以有限的浓度存在于液滴中,如图27的图A中所示。其中省略了逆转录酶的对照反应不能产生荧光信号,指示测定具特异性并且不是由乳化过程造成的探针的非特异性裂解的结果。
为了测试皮可注射对RT-PCR的影响,进行如上文的类似实验,但将RT-PCR试剂分成在不同时间加入的两种溶液。将总RNA、RT-PCR缓冲液、引物、探针和DNA聚合酶乳化成30mm直径的液滴;这些液滴不能进行RT-PCR,因为它们缺乏逆转录酶。使用皮可注射,将相等体积的2X逆转录酶引入PCR缓冲液中并且将液滴热循环。正如非皮可注射的对照物一样,这种乳液显示稳固的数字信号并且具有相等比率的荧光/非荧光液滴,如图27的图A和图B中所示。为了证实荧光不是由于探针的背景水解、探针被电场破坏或一些其它因素,进行其它反应,其中将缺乏逆转录酶的皮可注射流体加入含RNA的液滴中。在这些液滴中,在热循环后没有明显荧光(图27的图C),这证实信号确实是RNA分子的数字检测的结果,并且这些测定具特异性。
皮可注射液滴中的RT-PCR检测率的定量
为了精确定量皮可注射对RT-PCR转录物检测的影响,收集了皮可注射和非皮可注射的液滴的四种独立重复。为了自动进行数据分析,使用自定义MATLAB软件来定位图像中的液滴并测量其荧光强度。对于特定通道(FAM或Cy5),将每个液滴内的荧光强度平均化;随后所有液滴值偏移以使得空液滴的集合具有零的平均值(参见材料和方法)。使用两种通道的一个阈值,基于其分别高于或低于阈值,对于EpCAM和CD44将每个液滴标记为阳性或阴性,如图28的图A中所示。从四个实验重复分析总共16,216个对照液滴和14,254个皮可注射液滴。为了测定皮可注射液滴相对于非皮可注射对照物的检测率,将每个重复中的CD44(Cy5)和EpCAM(FAM)阳性对照液滴的总数标准化。在逆转录酶的皮可注射后,相对于对照液滴检测到92%(+/-26%)的CD44阳性液滴和87%(+/-34%)的EpCAM阳性液滴(图28的图B)。尽管皮可注射液滴的平均转录物检测率略低于给定RNA浓度的对照液滴,但差异不具统计学显著性,并且一些实验重复具有高于对照物的皮可注射液滴的检测率。基于这些结果,推论出,皮可注射得到等于数字化RT-PCR的转录物检测率,其益处是允许反应组分在不同时间加入。
离散液滴群体可在最小交叉污染下皮可注射
当向液滴中加入试剂时的重要特征是维持每个液滴的独特内含物并防止液滴之间的物质转移。不同于两个离散液滴的合并,皮可注射液滴的内含物变得与所加入流体暂时连接,如图26的图B中所示。在液滴与流体断开连接后,其可留下物质,它转而可加入随后的液滴中。这可能导致液滴之间的物质转移,和交叉污染。为了检查皮可注射导致交叉污染的程度,再次使用RT-PCR反应,因为它们非常灵敏并且能够检测仅单个RNA分子的转移。将FAM缀合的探针用于靶向EpCAM转录物并且将六氯荧光素(HEX)缀合的探针用于识别B淋巴细胞特异性转录物PTPRC。从表达EpCAM而非PTPRC的PC3细胞以及表达PTPRC而非EpCAM的B淋巴细胞源细胞系(Raji)分离出总RNA。对于对照液滴集,将来自两种细胞类型的RNA混合,加入探针和RT-PCR试剂,并且将溶液乳化成30mm液滴。将液滴收集到管中,进行热循环和成像,图29A。在图像中,大量的液滴显示FAM和HEX荧光,指示PTPRC和EpCAM转录物的多重化检测。较小的分数具有纯绿色或红色荧光,指示它们最初仅含有这些分子之一,而甚至更少是暗淡的并且因此不含这些转录物。
为了观察皮可注射器交叉污染率,使用微流体装置,其由图29的图B中绘制的相对T形接点同步产生两个液滴群体。一个群体仅含有Raji细胞RNA和PTPRC转录物;另一个仅含有PC3细胞RNA和EpCAM转录物,如图29的图B中所示。两个群体含有EpCAM和PTPRC的引物和探针并且因此能够信号传导任一种转录物的存在。在形成后立即向液滴中皮可注射2X逆转录酶,从而能够实现测定的第一链cDNA模板合成,和可能污染。如果RNA在液滴之间转移,则一些液滴应显示多重化信号,而在不存在污染的情况下,应存在两种不同的群体并且无多重化。在荧光图像中,观察到两种不同的群体,一个对于EpCAM(FAM)而另一个对于PTPRC(HEX)呈阳性,其中几乎不存在黄色多重化液滴,其将指示多重化信号,如图29的图B中所示。这表明,在皮可注射期间的交叉污染是罕见的。
为了测量精确的交叉污染率,使用自动化小滴检测软件来分析数千个液滴,图30的图A,并且将结果绘制为阳性液滴的总数的百分比,图30的图B。从三个独立的实验重复分析总共5771个阳性对照液滴和7329个阳性皮可注射液滴。对于其中组合了Raji和PC3RNA的对照液滴,观察到多重化率44%(+/-9.26)。相比之下,对于皮可注射的液滴,仅观察到0.31%(+/-0.14)多重化液滴,如图30的图B中所示。因此,通过皮可注射,存在一些多重化,但比率非常低,它不能被排除为由其它来源的RNA转移产生,例如在热循环期间的液滴合并或小滴界面之间的RNA传输。
其中在形成后立即皮可注射液滴的双重群体实验允许评估精确的交叉污染量,但在对于生物测定的皮可注射的大部分实际实施中,液滴将形成在一个装置上,离线去除用于孵育或热循环,然后再注射到另一个皮可注射装置中。为了证实皮可注射可有效用于在这些条件下进行的数字化RT-PCR反应,并且为了估计交叉污染率,再次产生双重液滴群体,但这时离线牵拉液滴并储存在1mL注射器中,随后将其再次注射和皮可注射。正如以前一样,已观察到几乎所有的液滴为纯绿色或红色,指示最小的交叉污染,如图31中所示。然而,也观察到一些具有多重化信号的液滴,如由图像中的罕见黄色液滴所示。在这个实验中,多重化率为1%,高于在形成后立即皮可注射的液滴。尽管可排除皮可注射器处的交叉污染,但怀疑较高的多重化率是液滴在离线储存和再次注射期间合并的结果,在此期间液滴可经受粉尘、空气和剪切力,这可能增加合并的机会。这由以下观察结果支持:在乳液的再次注射期间,存在偶尔的大的合并液滴,以及皮可注射的乳液在某种程度上是多分散的,如图31中所示。然而,即使在这些恶劣的条件下,绝大多数液滴显示无多重化,指示它们保持作为独特反应器的完整性。
根据这些研究,证实皮可注射与小滴数字化RT-PCR相容并得到与未并入皮可注射的工作流程等效的单RNA分子检测率。这显示,皮可注射与包括常见生物组分如核酸、酶、缓冲液和染料的反应物相容。还观察到,在皮可注射期间在液滴之间存在可忽略的物质转移。这些结果支持皮可注射作为对于超高通量生物测定向液滴中加入试剂的有力且稳固的技术。
实施例6:单细胞RT-PCR微流体装置
图32示出如本文所提供的单细胞RT-PCR微流体装置的一个实施方案。首先将目标细胞封装在含有包括蛋白酶和清洁剂的裂解试剂的液滴中并离线孵育。然后将这些液滴引入这个装置中并使用用于引入微滴的输入微通道和流动聚焦液滴制造器用油间隔(图A)。在配对微通道中,然后将间隔的液滴与含有稀释缓冲液的大液滴配对,所述大液滴是通过与配对微通道流体连通的稀释缓冲液滴制造器产生(图B)。然后用电场将大液滴和小液滴合并在合并微通道中(图C),将小液滴的内含物加入到大的液滴中。合并的液滴经过混合微通道,然后通过液滴取样器从其中取样一小部分(图D)。然后所述小部分经过皮可注射微通道,其中然后向小部分中皮可注射RT-PCR试剂(图E)。然后将液滴热循环以进行RT-PCR反应。
这个系统促进单细胞RT-PCR,因为它允许在一个步骤中执行细胞裂解和蛋白质消化(未示出)和随后在加入RT-PCR试剂之前裂解物在液滴中的稀释。在无稀释的情况下,裂解物可能已抑制RT-PCR反应。
所述装置稳固地工作,至少部分地是因为每个微流体组分的时序是由制造稀释液滴的大液滴制造器的周期性设置。在不存在这种周期性液滴形成的情况下,装置可能不太稳定地操作并可能产生多分散液滴。
实施例7:利用包括脊的通道的微流体小滴形成装置的测试
测试具有和不具有位于T形接点下游的通道脊的T形接点液滴制造器以测定包括这些脊对于小滴形成性能的影响。通道宽度为约30微米并且脊峰宽度为约5至约10微米。参见图33。
PDMS微流体装置一般如本文所述制备并进行等离子体处理10秒。监测流量比,其中个别的流量(Q油相)+(Q水相)的总和(Q )大约是1000μl/hr,并且比率(R)=Q水相/Q总和,并且小滴形成可视化。
随着缺乏脊的装置的流量比增加,液滴制造器停止形成液滴,而是形成长的射流。不希望受任何特定理论约束,据认为这是由于射流润湿通道壁并粘附,从而防止液滴形成。参见图33,左侧。对于包括脊的装置,脊成功地捕集壁附近的油,使得水相难以润湿。这允许装置以远远更高的流量比形成液滴,随后它最终在R=0.9下润湿。这表明,脊允许液滴制造器在比在不存在脊的情况下可能范围远远更宽的范围下起作用。图33中的图像的顶部和底部集对应于利用不同装置进行的实验。当用第一对装置进行实验时,实现了最大Q水相/Q 的21倍增加。当利用第二组装置进行相同的实验时,实现了最大Q水相/Q油相的8倍增加。这种差异可能是由于实验可变性,因为导致喷射的润湿特性在某种程度上不可预测,滞后,并且容易变化。
实施例8:液体电极的制造和测试
当在特定微流体装置应用中要求电场时,许多微流体装置利用金属电极来产生电场。然而,使用这些金属电极可能存在缺点,包括制造步骤数目增加和电极有可能失效。
有利的是,本公开描述了液体电极的制造和使用,其简化了制造过程并提供了相对于金属电极类似和/或改进的能力。
图34提供示例性液体电极制造方法的概述。最初,在Si晶片上制造SU-8光致抗蚀剂母版(A)。然后将PDMS浇铸,脱气并固化(B)。在PDMS中冲压入口端口,并且将PDMS粘结至玻璃载片(C)。最后,用NaCl溶液填充通道。图35提供在不同时间下选取的一系列三个图像,因为电极通道被盐水填充(时间过程从左至右进行)。将盐水引入通道入口中并加压,造成其缓慢填充通道。最初在通道中的空气被推入PDMS中,因此最后它被液体完全填充。
如图36中所示模拟了各种液体电极构型的电场线。所述模拟具有正电极和接地电极,显示了三种不同几何结构的等电位线。
液体电极能够通过施加电场合并液滴,如图37中所示,其提供利用液滴电极将大液滴与小液滴合并的小滴合并装置的两个图像。为了合并液滴,使用盐-水电极施加电场。当电场关闭时,不发生合并(右),并且当其打开时,液滴合并(左)。
实施例9:固氮螺菌/大肠杆菌混合物的PCR分析和FACS分选
将两种不同的微生物物种固氮螺菌和大肠杆菌封装在微滴中。使用针对固氮螺菌和/或大肠杆菌的和引物进行小滴内PCR。图52提供显示在其中用封装的固氮螺菌进行PCR反应的液滴的图像。上方图像对应于其中产生110bp扩增子的反应,而下方图像对应于为147bp扩增子。图53示出测试固氮螺菌和大肠杆菌的16S引物的凝胶的图片。所述凝胶显示对应于两个PCR反应的扩增子的谱带,一个是对于464bp扩增子并且一个是对于550bp扩增子。图54提供了凝胶的图片,其验证可通过向含有细菌的样本中加入多个引物组来多重化小滴内PCR反应。图55示出实验的结果,其中反应具有仅针对固氮螺菌的引物和探针,因此仅含有这些微生物之一的液滴进行扩增并变得发荧光,而空液滴或具有大肠杆菌的液滴保持暗淡。然后使用微流体装置将乳液封装在双重乳液中并利用FACS分选。图55中右侧的曲线图示出FACS数据。上方曲线图示出随着液滴荧光变化绘制的散射横截面。基于此,通过绘制边界来选通群体(如上所示),并且基于液滴强度分选这个群体。由于待丢弃的小的油液滴或灰尘,所述选通允许错误事件。当仅着眼于双重乳液时,群体具有两个不同的峰,其对应于荧光和非荧光液滴,以下方柱状图显示。将在小滴内PCR期间产生的扩增子再次扩增的尝试是不成功的,可能是由于其化学结构,因为它们可含有类似的碱基或由于载体油的抑制作用。
尽管已出于理解清晰的目的通过示例说明和实施例详细地描述了前述发明,但本领域的普通技术人员根据本公开的教导容易认识到,可在不背离所附权利要求的精神或范围的情况下对其作出某些变化和修改。
因此,前述仅示例说明本发明的原理。应理解,本领域的技术人员将能够设计各种布置,尽管本文未明确描述或显示,但其体现本发明的原理并包括于其精神和范围内。此外,本文所述的所有实例和条件语言主要旨在帮助读者理解本发明的原理,而不限于这些具体叙述的实例和条件。此外,本文中叙述本发明的原理、方面和实施方案以及其具体实施例的所有陈述,意在涵盖其结构和功能等效物。另外,预期这些等效物包括目前已知的等效物和未来开发的等效物,即,不考虑结构的情况下为执行相同功能而开发的任何要素。因此,本发明的范围并不意在限于本文所示和描述的示例性实施方案。实际上,本发明的范围和精神由所附权利要求体现。

Claims (146)

1.一种用于检测细胞的方法,所述方法包括:
将获自受试者的生物样本的细胞封装在微滴中,其中在所述微滴中存在至少一个细胞;
在有效使细胞裂解的条件下孵育所述微滴;
将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种寡核苷酸杂交的一个或多个引物;以及
通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示PCR扩增产物的存在;
其中一个或多个步骤在微流体控制下进行。
2.根据权利要求1所述的方法,其中在有效使细胞裂解的条件下孵育所述微滴包括将裂解剂引入所述微滴中。
3.根据权利要求1或2所述的方法,其中所述一种或多种寡核苷酸是致癌基因。
4.根据权利要求1-3中任一项所述的方法,其中所述生物样本是血液并且所述方法包括至少部分地基于其中检测到PCR扩增产物的微滴的数目来确定所述受试者的血液样本中存在的循环肿瘤细胞(CTC)的数目。
5.根据权利要求1-4中任一项所述的方法,其中所有步骤都在微流体控制下进行。
6.根据权利要求5所述的方法,其中所有步骤都在相同的微流体装置上进行。
7.根据上述权利要求中任一项所述的方法,其中所述多个PCR引物包括10个或更多个引物。
8.根据上述权利要求中任一项所述的方法,其中所述多个PCR引物包括20至100个引物。
9.根据上述权利要求中任一项所述的方法,其中所述多个PCR引物包括10种或更多种致癌基因的引物。
10.根据上述权利要求中任一项所述的方法,其中在允许PCR扩增的条件下孵育所述微滴在与封装所述细胞并裂解所述细胞所用相同的微流体装置上进行。
11.根据上述权利要求中任一项所述的方法,其中所述PCR试剂和PCR引物与所述裂解剂同时加入。
12.根据上述权利要求中任一项所述的方法,其中所述PCR试剂在两个步骤或更多个步骤中加入。
13.根据上述权利要求中任一项所述的方法,其进一步包括将探针引入所述微滴中。
14.根据权利要求13所述的方法,其中所述探针在允许PCR扩增的条件下孵育所述微滴之前引入。
15.根据权利要求13或14所述的方法,其中所述探针是探针。
16.根据上述权利要求中任一项所述的方法,其中试剂通过将所述微滴与包含所述试剂的第二微滴合并而加入所述微滴中。
17.根据上述权利要求中任一项所述的方法,其中试剂使用小滴聚结或皮可注射而加入所述微滴中。
18.根据上述权利要求中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
d)将所述试剂乳化成小滴流,其中所述小滴小于所述微滴的尺寸;
e)使所述小滴与所述微滴一起流动;以及
f)合并小滴与所述微滴。
19.根据权利要求18所述的方法,其中所述小滴的直径为所述微滴的直径的25%或更小,并且多个小滴与所述微滴合并。
20.根据权利要求18或19所述的方法,其中所述合并包括施加电场。
21.根据上述权利要求中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
d)将所述试剂喷射至流体射流中;
e)使所述流体射流与所述微滴并排流动;以及
f)合并小滴与所述微滴。
22.根据权利要求21所述的方法,其中合并包括施加电场。
23.根据权利要求21或22所述的方法,其中所述试剂的喷射包括加入增粘剂或表面活性剂。
24.根据上述权利要求中任一项所述的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
25.根据上述权利要求中任一项所述的方法,其中所述检测组分基于荧光变化来检测。
26.根据权利要求25所述的方法,其中所述荧光变化是由于荧光共振能量转移(FRET)。
27.根据权利要求25所述的方法,其中所述荧光变化是由于荧光偏振。
28.根据权利要求25或27所述的方法,其中所述检测组分是插入染色剂。
29.根据上述权利要求中任一项所述的方法,其中检测所述PCR扩增产物的存在或不存在包括使所述微滴反复成像。
30.根据权利要求29所述的方法,其中在所述微滴经受允许PCR扩增的条件以产生所述PCR扩增产物的同时使所述微滴反复成像。
31.根据上述权利要求中任一项所述的方法,其中在允许PCR扩增的条件下孵育所述微滴和检测所述PCR扩增产物的存在或不存在在Megadroplet阵列上进行。
32.根据上述权利要求中任一项所述的方法,其包括分选微滴。
33.根据权利要求32所述的方法,其中所述分选包括使用膜阀、分叉通道、表面声波或介电电泳。
34.根据权利要求32或33所述的方法,其中所述微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
35.根据权利要求32-34中任一项所述的方法,其包括至少部分地基于PCR扩增产物的存在或不存在的检测来分选。
36.根据权利要求32-35中任一项所述的方法,其中所述微滴在引入PCR试剂之前分选。
37.根据权利要求32-36中任一项所述的方法,其中所述微滴在引入裂解剂之前分选。
38.根据上述权利要求中任一项所述的方法,其进一步包括:
将稀释剂注射至所述微滴中;和
在使所述微滴分裂的条件下,使所述微滴流过施加有电场的微流体通道。
39.根据上述权利要求中任一项所述的方法,其中所述受试者是哺乳动物。
40.根据上述权利要求中任一项所述的方法,其中所述受试者是人。
41.根据上述权利要求中任一项所述的方法,其中所述受试者已被诊断患有癌症。
42.根据上述权利要求中任一项所述的方法,其中所述生物样本是血液样本。
43.根据权利要求42所述的方法,其中所述血液样本是全血。
44.根据权利要求42或43所述的方法,其包括分级分离所述血液样本。
45.根据权利要求42-44中任一项所述的方法,其包括抽取30mL或更少的所述受试者的血液。
46.根据权利要求45所述的方法,其中所述血液样本是15mL或更少。
47.根据上述权利要求中任一项所述的方法,其包括固定和/或渗透所述细胞。
48.根据上述权利要求中任一项所述的方法,其包括引入多个不同的检测组分,和通过所述多个检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示PCR扩增产物的存在。
49.根据上述权利要求中任一项所述的方法,其包括使所述细胞或其组分与可检测标记的抗体接触。
50.一种用于检测肿瘤细胞的方法,所述方法包括:
在其中大多数微滴包含零或一个细胞的条件下将多个细胞封装在多个微滴中,其中所述多个细胞获自疑似含有循环肿瘤细胞(CTC)的受试者的血液样本;
使所述多个微滴富集含有一个细胞的微滴;
将裂解剂引入所述多个微滴中并在有效使细胞裂解的条件下孵育;
将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述多个微滴中并在允许PCR扩增的条件下孵育所述多个微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;
通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在;以及
至少部分地基于其中检测到所述PCR扩增产物的微滴的数目来确定所述受试者的血液样本中存在的CTC的数目;
其中一个或多个步骤在微流体控制下进行。
51.根据权利要求50所述的方法,其中所有步骤都在微流体控制下进行。
52.根据权利要求50或51所述的方法,其中所有步骤都在相同的微流体装置上进行。
53.根据权利要求50-52中任一项所述的方法,其中所述多个PCR引物包括10个或更多个引物。
54.根据权利要求50-53中任一项所述的方法,其中所述多个PCR引物包括10种或更多的致癌基因的引物。
55.根据权利要求50-54中任一项所述的方法,其中所述多个PCR引物包括多个探针。
56.根据权利要求55所述的方法,其中所述探针包括探针。
57.根据权利要求50-56中任一项所述的方法,其中所述PCR试剂在两个步骤或更多个步骤中加入。
58.根据权利要求50-57中任一项所述的方法,其进一步包括将探针引入所述微滴中。
59.根据权利要求50-58中任一项所述的方法,其中试剂通过将微滴与包含所述试剂的第二微滴合并而加入所述多个微滴中。
60.根据权利要求50-59中任一项所述的方法,其中试剂使用小滴聚结或皮可注射而加入所述多个微滴中。
61.根据权利要求50-60中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述多个微滴中:
d)将所述试剂乳化成小滴流,其中所述小滴小于微滴的尺寸;
e)使所述小滴与所述微滴一起流动;以及
f)合并小滴与所述微滴。
62.根据权利要求58所述的方法,其中所述合并包括施加电场。
63.根据权利要求50-62中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述多个微滴中:
d)将所述试剂喷射至流体射流中;
e)使所述流体射流与微滴并排流动;以及
f)合并小滴与所述微滴。
64.根据权利要求50-63中任一项所述的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
65.根据权利要求50-64中任一项所述的方法,其包括分选微滴。
66.根据权利要求65所述的方法,其中所述多个微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
67.根据权利要求65-66中任一项所述的方法,其中所述多个微滴在引入PCR试剂之前分选。
68.根据权利要求50-67中任一项所述的方法,其中检测所述PCR扩增产物的存在或不存在包括使所述多个微滴反复成像。
69.根据权利要求68所述的方法,其中在所述多个微滴经受允许PCR扩增的条件以产生所述PCR扩增产物的同时使所述多个微滴反复成像。
70.根据权利要求50-69中任一项所述的方法,其中在允许PCR扩增的条件下孵育所述多个微滴和检测所述PCR扩增产物的存在或不存在在Megadroplet阵列上进行。
71.根据权利要求50-70中任一项所述的方法,其中所述受试者是哺乳动物。
72.根据权利要求50-71中任一项所述的方法,其中所述受试者是人。
73.根据权利要求50-72中任一项所述的方法,其中所述受试者已被诊断患有癌症。
74.一种对细胞进行基因分型的方法,所述方法包括:
将获自受试者的生物样本的细胞封装在微滴中,其中所述微滴中存在一个细胞;
将裂解剂引入所述微滴中并且在有效使细胞裂解的条件下孵育所述微滴;
将聚合酶链式反应(PCR)试剂和多个PCR引物引入所述微滴中,并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;
将多个探针引入所述微滴中,其中所述探针与一种或多种目标突变杂交并在不同波长下发荧光;以及
通过探针荧光的检测来检测特定PCR扩增产物的存在或不存在,其中检测到荧光指示所述PCR扩增产物的存在;
其中一个或多个步骤在微流体控制下进行。
75.根据权利要求74所述的方法,其中所述探针包括探针。
76.根据权利要求74或75所述的方法,其中通过探针荧光的检测来检测特定PCR扩增产物的存在或不存在包括在所述微滴经受允许PCR扩增的条件以产生PCR扩增产物的同时使所述微滴反复成像。
77.根据权利要求76所述的方法,其包括获得时间依赖性荧光信息。
78.根据权利要求74-77中任一项所述的方法,其中试剂通过将所述微滴与包含所述试剂的第二微滴合并而加入所述微滴中。
79.根据权利要求74-78中任一项所述的方法,其中试剂使用小滴聚结或皮可注射而加入所述微滴中。
80.根据权利要求74-79中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
d)将所述试剂乳化成小滴流,其中所述小滴小于所述微滴的尺寸;
e)使所述小滴与所述微滴一起流动;以及
f)合并小滴与所述微滴。
81.根据权利要求74-80中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
d)将所述试剂喷射至流体射流中;
e)使所述流体射流与所述微滴并排流动;以及
f)合并小滴与所述微滴。
82.根据权利要求74-81中任一项所述的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
83.根据权利要求74至-82中任一项所述的方法,其包括分选微滴。
84.根据权利要求83所述的方法,其中所述微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
85.根据权利要求74-84中任一项所述的方法,其中所述受试者是哺乳动物。
86.根据权利要求74-85中任一项所述的方法,其中所述受试者是人。
87.根据权利要求74-86中任一项所述的方法,其中所述受试者已被诊断患有癌症。
88.一种用于检测受试者中的癌症的方法,所述方法包括:
将获自所述受试者的生物样本的寡核苷酸封装在微滴中,其中所述微滴中存在至少一种寡核苷酸;
将聚合酶链式反应(PCR)试剂、检测组分和多个PCR引物引入所述微滴中并在允许PCR扩增的条件下孵育所述微滴以产生PCR扩增产物,其中所述多个PCR引物包括各自与一种或多种致癌基因杂交的一个或多个引物;
通过所述检测组分的检测来检测所述PCR扩增产物的存在或不存在,其中检测到所述检测组分指示所述PCR扩增产物的存在;以及
至少部分地基于所述PCR扩增产物的存在或不存在来诊断所述受试者患有癌症或不患有癌症;
其中一个或多个步骤在微流体控制下进行。
89.根据权利要求88所述的方法,其中所述多个PCR引物包括10个或更多个引物。
90.根据权利要求88-89中任一项所述的方法,其中所述多个PCR引物包括10种或更多的致癌基因的引物。
91.根据权利要求88-90中任一项所述的方法,其进一步包括将探针引入所述微滴中。
92.根据权利要求91所述的方法,其中所述探针在允许PCR扩增的条件下孵育所述微滴之前引入。
93.根据权利要求91或92所述的方法,其中所述探针是探针。
94.根据权利要求88-93中任一项所述的方法,其中试剂通过将所述微滴与包含所述试剂的第二微滴合并而引入所述微滴中。
95.根据权利要求88-94中任一项所述的方法,其中试剂使用小滴聚结或皮可注射而加入所述微滴中。
96.根据权利要求88-95中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
d)将所述试剂乳化成小滴流,其中所述小滴小于所述微滴的尺寸;
e)使所述小滴与所述微滴一起流动;以及
f)合并小滴与所述微滴。
97.根据权利要求88-96中任一项所述的方法,其中试剂通过包括下述步骤的方法加入所述微滴中:
d)将所述试剂喷射至流体射流中;
e)使所述流体射流与所述微滴并排流动;以及
f)合并小滴与所述微滴。
98.根据权利要求88-97中任一项所述的方法,其中试剂通过包括使用注射至所述微滴中的流体作为电极的方法而加入所述微滴中。
99.根据权利要求88-98中任一项所述的方法,其中所述检测组分基于荧光变化来检测。
100.根据权利要求88-99中任一项所述的方法,其中检测所述PCR扩增产物的存在或不存在包括使所述微滴反复成像。
101.根据权利要求100所述的方法,其中在所述微滴经受允许PCR扩增的条件以产生所述PCR扩增产物的同时使所述微滴反复成像。
102.根据权利要求88-101中任一项所述的方法,其包括分选微滴。
103.根据权利要求102所述的方法,其中所述微滴基于包括尺寸、粘度、质量、浮力、表面张力、导电性、电荷或磁性的特性来分选。
104.根据权利要求88-103中任一项所述的方法,其包括至少部分地基于PCR扩增产物的存在或不存在的检测来分选。
105.根据权利要求88至104中任一项所述的方法,其进一步包括:
将稀释剂注射至所述微滴中;和
在使所述微滴分裂的条件下,使所述微滴流过施加有电场的微流体通道。
106.根据权利要求88-105中任一项所述的方法,其中所述受试者是哺乳动物。
107.根据权利要求88-106中任一项所述的方法,其中所述受试者是人。
108.根据权利要求88-107中任一项所述的方法,其中所述受试者已被诊断患有癌症。
109.一种微流体装置,其包括:
细胞封装装置,其用于将获自受试者的血液样本的细胞封装在微滴中;
与所述细胞封装装置流体连通的第一腔室,所述第一腔室包括用于向所述微滴加入第一试剂的第一试剂注射器元件,和加热元件;
与所述第一腔室流体连通的第二腔室,所述第二腔室包括用于向所述微滴加入第二试剂的第二试剂注射器元件,和加热元件,其中所述加热元件被配置成在两种或更多的温度下加热所述微滴;以及
与所述第二腔室流体连通的检测区域,其检测来自所述第二腔室的反应产物的存在或不存在。
110.如权利要求109所述的微流体装置,其中所述第二腔室的所述加热元件包括珀尔帖板、散热器和控制计算机。
111.如权利要求109所述的微流体装置,其中所述微流体装置包括一个或多个液体电极。
112.一种单细胞RT-PCR微流体装置,其包括:
与液滴制造器偶联的输入微通道,其用于将微滴引入所述微流体装置中;
与所述输入微通道流体连通的配对微通道;
与所述配对微通道流体连通的稀释缓冲液滴制造器,其用于产生体积大于所述微滴的稀释缓冲液滴并用于将单个稀释缓冲液滴与单个微滴配对;
与所述配对微通道流体连通的合并微通道,其用于接受来自所述配对微通道的配对的稀释缓冲液滴和微滴;
沿着所述合并微通道定位的第一电场发生器,其用于产生能够使配对的稀释缓冲液滴与微滴在所述合并微通道中合并以形成稀释微滴的电场;
与所述合并微通道流体连通的混合微通道,其用于接收来自所述合并通道的所述稀释微滴并混合所述稀释微滴的内含物;
与所述混合微通道流体连通的液滴取样器,其用于提取所述稀释微滴的样本;
与所述液滴取样器流体连通的皮可注射微通道,其中所述皮可注射微通道包括皮可注射器并用于接收所述稀释微滴的样本并将RT-PCR试剂皮可注射至所述样本中;
第二电场发生器,其中所述第二电场发生器沿着所述皮可注射微通道定位以产生足以允许所述RT-PCR试剂皮可注射至所述样本中的电场;
与所述皮可注射微通道流体连通的热循环器加热元件,其用于对皮可注射有所述RT-PCR试剂的所述样本进行RT-PCR反应。
113.如权利要求112所述的微流体装置,其进一步包括与所述输入微通道流体连通的封装腔室,其用于将细胞和裂解试剂封装至微滴中。
114.如权利要求112所述的微流体装置,其中所述第一和/或第二电场发生器是连接至电源或高电压放大器的液体电极。
115.如权利要求112所述的微流体装置,其包括在所述输入微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
116.如权利要求112所述的微流体装置,其包括在所述配对微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
117.如权利要求112所述的微流体装置,其包括在所述皮可注射微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
118.如权利要求112所述的微流体装置,其中所述皮可注射微通道被配置成接收已在所述取样器中进行RT-PCR反应的样本并向所述样本中皮可注射PCR试剂。
119.如权利要求118所述的微流体装置,其中所述热循环器被配置成对皮可注射有所述PCR试剂的样本进行PCR反应。
120.如权利要求118所述的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包含相同的引物。
121.如权利要求118所述的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包含不同的引物。
122.如权利要求112所述的微流体装置,其中所述RT-PCR试剂包含与荧光染料和核酸探针缀合的珠粒。
123.如权利要求112所述的微流体装置,其中所述RT-PCR试剂包含荧光DNA探针。
124.一种单细胞RT-PCR微流体装置,其包括:
与流动聚焦液滴制造器偶联的输入微通道,其用于将微滴引入所述微流体装置中,其中所述流动聚焦液滴制造器通过一定体积的油间隔所述输入微通道中的所述微滴并且其中各微滴包含细胞裂解物样本;
与所述输入微通道流体连通的配对微通道;
与所述配对微通道流体连通的稀释缓冲液滴制造器,其用于产生体积大于微滴的稀释缓冲液滴并用于将单个稀释缓冲液滴与单个微滴配对;
与所述配对微通道流体连通的合并微通道,其用于接受来自所述配对微通道的配对的稀释缓冲液滴和微滴;
沿着所述合并微通道定位的第一电场发生器,其用于产生能够使配对的稀释缓冲液滴与微滴在所述合并微通道中合并以形成稀释微滴的跨越所述合并通道的电场;
与所述合并微通道流体连通的混合微通道,其用于接收来自所述合并通道的所述稀释微滴并混合所述稀释微滴的内含物;
与所述混合微通道流体连通的液滴取样器,其用于提取所述稀释微滴的样本;
与所述液滴取样器流体连通的皮可注射微通道,其中所述皮可注射微通道包括皮可注射器并用于接收所述稀释微滴的样本并将RT-PCR试剂皮可注射至所述样本中;
第二电场发生器,其中所述第二电场发生器沿着所述皮可注射微通道定位以产生足以允许所述RT-PCR试剂皮可注射至所述样本中的跨越所述皮可注射微通道的电场;
与所述皮可注射微通道流体连通的热循环器加热元件,其用于对皮可注射有所述RT-PCR试剂的所述样本进行RT-PCR反应。
125.如权利要求124所述的微流体装置,其进一步包括与所述输入微通道流体连通的封装腔室,其用于将细胞和裂解试剂封装至微滴中。
126.如权利要求124所述的微流体装置,其中所述第一和/或第二电场发生器是连接至电源或高电压放大器的液体电极。
127.如权利要求124所述的微流体装置,其包括在所述输入微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
128.如权利要求124所述的微流体装置,其包括在所述配对微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
129.如权利要求124所述的微流体装置,其包括在所述皮可注射微通道下游的微流体流动通道的一个或多个壁中的脊,其中所述脊被配置成捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
130.如权利要求124所述的微流体装置,其中所述皮可注射微通道被配置成接收已在所述取样器中进行RT-PCR反应的样本并向所述样本中皮可注射PCR试剂。
131.如权利要求130所述的微流体装置,其中所述热循环器被配置成对皮可注射有所述PCR试剂的样本进行PCR反应。
132.如权利要求130所述的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包含相同的引物。
133.如权利要求130所述的微流体装置,其中所述PCR试剂和所述RT-PCR试剂包含不同的引物。
134.如权利要求124所述的微流体装置,其中所述RT-PCR试剂包含与荧光染料和核酸探针缀合的珠粒。
135.如权利要求124所述的微流体装置,其中所述RT-PCR试剂包含荧光DNA探针。
136.如权利要求1-20中任一项所述的方法,其中试剂通过如下方式加入所述微滴中:
使所述微滴与油接触以使得所述油封装所述微滴以形成双重乳液;
使所述双重乳液与含有所述试剂的液滴接触以使得含有所述试剂的所述液滴封装所述双重乳液以形成三重乳液;
向所述三重乳液施加电场以使得所述三重乳液的所述流体界面被破坏并允许所述微滴与试剂混合。
137.如权利要求136所述的方法,其中所述电场由一个或多个液体电极施加。
138.一种微流体装置,其包括:流动通道、与所述流动通道流体连接的微流体接点和紧邻所述微流体接点下游的所述微流体流动通道的一个或多个壁中的脊。
139.如权利要求138所述的微流体装置,其中所述脊捕集油层并防止所述流动通道的所述一个或多个壁的润湿。
140.如权利要求138所述的微流体装置,其中所述一个或多个脊各自的底边长度为约10微米至约20微米。
141.如权利要求138所述的微流体装置,其中所述一个或多个脊各自的峰具有约1至约10微米的宽度。
142.如权利要求138所述的微流体装置,其中所述一个或多个脊各自的高度为约5微米至约15微米。
143.如权利要求138所述的微流体装置,其中所述一个或多个脊各自的底边与所述一个或多个脊各自的高度的比率为约1.0:0.75至约0.75:1.0。
144.如权利要求138所述的微流体装置,其中所述一个或多个脊各自的底边比所述一个或多个脊各自的高度比所述一个或多个脊的峰的宽度为约1:0.75:0.5。
145.如权利要求138所述的微流体装置,其中所述脊沿着所述通道壁延伸约50微米至约500微米的距离。
146.如权利要求138所述的微流体装置,其中所述脊沿着所述通道壁延伸一定距离,其中沿着所述通道壁的距离与所述通道的宽度之间的比率是约10:1至约1:2。
CN201380053258.1A 2012-08-13 2013-08-12 用于检测生物组分的方法和系统 Pending CN104736725A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911041486.2A CN110643681A (zh) 2012-08-13 2013-08-12 用于检测生物组分的方法和系统

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261682707P 2012-08-13 2012-08-13
US61/682,707 2012-08-13
US201361784754P 2013-03-14 2013-03-14
US61/784,754 2013-03-14
PCT/US2013/054517 WO2014028378A2 (en) 2012-08-13 2013-08-12 Methods and systems for detecting biological components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911041486.2A Division CN110643681A (zh) 2012-08-13 2013-08-12 用于检测生物组分的方法和系统

Publications (1)

Publication Number Publication Date
CN104736725A true CN104736725A (zh) 2015-06-24

Family

ID=50101583

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380053258.1A Pending CN104736725A (zh) 2012-08-13 2013-08-12 用于检测生物组分的方法和系统
CN201911041486.2A Pending CN110643681A (zh) 2012-08-13 2013-08-12 用于检测生物组分的方法和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911041486.2A Pending CN110643681A (zh) 2012-08-13 2013-08-12 用于检测生物组分的方法和系统

Country Status (8)

Country Link
US (6) US10161007B2 (zh)
EP (2) EP4001426A1 (zh)
JP (1) JP6514105B2 (zh)
CN (2) CN104736725A (zh)
AU (3) AU2013302867A1 (zh)
CA (1) CA2881783A1 (zh)
GB (2) GB2519906B (zh)
WO (1) WO2014028378A2 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105665049A (zh) * 2016-01-28 2016-06-15 清华大学深圳研究生院 一种疏液微阀式微量液体提取装置和提取方法
CN106644900A (zh) * 2017-02-27 2017-05-10 大连海事大学 一种基于非均匀电场的阻抗脉冲颗粒计数装置及其计数方法
CN107037209A (zh) * 2015-12-31 2017-08-11 月桂株式会社 灭菌型液体成分检查装置及其使用方法
CN107219194A (zh) * 2017-05-03 2017-09-29 哈尔滨工业大学 具备应激响应的图案化微纳米结构的聚电解质复合物的制备方法及应用
CN107615041A (zh) * 2015-10-07 2018-01-19 Afi技术公司 检查装置、检查系统以及检查方法
CN108138104A (zh) * 2015-10-09 2018-06-08 希森美康株式会社 受试体处理芯片、受试体处理装置及受试体处理方法
CN109632437A (zh) * 2018-12-14 2019-04-16 北京化工大学 一种基于离子迁移谱的现场检测的样品前处理方法
CN110088290A (zh) * 2016-08-10 2019-08-02 加利福尼亚大学董事会 在乳液微滴中结合多重置换扩增和pcr
CN111378562A (zh) * 2020-03-20 2020-07-07 中国科学院长春光学精密机械与物理研究所 数字pcr检测定量系统
US10745762B2 (en) 2012-08-13 2020-08-18 The Regents Of The University Of California Method and system for synthesizing a target polynucleotide within a droplet
US11020736B2 (en) 2014-10-22 2021-06-01 The Regents Of The University Of California High definition microdroplet printer
US11111519B2 (en) 2015-02-04 2021-09-07 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
US11124830B2 (en) 2016-12-21 2021-09-21 The Regents Of The University Of California Single cell genomic sequencing using hydrogel based droplets
CN114113314A (zh) * 2021-11-25 2022-03-01 厦门大学 一种用于滨海核电站的海洋致灾生物水声监测系统及方法
US11312990B2 (en) 2014-06-27 2022-04-26 The Regents Of The University Of California PCR-activated sorting (PAS)
CN114555827A (zh) * 2019-08-12 2022-05-27 使命生物公司 用于对相同单细胞中的蛋白质表达、单核苷酸变异和拷贝数变异进行多组学同时检测的方法、系统和设备
US11365441B2 (en) 2019-05-22 2022-06-21 Mission Bio, Inc. Method and apparatus for simultaneous targeted sequencing of DNA, RNA and protein
US11667954B2 (en) 2019-07-01 2023-06-06 Mission Bio, Inc. Method and apparatus to normalize quantitative readouts in single-cell experiments
US11781129B2 (en) 2017-10-18 2023-10-10 Mission Bio, Inc. Method, systems and apparatus for single cell analysis

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US9731293B2 (en) * 2012-10-03 2017-08-15 The United States Of America, As Represented By The Secretary Of The Navy Paired laser and electrokinetic separation, manipulation, and analysis device
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
KR102190198B1 (ko) 2013-02-08 2020-12-14 10엑스 제노믹스, 인크. 폴리뉴클레오티드 바코드 생성
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
NL2012483B1 (en) * 2014-03-20 2016-01-18 Stichting Incas3 Method and system for mapping a three-dimensional structure using motes.
AU2015273480A1 (en) 2014-06-11 2016-12-08 Samplix S.A.R.L. Nucleotide sequence exclusion enrichment by droplet sorting (needls)
MX2016016902A (es) 2014-06-26 2017-03-27 10X Genomics Inc Metodos para analizar acidos nucleicos de celulas individuales o poblaciones de celulas.
JP2017534297A (ja) * 2014-10-14 2017-11-24 ビージーアイ シェンヂェン カンパニー リミテッドBgi Shenzhen Co., Limited トランスポゼースによる核酸の切断及びリンカー付加の方法及び試薬
CN107109319B (zh) * 2014-10-17 2020-11-27 巴黎综合理工学院 用于处理包含样品的微滴的方法
CN112782140A (zh) 2014-12-03 2021-05-11 伊索普莱西斯公司 细胞分泌特征的分析和筛选
WO2016109939A1 (zh) * 2015-01-06 2016-07-14 深圳市海普洛斯生物科技有限公司 一种富集循环肿瘤dna的方法和试剂
SG11201705615UA (en) 2015-01-12 2017-08-30 10X Genomics Inc Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same
CN107208154A (zh) * 2015-01-21 2017-09-26 新加坡科技研究局 单细胞rna和突变分析pcr(scrm‑pcr):用于在单细胞水平上同时分析dna和rna的方法
US20170022538A1 (en) * 2015-02-04 2017-01-26 The Regents Of The University Of California Multiple-emulsion nucleic acid amplification
PT3256604T (pt) * 2015-02-10 2020-05-18 Illumina Inc Métodos e composições para analisar componentes celulares
CN105936930A (zh) * 2015-03-04 2016-09-14 松下知识产权经营株式会社 Dna检测方法和dna检测装置
CN106032551B (zh) * 2015-03-17 2020-07-21 东源生物医药科技(上海)有限公司 检测病毒样品中回复突变的方法和用于该方法的试剂盒
US10981167B2 (en) * 2015-03-18 2021-04-20 The Broad Institute, Inc. Massively parallel on-chip coalescence of microemulsions
KR102502087B1 (ko) * 2015-03-25 2023-02-20 더 제너럴 하스피탈 코포레이션 혈액 샘플 내의 순환 종양 세포의 디지털 분석
CN108026494A (zh) 2015-06-05 2018-05-11 米罗库鲁斯公司 限制蒸发和表面结垢的空气基质数字微流控装置和方法
WO2016197106A1 (en) 2015-06-05 2016-12-08 Miroculus Inc. Evaporation management in digital microfluidic devices
WO2017004250A1 (en) 2015-06-29 2017-01-05 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Systems and methods for continuous flow digital droplet polymerase chain reaction bioanalysis
CN208140648U (zh) * 2015-10-14 2018-11-23 阿尔卑斯电气株式会社 流路结构体以及测定对象液体的测定装置
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
JP6735348B2 (ja) 2016-02-11 2020-08-05 10エックス ジェノミクス, インコーポレイテッド 全ゲノム配列データのデノボアセンブリのためのシステム、方法及び媒体
JP6765826B2 (ja) * 2016-03-10 2020-10-07 シスメックス株式会社 検体処理方法、検体処理チップおよび検体処理装置
JP6654951B2 (ja) 2016-03-31 2020-02-26 株式会社エンプラス 流体取扱装置
CA3030558A1 (en) * 2016-07-12 2018-01-18 Northeastern University Single cell fluorescence in situ hybridization in microfluidic droplets
WO2018017794A1 (en) * 2016-07-21 2018-01-25 President And Fellows Of Harvard College Microfluidic sequencing techniques
CN106442443B (zh) * 2016-09-12 2018-12-07 北京天健惠康生物科技有限公司 一种微液滴荧光检测系统
EP3532642B1 (en) 2016-10-27 2021-12-08 The General Hospital Corporation Digital analysis of blood samples to determine efficacy of cancer therapies for specific cancers
EP3321352A1 (en) * 2016-11-09 2018-05-16 Biomillenia SAS Auxotrophic selection system
DK3538891T3 (da) 2016-11-11 2022-03-28 Isoplexis Corp Sammensætninger og fremgangsmåder til samtidig genomisk, transkriptomisk og proteomisk analyse af enkeltceller
CN110226084A (zh) 2016-11-22 2019-09-10 伊索普莱克西斯公司 用于细胞捕获的系统、装置和方法,以及其制造方法
CN110740813B (zh) 2016-11-28 2022-06-03 亚利桑那州立大学董事会 涉及连续流动液滴反应的系统和方法
CN108148744A (zh) * 2016-12-06 2018-06-12 中山百慧生物科技有限公司 一种液滴数字pcr芯片及相应检测方法和检测系统
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2018126082A1 (en) 2016-12-28 2018-07-05 Miroculis Inc. Digital microfluidic devices and methods
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
JP2018162990A (ja) * 2017-03-24 2018-10-18 株式会社エンプラス 液体取扱装置、液体取扱方法および液体取扱システム
WO2018183744A1 (en) 2017-03-29 2018-10-04 The Research Foundation For The State University Of New York Microfluidic device and methods
WO2018187476A1 (en) 2017-04-04 2018-10-11 Miroculus Inc. Digital microfluidic apparatuses and methods for manipulating and processing encapsulated droplets
US11131673B2 (en) 2017-04-27 2021-09-28 Northeastern University Live single-cell bioassay in microdroplets
CN110945139B (zh) 2017-05-18 2023-09-05 10X基因组学有限公司 用于分选液滴和珠的方法和系统
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
WO2018229018A1 (en) * 2017-06-12 2018-12-20 Biomillenia Sas Method of measuring viscosity in a microfluidic system
EP3421131A1 (en) * 2017-06-30 2019-01-02 Blink AG A sample cartridge for incubating and/or analyzing a dispersion of particles, cells or droplets
CN109201128A (zh) * 2017-07-05 2019-01-15 京东方科技集团股份有限公司 微流控芯片、化学发光免疫分析系统和分析方法
KR101897250B1 (ko) * 2017-07-11 2018-09-10 광주과학기술원 항암제 조합에 대한 단일 세포 분석 칩
WO2019023133A1 (en) 2017-07-24 2019-01-31 Miroculus Inc. DIGITAL MICROFLUIDIC SYSTEMS AND METHODS WITH INTEGRATED PLASMA COLLECTION DEVICE
WO2019022753A1 (en) * 2017-07-28 2019-01-31 Hewlett-Packard Development Company, L.P. INTERROGATION AND DETECTION OF IONIC SPECIES
WO2019036505A1 (en) 2017-08-14 2019-02-21 Mission Bio, Inc. METHODS AND COMPOSITIONS FOR EVALUATING THE UNIFORMITY OF AN EMULSION
US10549279B2 (en) 2017-08-22 2020-02-04 10X Genomics, Inc. Devices having a plurality of droplet formation regions
AU2018401700A1 (en) 2017-09-29 2020-04-09 The Regents Of The University Of California Method of generating monodisperse emulsions
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2019079640A1 (en) * 2017-10-18 2019-04-25 Mission Bio, Inc. METHOD, SYSTEMS, AND DEVICE FOR HIGH-EFFICIENCY UNICELLULAR DNA SEQUENCING OF DROPLET MICROFLUIDS
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. MICROFLUIDIC CHANNEL NETWORKS FOR PARTITIONING
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. METHODS AND SYSTEMS FOR NUCLEIC ACID PREPARATION AND CHROMATIN ANALYSIS
EP3700672B1 (en) 2017-10-27 2022-12-28 10X Genomics, Inc. Methods for sample preparation and analysis
CN109746062B (zh) * 2017-11-06 2024-04-12 北京新羿生物科技有限公司 微液滴生成装置
CN109746058A (zh) * 2017-11-06 2019-05-14 北京新羿生物科技有限公司 微液滴检测芯片
EP3625361A1 (en) 2017-11-15 2020-03-25 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019109190A1 (en) * 2017-12-08 2019-06-13 Enuvio Inc. Microfluidic chip and method for making the same
CN107868752B (zh) * 2017-12-19 2024-01-05 广东顺德墨赛生物科技有限公司 夹具
CN110064451B (zh) * 2018-01-24 2023-08-15 思纳福(苏州)生命科技有限公司 流体驱动机构及流体驱动方法
US11052407B1 (en) * 2018-01-29 2021-07-06 The Texas A&M University System Dielectrophoretic in-droplet material concentrator
WO2019148013A2 (en) * 2018-01-29 2019-08-01 The Texas A&M University System Integrated modular on-chip droplet microfluidic screening platform
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
JP2019170363A (ja) * 2018-03-29 2019-10-10 東ソー株式会社 標的分子の反応装置及び反応方法
AU2019249846B2 (en) 2018-04-02 2024-03-21 Dropworks, Inc. Systems and methods for serial flow emulsion processes
EP3775271A1 (en) 2018-04-06 2021-02-17 10X Genomics, Inc. Systems and methods for quality control in single cell processing
CN112566721A (zh) * 2018-05-28 2021-03-26 杭州纯迅生物科技有限公司 利用人工智能控制并操纵微流体中多相流的方法和装置
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
CN210427605U (zh) * 2018-06-07 2020-04-28 洛阳华清天木生物科技有限公司 一种微液滴处理装置
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
CN109145713B (zh) * 2018-07-02 2021-09-28 南京师范大学 一种结合目标检测的小目标语义分割方法
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US20210346888A1 (en) 2018-08-17 2021-11-11 The Regents Of The University Of California Monodispersed Particle-Triggered Droplet Formation from Stable Jets
KR20210093860A (ko) 2018-09-20 2021-07-28 세페이드 반도체 검출 칩을 이용한 샘플 프로세싱의 시스템, 장치, 및 방법
US20210340596A1 (en) 2018-09-28 2021-11-04 Fluent Biosciences Inc. Target capture and barcoding in monodisperse droplets
CN109107624A (zh) * 2018-10-16 2019-01-01 长春技特生物技术有限公司 一种全封闭微流控芯片和乳液微滴制备系统
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
WO2020123957A2 (en) * 2018-12-14 2020-06-18 Cepheid Diagnostic detection chip devices and methods of manufacture and assembly
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
CN113543883A (zh) * 2019-01-31 2021-10-22 米罗库鲁斯公司 非结垢组合物以及用于操控和处理包封的微滴的方法
WO2020168013A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
US11920183B2 (en) 2019-03-11 2024-03-05 10X Genomics, Inc. Systems and methods for processing optically tagged beads
CA3133124A1 (en) 2019-04-08 2020-10-15 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US20220212188A1 (en) * 2019-05-02 2022-07-07 The Regents Of The University Of California Laser-induced confocal microscope and microfluidic device for dielectrophoretic fluorescence-activated droplet sorting
GB201914266D0 (en) * 2019-10-03 2019-11-20 Univ Oxford Innovation Ltd Method of amplifying nucleic acids
WO2021072306A1 (en) 2019-10-10 2021-04-15 1859, Inc. Methods and systems for microfluidic screening
US20210215591A1 (en) * 2020-01-13 2021-07-15 Fluent Biosciences Inc. Devices for generating monodisperse droplets from a bulk liquid
LT6852B (lt) * 2020-01-27 2021-09-27 Innovation Fort Ltd Didelio lygiagretumo spartusis ląstelių skaitytuvas ir rūšiuoklis
WO2021168768A1 (zh) * 2020-02-28 2021-09-02 京东方科技集团股份有限公司 一种微流控芯片和微流控系统
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
EP3925702A1 (en) * 2020-06-15 2021-12-22 Biomillenia SAS Method and system of producing a library of microorganisms
CA3192517A1 (en) * 2020-08-21 2022-02-24 Fluidic Analytics Limited H-type filter device for analysing a component
US20240043929A1 (en) * 2020-12-25 2024-02-08 Tl Genomics Inc. Method for detecting copy number of specific nucleic acid per single cell
WO2022182682A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
US11772093B2 (en) 2022-01-12 2023-10-03 Miroculus Inc. Methods of mechanical microfluidic manipulation
EP4331724A1 (en) * 2022-08-29 2024-03-06 Institut Curie Method of extracting a bead from a droplet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110059556A1 (en) * 2009-09-04 2011-03-10 The Research Foundation Of State University Of New York Rapid and Continuous Analyte Processing in Droplet Microfluidic Devices

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012216A1 (en) 1992-11-30 1994-06-09 The Wellcome Foundation Limited Sequential targeting of tumor sites with oligonucleotide conjugates of antibody and complementary oligonucleotide conjugates of chelated radionuclide
US20020068357A1 (en) 1995-09-28 2002-06-06 Mathies Richard A. Miniaturized integrated nucleic acid processing and analysis device and method
US6143496A (en) 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
US6319507B1 (en) 1997-05-02 2001-11-20 Kobo Products, Inc. Agar gel bead composition and method
ATE358177T1 (de) 1997-07-07 2007-04-15 Medical Res Council Ein in vitro sortierverfahren
US6436677B1 (en) 2000-03-02 2002-08-20 Promega Corporation Method of reverse transcription
AU2002353107A1 (en) 2001-12-11 2003-07-09 Sau Lan Tang Staats Microfluidic devices and methods for two-dimensional separations
JP2006507921A (ja) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 流体分散のための方法および装置
ES2342665T3 (es) 2003-01-29 2010-07-12 454 Corporation Secuenciacion desde dos extremos.
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
DE10339452A1 (de) 2003-08-22 2005-03-17 Institut für Physikalische Hochtechnologie e.V. Vorrichtung und Verfahren zur Strukturierung von Flüssigkeiten
AU2003903295A0 (en) 2003-06-30 2003-07-10 Raustech Pty Ltd Substrate for combinatorial chemistry
EP1658133A1 (en) 2003-08-27 2006-05-24 President And Fellows Of Harvard College Electronic control of fluidic species
US20050074804A1 (en) 2003-09-26 2005-04-07 Youxiang Wang Amplification of polynucleotide sequences by rolling circle amplification
WO2005049787A2 (en) 2003-11-24 2005-06-02 Yeda Research And Development Co.Ltd. Compositions and methods for in vitro sorting of molecular and cellular libraries
KR100647282B1 (ko) 2003-12-24 2006-11-17 삼성전자주식회사 DNA 마이크로어레이 스폿팅(Spoting) 장치 및이를 이용한 스폿팅 방법
US20060201868A1 (en) 2005-03-11 2006-09-14 Simmons Blake A Methods and devices for high-throughput dielectrophoretic concentration
EP2660482B1 (en) 2005-08-22 2019-08-07 Life Technologies Corporation Vorrichtung, System und Verfahren unter Verwendung von nichtmischbaren Flüssigkeiten mit unterschiedlichen Volumen
US8383059B2 (en) 2005-09-30 2013-02-26 University Of Utah Research Foundation Microfluidic interface for highly parallel addressing of sensing arrays
US9183349B2 (en) * 2005-12-16 2015-11-10 Nextbio Sequence-centric scientific information management
US20100137163A1 (en) 2006-01-11 2010-06-03 Link Darren R Microfluidic Devices and Methods of Use in The Formation and Control of Nanoreactors
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US20080003142A1 (en) 2006-05-11 2008-01-03 Link Darren R Microfluidic devices
WO2007140015A2 (en) 2006-05-26 2007-12-06 Althea Technologies, Inc Biochemical analysis of partitioned cells
WO2007141626A1 (en) 2006-06-02 2007-12-13 Pfizer Products Inc. Circulating tumor cell assay
PT2415873E (pt) * 2006-12-14 2015-03-31 Sangamo Biosciences Inc Proteínas com dedos de zinco não canónicas optimizadas
US8338166B2 (en) 2007-01-04 2012-12-25 Lawrence Livermore National Security, Llc Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US8454906B2 (en) 2007-07-24 2013-06-04 The Regents Of The University Of California Microfabricated droplet generator for single molecule/cell genetic analysis in engineered monodispersed emulsions
US8268564B2 (en) 2007-09-26 2012-09-18 President And Fellows Of Harvard College Methods and applications for stitched DNA barcodes
GB0720202D0 (en) 2007-10-16 2007-11-28 Cambridge Entpr Ltd Microfluidic systems
US9138700B2 (en) 2008-01-18 2015-09-22 The Regents Of The University Of California Accurate and rapid micromixer for integrated microfluidic devices
DK2271657T3 (en) 2008-03-04 2017-05-15 Crystal Bioscience Inc GEL-MICRO-DROP COMPOSITION AND METHOD OF USING IT
US9409177B2 (en) 2008-03-21 2016-08-09 Lawrence Livermore National Security, Llc Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences
WO2009137415A2 (en) * 2008-05-03 2009-11-12 Advanced Liquid Logic, Inc. Reagent and sample preparation, loading, and storage
WO2013016459A1 (en) 2011-07-25 2013-01-31 Bio-Rad Laboratories, Inc. Breakage of an emulsion containing nucleic acid
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
WO2011120020A1 (en) 2010-03-25 2011-09-29 Quantalife, Inc. Droplet transport system for detection
US8709762B2 (en) 2010-03-02 2014-04-29 Bio-Rad Laboratories, Inc. System for hot-start amplification via a multiple emulsion
US20130084572A1 (en) 2011-09-30 2013-04-04 Quantalife, Inc. Calibrations and controls for droplet-based assays
US9132394B2 (en) 2008-09-23 2015-09-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
JP5457222B2 (ja) 2009-02-25 2014-04-02 エフ.ホフマン−ラ ロシュ アーゲー 小型化ハイスループット核酸分析
EP2977455B1 (en) 2009-06-15 2020-04-15 Complete Genomics, Inc. Method for long fragment read sequencing
SG177369A1 (en) 2009-06-26 2012-02-28 Harvard College Fluid injection
EP2940153B1 (en) * 2009-09-02 2020-05-13 Bio-Rad Laboratories, Inc. System for mixing fluids by coalescence of multiple emulsions
US8746285B2 (en) 2009-09-04 2014-06-10 Auburn University Programmable fluidic droplet generation
US9376713B2 (en) 2009-09-23 2016-06-28 The Board Of Trustees Of The University Of Illinois Label free detection of nucleic acid amplification
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification
WO2011066476A1 (en) * 2009-11-25 2011-06-03 Quantalife, Inc. Methods and compositions for detecting genetic material
US9315857B2 (en) 2009-12-15 2016-04-19 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse label-tags
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US20120270739A1 (en) 2010-01-19 2012-10-25 Verinata Health, Inc. Method for sample analysis of aneuploidies in maternal samples
AU2013203624B2 (en) 2010-02-09 2015-06-25 General Electric Company Isothermal amplification of nucleic acid using a mixture of randomized primers and specific primers
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
EP2550528B1 (en) 2010-03-25 2019-09-11 Bio-Rad Laboratories, Inc. Droplet generation for droplet-based assays
JP5573335B2 (ja) 2010-04-28 2014-08-20 株式会社島津製作所 磁性体粒子操作デバイス及び磁性体粒子操作方法
WO2011154042A1 (en) 2010-06-10 2011-12-15 Albert-Ludwigs-Universität Freiburg Apparatus and method for dispensing cells or particles confined in a free flying droplet
US9650629B2 (en) 2010-07-07 2017-05-16 Roche Molecular Systems, Inc. Clonal pre-amplification in emulsion
CN103153466B (zh) 2010-07-22 2016-04-13 基因细胞生物系统有限公司 复合液体池
EP2608878A4 (en) 2010-08-23 2017-11-15 President and Fellows of Harvard College Acoustic waves in microfluidics
EP3447155A1 (en) 2010-09-30 2019-02-27 Raindance Technologies, Inc. Sandwich assays in droplets
EP2436444A1 (en) 2010-10-01 2012-04-04 Centre National de la Recherche Scientifique (C.N.R.S.) Microfluidic device for production and collection of droplets of a fluid
WO2012048341A1 (en) 2010-10-08 2012-04-12 President And Fellows Of Harvard College High-throughput single cell barcoding
WO2012071428A2 (en) 2010-11-22 2012-05-31 Solulink, Inc. Methods and/or use of oligonucleotide conjugates for assays and detections
EP2652155B1 (en) 2010-12-16 2016-11-16 Gigagen, Inc. Methods for massively parallel analysis of nucleic acids in single cells
US20130295587A1 (en) 2011-01-24 2013-11-07 Ge Healthcare Bio-Sciences Ab Method of coupling binding agents to a substrate surface
US8765455B2 (en) 2011-01-27 2014-07-01 Lawrence Livermore National Security, Llc Chip-based droplet sorting
JP6069224B2 (ja) 2011-01-31 2017-02-01 アプライズ バイオ, インコーポレイテッド 細胞において複数のエピトープを同定する方法
JP6017458B2 (ja) 2011-02-02 2016-11-02 ユニヴァーシティ・オブ・ワシントン・スルー・イッツ・センター・フォー・コマーシャリゼーション 大量並列連続性マッピング
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US9150852B2 (en) * 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
AU2012242847B2 (en) 2011-04-15 2017-01-19 The Johns Hopkins University Safe sequencing system
EP2702175B1 (en) 2011-04-25 2018-08-08 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
US9074204B2 (en) 2011-05-20 2015-07-07 Fluidigm Corporation Nucleic acid encoding reactions
KR20140034242A (ko) 2011-05-23 2014-03-19 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 다중 에멀젼을 포함하는 에멀젼의 제어
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
WO2012167142A2 (en) 2011-06-02 2012-12-06 Raindance Technolgies, Inc. Enzyme quantification
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
WO2013015793A1 (en) 2011-07-26 2013-01-31 Verinata Health, Inc. Method for determining the presence or absence of different aneuploidies in a sample
US20130032235A1 (en) 2011-08-02 2013-02-07 Teledyne Dalsa Semiconductor, Inc. Integrated microfluidic check valve and device including such a check valve
US9469874B2 (en) 2011-10-18 2016-10-18 The Regents Of The University Of California Long-range barcode labeling-sequencing
WO2013095469A1 (en) 2011-12-21 2013-06-27 Intel Corporation Psmi using at-speed scan capture
JP2015513451A (ja) 2012-02-08 2015-05-14 プレジデント アンド フェローズ オブ ハーバード カレッジ 流体分割を用いる液滴形成
EP2817418B1 (en) 2012-02-24 2017-10-11 Raindance Technologies, Inc. Labeling and sample preparation for sequencing
US11177020B2 (en) 2012-02-27 2021-11-16 The University Of North Carolina At Chapel Hill Methods and uses for molecular tags
LT3305918T (lt) 2012-03-05 2020-09-25 President And Fellows Of Harvard College Būdai, skirti epigenetinių sekų sudarymui
PT2850211T (pt) 2012-05-14 2021-11-29 Irepertoire Inc Método para aumentar a precisão na deteção quantitativa de polinucleótidos
US9223317B2 (en) 2012-06-14 2015-12-29 Advanced Liquid Logic, Inc. Droplet actuators that include molecular barrier coatings
US10161007B2 (en) 2012-08-13 2018-12-25 The Regents Of The University Of California Methods and systems for detecting biological components
US20140378345A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
AU2013302756C1 (en) 2012-08-14 2018-05-17 10X Genomics, Inc. Microcapsule compositions and methods
US20140378349A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
WO2014039912A1 (en) 2012-09-07 2014-03-13 Bio-Rad Laboratories, Inc. Compositions, systems and methods for droplet formation, spacing and detection
EP2898071A4 (en) 2012-09-21 2016-07-20 Broad Inst Inc COMPOSITIONS AND METHODS FOR LONG-TERM LABORATORIES AND PREPARED END OF NUCLEIC ACIDS IN EMULSION DROPS
CA2888042A1 (en) 2012-11-27 2014-06-05 Gencell Biosystems Ltd. Handling liquid samples
EP3567116A1 (en) 2012-12-14 2019-11-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2014108323A1 (en) 2013-01-10 2014-07-17 Eth Zurich Method and apparatus for depositing droplets onto a substrate
WO2014138132A2 (en) 2013-03-04 2014-09-12 Verax Biomedical Incorporated Multi-analyte assay
US9752179B2 (en) 2013-03-14 2017-09-05 Cold Spring Harbor Laboratory Trans-splicing transcriptome profiling
WO2014153071A1 (en) 2013-03-14 2014-09-25 The Broad Institute, Inc. Methods for quantitating dna using digital multiple displacement amplification
KR102168053B1 (ko) 2013-03-15 2020-10-20 더 리전트 오브 더 유니버시티 오브 캘리포니아 고속 온 디맨드 미세유체 액적 생성 및 조작
US9328382B2 (en) 2013-03-15 2016-05-03 Complete Genomics, Inc. Multiple tagging of individual long DNA fragments
AU2014312208B2 (en) 2013-08-28 2019-07-25 Becton, Dickinson And Company Massively parallel single cell analysis
US10947587B2 (en) 2013-11-05 2021-03-16 The Regents Of The University Of California Single-cell forensic short tandem repeat typing within microfluidic droplets
WO2015120398A1 (en) 2014-02-10 2015-08-13 Gencell Biosystems Limited Composite liquid cell (clc) mediated nucleic acid library preparation device, and methods for using the same
WO2015157369A1 (en) 2014-04-08 2015-10-15 University Of Washington Through Its Center For Commercialization Methods and apparatus for performing digital assays using polydisperse droplets
US20150298091A1 (en) 2014-04-21 2015-10-22 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
US10890581B2 (en) 2014-05-23 2021-01-12 Firefly Bioworks, Inc. Substrate-mediated reactors for bioassays
AU2015273480A1 (en) 2014-06-11 2016-12-08 Samplix S.A.R.L. Nucleotide sequence exclusion enrichment by droplet sorting (needls)
MX2016016902A (es) 2014-06-26 2017-03-27 10X Genomics Inc Metodos para analizar acidos nucleicos de celulas individuales o poblaciones de celulas.
EP3160654A4 (en) 2014-06-27 2017-11-15 The Regents of The University of California Pcr-activated sorting (pas)
WO2016064755A2 (en) 2014-10-20 2016-04-28 The Regents Of The University Of Califronia Rapid modulation of droplet composition with membrane microvalves
EP3209419A4 (en) 2014-10-22 2018-10-03 The Regents of The University of California High definition microdroplet printer
US20170022538A1 (en) 2015-02-04 2017-01-26 The Regents Of The University Of California Multiple-emulsion nucleic acid amplification
CA2974306A1 (en) 2015-02-04 2016-08-11 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
EP3337907A4 (en) 2015-08-17 2019-01-02 The Regents of The University of California Microdroplet-based multiple displacement amplification (mda) methods and related compositions
JP2019515674A (ja) 2016-04-19 2019-06-13 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝的解析および他の適用のための固定化ベースのシステムおよび方法
WO2018031691A1 (en) 2016-08-10 2018-02-15 The Regents Of The University Of California Combined multiple-displacement amplification and pcr in an emulsion microdroplet
WO2018119301A1 (en) 2016-12-21 2018-06-28 The Regents Of The University Of California Single cell genomic sequencing using hydrogel based droplets
WO2019099908A1 (en) 2017-11-17 2019-05-23 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110059556A1 (en) * 2009-09-04 2011-03-10 The Research Foundation Of State University Of New York Rapid and Continuous Analyte Processing in Droplet Microfluidic Devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERIC BROUZES,ET AL: "Droplet microfluidic technology for single-cell high-throughput screening", 《PROCEEDING OF THE NATIONAL ACADEMY OF SCIENCES,NATIONAL ACADEMY OF SCIENCES,US》 *
MARTINA MEDKOVA,ET AL: "Analyzing Cancer at Single Cell Resolution with Droplet Technology", 《AMERICAN ASSOCIATION OF CANCER RESEARCH》 *
R.B BROWN ET AL: "Current techniques for single-cell lysis", 《JOURNAL OF CHROMATOGRAPHY》 *
YONG ZENG ET AL: "High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays", 《ANAL. CHEM.》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891666B2 (en) 2012-08-13 2024-02-06 The Regents Of The University Of California Methods and systems for detecting biological components
US11203787B2 (en) 2012-08-13 2021-12-21 The Regents Of The University Of California Methods and systems for detecting biological components
US11001896B2 (en) 2012-08-13 2021-05-11 The Regents Of The University Of California System and method to synthesize a target molecule within a droplet
US10745762B2 (en) 2012-08-13 2020-08-18 The Regents Of The University Of California Method and system for synthesizing a target polynucleotide within a droplet
US11312990B2 (en) 2014-06-27 2022-04-26 The Regents Of The University Of California PCR-activated sorting (PAS)
US11020736B2 (en) 2014-10-22 2021-06-01 The Regents Of The University Of California High definition microdroplet printer
US11732287B2 (en) 2015-02-04 2023-08-22 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
US11111519B2 (en) 2015-02-04 2021-09-07 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
CN107615041A (zh) * 2015-10-07 2018-01-19 Afi技术公司 检查装置、检查系统以及检查方法
CN108138104A (zh) * 2015-10-09 2018-06-08 希森美康株式会社 受试体处理芯片、受试体处理装置及受试体处理方法
CN107037209B (zh) * 2015-12-31 2020-03-03 月桂株式会社 灭菌型液体成分检查装置及其使用方法
CN107037209A (zh) * 2015-12-31 2017-08-11 月桂株式会社 灭菌型液体成分检查装置及其使用方法
CN105665049A (zh) * 2016-01-28 2016-06-15 清华大学深圳研究生院 一种疏液微阀式微量液体提取装置和提取方法
CN110088290A (zh) * 2016-08-10 2019-08-02 加利福尼亚大学董事会 在乳液微滴中结合多重置换扩增和pcr
US11142791B2 (en) 2016-08-10 2021-10-12 The Regents Of The University Of California Combined multiple-displacement amplification and PCR in an emulsion microdroplet
US11124830B2 (en) 2016-12-21 2021-09-21 The Regents Of The University Of California Single cell genomic sequencing using hydrogel based droplets
CN106644900B (zh) * 2017-02-27 2023-10-03 大连海事大学 一种基于非均匀电场的阻抗脉冲颗粒计数装置及其计数方法
CN106644900A (zh) * 2017-02-27 2017-05-10 大连海事大学 一种基于非均匀电场的阻抗脉冲颗粒计数装置及其计数方法
CN107219194B (zh) * 2017-05-03 2019-07-02 哈尔滨工业大学 具备应激响应的图案化微纳米结构的聚电解质复合物的制备方法及应用
CN107219194A (zh) * 2017-05-03 2017-09-29 哈尔滨工业大学 具备应激响应的图案化微纳米结构的聚电解质复合物的制备方法及应用
US11781129B2 (en) 2017-10-18 2023-10-10 Mission Bio, Inc. Method, systems and apparatus for single cell analysis
CN109632437B (zh) * 2018-12-14 2020-07-24 北京化工大学 一种基于离子迁移谱的现场检测的样品前处理方法
CN109632437A (zh) * 2018-12-14 2019-04-16 北京化工大学 一种基于离子迁移谱的现场检测的样品前处理方法
US11365441B2 (en) 2019-05-22 2022-06-21 Mission Bio, Inc. Method and apparatus for simultaneous targeted sequencing of DNA, RNA and protein
US11667954B2 (en) 2019-07-01 2023-06-06 Mission Bio, Inc. Method and apparatus to normalize quantitative readouts in single-cell experiments
CN114555827A (zh) * 2019-08-12 2022-05-27 使命生物公司 用于对相同单细胞中的蛋白质表达、单核苷酸变异和拷贝数变异进行多组学同时检测的方法、系统和设备
CN111378562A (zh) * 2020-03-20 2020-07-07 中国科学院长春光学精密机械与物理研究所 数字pcr检测定量系统
CN114113314A (zh) * 2021-11-25 2022-03-01 厦门大学 一种用于滨海核电站的海洋致灾生物水声监测系统及方法
CN114113314B (zh) * 2021-11-25 2024-03-22 厦门大学 一种用于滨海核电站的海洋致灾生物水声监测系统及方法

Also Published As

Publication number Publication date
JP6514105B2 (ja) 2019-05-15
EP2882872A2 (en) 2015-06-17
EP2882872B1 (en) 2021-10-06
WO2014028378A2 (en) 2014-02-20
GB2539836B (en) 2017-03-29
US20150232942A1 (en) 2015-08-20
US11891666B2 (en) 2024-02-06
GB2519906B (en) 2017-02-08
US20190241965A1 (en) 2019-08-08
CA2881783A1 (en) 2014-02-20
GB2539836A (en) 2016-12-28
US10161007B2 (en) 2018-12-25
EP4001426A1 (en) 2022-05-25
WO2014028378A3 (en) 2014-04-17
US20210388446A1 (en) 2021-12-16
JP2015533079A (ja) 2015-11-19
AU2022203791A1 (en) 2022-06-23
US10745762B2 (en) 2020-08-18
AU2013302867A1 (en) 2015-02-26
US20190169700A1 (en) 2019-06-06
US11001896B2 (en) 2021-05-11
US20160177375A1 (en) 2016-06-23
GB2519906A (en) 2015-05-06
CN110643681A (zh) 2020-01-03
EP2882872A4 (en) 2016-03-09
GB201616219D0 (en) 2016-11-09
AU2019226236A1 (en) 2019-09-26
AU2019226236B2 (en) 2022-03-03
US20190330701A1 (en) 2019-10-31
US11203787B2 (en) 2021-12-21
GB201503594D0 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
US11891666B2 (en) Methods and systems for detecting biological components
US11312990B2 (en) PCR-activated sorting (PAS)
US20220154248A1 (en) Combined multiple-displacement amplification and pcr in an emulsion microdroplet
US20170022538A1 (en) Multiple-emulsion nucleic acid amplification
US20220219171A1 (en) Platform for The Deterministic Assembly of Microfluidic Droplets

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150624