CN104685431A - 基于对象行为测定和协作相对定位的冲突解决 - Google Patents

基于对象行为测定和协作相对定位的冲突解决 Download PDF

Info

Publication number
CN104685431A
CN104685431A CN201380034039.9A CN201380034039A CN104685431A CN 104685431 A CN104685431 A CN 104685431A CN 201380034039 A CN201380034039 A CN 201380034039A CN 104685431 A CN104685431 A CN 104685431A
Authority
CN
China
Prior art keywords
conflict
contiguous
carried out
behavior determination
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380034039.9A
Other languages
English (en)
Other versions
CN104685431B (zh
Inventor
大卫·J·布吕默
本杰明·C·哈丁
柯蒂斯·W·尼尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Co Of 5d Robot
Original Assignee
Co Of 5d Robot
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Co Of 5d Robot filed Critical Co Of 5d Robot
Publication of CN104685431A publication Critical patent/CN104685431A/zh
Application granted granted Critical
Publication of CN104685431B publication Critical patent/CN104685431B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0289Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling with means for avoiding collisions between vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/041Function-oriented details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mathematical Analysis (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Optics & Photonics (AREA)
  • Software Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • User Interface Of Digital Computer (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Alarm Systems (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Debugging And Monitoring (AREA)

Abstract

利用分布式定位、协作行为测定和概率冲突解决,对象可在潜在冲突发生之前独立地对其进行识别和解决。在本发明的一个实施例中,与多个对象中的每一个相关联的交互标签和其它传感器资源在所述对象中提供了相对位置数据和状态信息。利用该信息,每个对象形成其环境的空间感知,包括邻近对象的位置和动作,从而在需要时修改其行为,更有效地实现目标和解决潜在冲突。

Description

基于对象行为测定和协作相对定位的冲突解决
相关申请
本申请涉及并要求下述专利的优先权权益:于2013年4月30提交的美国非临时专利申请No. 13/873.620、于2012年5月1日提交的美国临时专利申请No. 61/641,201、于2012年5月29日提交的美国临时专利申请No. 61/652,347以及于2013年3月5日提交的美国临时专利申请No. 61/773,063,出于所有目的,以上专利的全文均以引用的方式并入本文中,视为在此处进行了完全的阐述。
技术领域
本发明的实施例一般涉及确定对象的相对位置,并且更具体地,涉及利用了超宽带识别标签的概率冲突确定和解决。
背景技术
传感器融合是指将感知数据或者衍生自来源不同的感知数据的数据进行组合,使得所产生的信息在某种程度上优于单独使用这些源时可能获得的信息。相比之下,数据融合是指将代表同一对象的多个数据和知识整合成一致、准确且可用的表示的过程。在每种情况下,总体目标都是提供更准确、更完整或更可信/可靠的结果。
用于融合过程的数据源并未指定是源自相同的传感器。事实上,人们可以认为,与同一目标相关的不同数据源可能会提供更准确和更可靠的结果。尽管比较理想的是将多个感知数据融合以提供“更好的”数据,但是通常情况下,更好的数据本身是不充分的。对于空间数据或位置数据的行为使用来说,尤其是如此。
从整个历史来看,获知一个人的精确位置一直是一项长期进行的探索。人们在结合精确的地图掌握了位置信息之后,就会认为,许多从A点到B点的挑战都将迎刃而解。然而,尽管GPS系统已经无处不在,人们却仍然不断在迷路,交通拥堵也不断在发生,并且碰撞事故仍然是一个威胁。事实上,人们可能会认为这类系统会让这些问题变得更糟。现有技术中所缺乏的是将不同位置测定资源进行融合,这种融合不仅为用户提供了地理空间数据/空间数据,而且还提供了能够形成行为改变的基础的关系信息。具体来说,所缺乏的是一种能通过多种定位技术的适当组合来同时获得绝对定位和相对定位的理想好处的装置。
GPS作为绝对定位的一种例子,其优点是支持路径规划,从而有助于涉及到长距离定位的交通,并且还能不断获知事物在世界上所处的位置。相对定位的优势在于稳健、更精确,且不需要连接至外部源(即,卫星)。现有的技术启示尚未提供能同时获取两种方式的装置。现有技术的这些和其他缺点通过本发明的一个或多个实施例来解决。
本发明的其他优点和新颖特征将在后面的描述中部分地进行阐述,并且在审查以下说明书时对本领域的技术人员来说将变得部分显而易见的,或者可通过实施本发明得知。本发明的优点可以通过所附权利要求中特别指出的手段、组合、组成和方法来实现和达到。
发明内容
以下通过示例的方式提出了一种用于在一组对象之间进行分布式定位、协作行为测定和概率冲突解决的系统及其关联方法。在本发明的一个实施例中,交互标签与多个对象中的每一个相关联,这些对象向每个标签提供了关于其它邻近对象的相对位置数据和状态信息。借助该信息,每个对象在环境中形成最近邻的空间感知,包括邻近对象的位置和动作,以便在必要时修改其行为来更有效地达到目的。
本发明的一个实施例包括一种用于通过对象进行行为测定和冲突解决的方法,该方法包括识别一个或多个邻近对象的存在,并且之后,形成包括这些对象的环境的本地空间感知。该本地空间感知(类似于关联地图)包括一个或多个邻近对象中的每一个的相对间距、方位和运动。该方法还包括使本地环境的空间感知与每个对象的主要动作路线相关联,并且随后确定一个或多个概率冲突是否存在于本地空间感知与主要动作路线之间。当冲突存在时,本发明的该实施例还包括修改一个或多个对象的行为,以便在一个版本中解决或消除该冲突。这些冲突可包括会妨碍达成任务目标的概率碰撞或动作。其它冲突可包括识别非关联对象,这种识别表明了,对象处于特定环境内可能是未经过授权的。同样,冲突可能表明的是,一个或多个对象处于另一个对象的特定范围内或者处于已知危险源的特定范围内。
本发明的另一个实施例包括一种用于通过对象进行行为测定和冲突解决的系统,该系统包括探测模块、空间感知引擎、行为引擎和防护运动模块。探测模块可操作来探测一个或多个邻近对象的存在,而空间感知引擎形成多个邻近对象的空间表示。在本发明的一个版本中,空间表示以对象为中心,并且提供了关于一个或多个邻近对象中的每一个的相对位置信息和移动信息。防护运动模块通信地联接至空间感知引擎并且可操作来识别一个或多个概率冲突。最后,行为引擎与防护运动模块通信,并且在需要时,可操作来响应于一个或多个概率冲突的识别而修改对象行为。
本发明的另一个方面包括一种用于行为测定和冲突解决的方法,该方法开始于识别一个或多个邻近对象的存在,然后再测定一个或多个邻近对象中的每一个的关联位置。根据一个实施例,通过其来产生这种关系位置的装置取决于是否存在有感测基础设施(诸如放置在已知位置处的定位模块或检测模块)。
在存在有基础设施的实施例中,定位模块或检测模块嵌入到了环境中,并且,分别对这些模块进行编程,以基于(例如)GPS位置获知自己的地理空间位置或获知自己在地图中的地理空间位置。其它邻近对象可能不知道它们的精确地理空间位置。然而,只要存在有获知了自己位置的定位模块,这些模块就可以用来通过参考定位模块的已知位置来计算其它邻近对象的绝对位置。
已知位置处的每个对象(定位模块或邻近模块,一旦它基于定位模块测定了其位置)能够测量离范围内的其它邻近对象的距离。这些对象中的每一个对象还包括数据通信装置,其采用非视距传输来共享该距离数据。根据本发明的一个实施例,每个对象随后可以向其它对象传播距离测量值,其中包括每个对象的唯一标识和定位模块的已知位置。
采用三角测量(假定多个位置模块),每个对象随后可以计算自身的和其它邻近对象的位置。这样做使得每个对象都掌握了其相对和绝对位置。此外,每个对象可将唯一的识别代码通信至中央处理器。在本发明的一个实施例中,每个识别代码的位置与每个探测到的对象的位置相关联。该代码还与一系列授权代码进行对比。在所探测到的对象的位置与经授权的识别代码的位置不相关联的实例中,本发明可识别出存在有违反安全的行为或安全漏洞。可对未授权对象的活动进行监测,并且基于未知实体的存在,修改其它对象的行为。
本公开内容中和下述详细说明中所描述的特征和优点并不是详尽的。结合附图、说明书和权利要求来看,许多其他特征和优点对相关领域的普通技术人员来说将是显而易见的。此外,应注意的是,说明书中所采用的语言主要是出于可读性和指导目的来选择的,并且不可选择来对发明主题造成约束或限制;必须参考权利要求才能确定该发明主题。
附图说明
结合附图参考以下一个或多个实施例的描述,本发明的上述和其他特征和目的以及获得这些特征和目的的方式将变得更加显而易见,并且本发明自身将得到最好的理解。
其中:
图1呈现了根据本发明的一个实施例的用于协作空间定位的系统的高级框图。
图2示出了一种临时城市环境,其中可实施根据本发明的一个实施例的协作空间定位。
图3示出了对具有协作空间定位技术的多个对象的网状网络交互所进行的高级描述。
图4为一流程图,示出了根据本发明的可用于协作位置信息的方法的一个实例。
图5是根据本发明的一个实施例的采用位置测定和协作行为修改的多个协作对象的高级图形化描述。
图6是可根据本发明的一个实施例来确定的,如图5所示的多个邻近对象的一种以对象为中心的关系表示。
图7是图5和图6所示的多个邻近对象的另一种以对象为中心的关系表示,其示出了根据本发明的一个实施例的行为修改的一个实施例。
图8是根据本发明的一个实施例的一种用于分布式定位和协作行为测定的系统的高级框图。
图9是根据本发明的用于分布式定位、协作行为测定和概率冲突解决的一个方法实施例的流程图。
这些附图仅仅出于说明目的来描述本发明的实施例。本领域的技术人员根据下文论述将容易地认识到,在不脱离本文所述的本发明原理的情况下,可以采用本文所说明的结构和方法的替代实施例。
具体实施方式
得自一个或多个位置测定资源的不同位置数据与对等网络关联信息相融合,以向对象提供协作位置感知。根据本发明的一个实施例,对象从一个或多个位置资源处收集位置测定信息,从而独立地测定其空间位置,以及其相对于其它邻近对象的关系位置。在知晓了邻近实体的相对位置和运动之后,对象随后确定是否存在又任何概率冲突。也就是说,如果当前对象保持其当前动作方向,则该动作方向将会与所探测的邻近对象的动作方向产生冲突。如果识别出了冲突,则能够对对象的行为进行修改以解决(消除)该冲突。用于基于对象行为测定和协作相对定位的冲突解决的系统及相关方法的这些和其他应用是可能的,并且通过本发明的一个或多个实施例来进行了考虑。
以下参考附图,详细描述了本发明的实施例。虽然本发明已以一定程度的特殊性进行了描述和说明,但应理解的是,本公开仅以示例的方式给出,并且,在不脱离本发明的精神和范围的前提下,本领域的技术人员可以对部件的组合和布置作出许多改变。
结合附图进行如下描述是为了帮助实现对权利要求及其等同所限定的本发明的示例性实施例的全面理解。以下描述包括各种帮助实现这种理解的具体细节,但是,这些具体细节应仅视为示例性的。因此,本领域的普通技术人员将认识到,可在不脱离本发明的范围和精神的前提下,对本文所述的实施例作出各种变化和修改。另外,为清楚和简明起见,省略了公知功能和构造的描述。
下述说明和权利要求中所使用的术语和词语不限于字面意义,而仅是发明人用来实现对本发明的清楚且一致的理解。因此,对于本领域的技术人员来说应显而易见的是,以下对本发明的示例性实施例的描述仅用于说明目的,而非用于限制由所附权利要求及其等同所限定的本发明。
如本文所用,对“一个实施例”或“实施例”的任何引用是指结合该实施例进行描述的具体元素、特征、结构或特性包括在至少一个实施例中。在说明书中各处出现的短语“在一个实施例”中不一定都是指同一实施例。
关于术语“大体地”,其是指所叙述的特性、参数或数值无需精确地达到,而是可能会大量地出现偏差和变化(例如,包括公差、测量误差、测量精度限制以及本领域技术人员已知的其他因子),而这些偏差和变化并不会对特性旨在提供的效果造成阻碍。
在全文中,相同的数字指代相同的元素。在附图中,出于清楚的目的,可增大某些线、层、组件、元素或特征的尺寸。
本文所用的术语仅出于描述具体实施例的目的,并非旨在限制本发明。如本文所用,单数形式“一个”、“一种”和“该”意图还包括复数形式,除非上下文另有明确说明。因此,例如,对“一个组件表面”的引用包括对一个或多个此类表面的引用。
如本文所用,术语“包含(comprises)”、“包含(comprising)”、“包括(includes)”、“包括(including)”、“具有(has)”、“具有(having)”或其任何其他变型旨在涵盖非排他性包括。例如,包括元素列表的过程、方法、制品或设备不一定只限于这些元素,而是可以包括未明确列出的其他元素或者此类过程、方法、制品或设备固有的其他元素。另外,除非明确作出相反的说明,“或”是指包容性“或”,而不是非排他性“或”。例如,条件A或B在以下任一种情况下都得到满足:A是真实的(或存在的)且B是虚假的(或不存在的)、A是虚假的(或不存在的)且B是真实的(或存在的)、以及A和B都是真实的(或存在的)。
除非另有限定,本文所用的所有术语(包括技术术语和科学术语)具有如本发明所属领域的普通技术人员通常理解的相同意义。还应当理解的是,术语(诸如常用词典所限定的术语)应解释为具有与其在说明书上下文中和相关领域中的意义一致的意义,并且不应以理想化或过于正式的含义来进行解释,除非本文明确地进行了如此的限定。为简洁和/或清楚起见,对公知功能或构造可以不进行详细描述。
还将理解的是,当把元件称为“处于”、“附接至”、“连接至”、“联接至”、“接触”、“安装于”另一个元件上时,该元件可直接地处于、附接至、连接至、联接至或接触另一元件,或者,还可能存在有中间元件。与此相反,当把元件称为(例如)“直接处于”、“直接附接至”、“直接连接至”、“直接联接至”或“直接接触”另一个元件时,就不存在中间元件。本领域的技术人员还将理解的是,对“邻近”另一个特征放置的结构或特征的引用可具有与该相邻特征相重合或作为其基础的部分。
为了便于描述,可在本文中使用空间相对术语,诸如“之下”、“下方”、“下”、“之上”、“上”等,以描述如附图所示的一个元素或特征相对于另一个元素或特征的关系。将会理解的是,这些空间相对术语旨在包含使用中或操作中的装置除了附图所示的方向之外的不同方向。例如,如果将图中的装置倒置,那么,描述为在其他元素或特征“之下”或“下方”的元素的方向将会在其他元素或特征“之上”。因此,示例性术语“之下”可包含“之上”和“之下”的方向。装置还可以以其他方式来改变方向(旋转90度或位于其他方向上)并且相应地解释了本文所用的空间相对描述词。同样地,除非另有明确说明,本文中仅出于解释的目的采用了 “向上”、“向下”、“垂直”、“水平”等术语。
根据本发明的一个实施例,协作位置测定方式提供了准确、可靠的定位,其中包括位置数据的结构良好的平衡,位置数据是得自(例如)全球定位系统(GPS)、基于激光的定位、增强型航位推算以及提供了本地区域相对方位和距离的有源标签(测距)追踪技术。在以上所述的本发明的一个实施方式中,GPS提供了远距离定位并将相对定位与全球参照系联系起来,而激光定位利用激光映射策略使得获取连贯的本地地形成为可能。增强型航位推算处理滑移问题并且通过追踪短时间间隔内遥控设备的细微移动来改善危险探测,并且,标签追踪能力确保可针对误差设定范围(小于+/-6英寸)并使得反应性非视线位置能力成为可能。尽管上述实例描述了四种获得位置数据的手段,但是相关领域的技术人员将认识到,其他位置测定资源同样可适用于本发明,并且确实在其应用和实施时进行了考虑。例如,可采用LIDaR(光探测和测距或激光成像探测和测距),以及视觉探测系统等同样也可采用。
本发明的方式的一个关键性优点就是提供了余度,也就是各能力对其他能力进行补足。该技术其中一种最直接的应用是在GPS不可用或不准确的区域中对GPS进行扩展和增强,从而解决对象之间的潜在冲突。
传统观点认为,GPS可用作定位解决方案,但是,大量误差的存在使得GPS不能用作对各种关键能力进行协调的主要手段,这些关键能力诸如近距离移动、多车辆协调或者精确标记和操纵的需要。即使利用了差分GPS解决方案,该系统在树木覆盖下、在掩体、洞穴和建筑物中以及许多其他情形下通常都不太稳健和可靠。为了更好地理解GPS的局限性,对下述情况进行了考虑。
GPS是一种定位和导航系统,允许用户以合理精度准确定位地球上的某个地方。当前GPS系统利用了由在精确限定的轨道上环绕地球的24颗专用卫星中的其中一些卫星所传送的信号。GPS接收器将这些卫星用作参考点,基于不同卫星的信号的到达时间的差值来计算其位置。虽然GPS最初开发来是用于美国军方将导弹引导至目标,但现在,都将其常规用于空中交通管制系统、轮船、卡车、轿车、机械化耕作、搜寻和救援、追踪环境变化,等等。
如上所述,GPS为一种基于空间的卫星导航系统,全天候地在地球上或地球附近的任何地方提供位置和时间信息,而在这些地方,观看四颗或更多GPS卫星的视线不会受到阻挡(在某些情况下,位置测定可以由三颗卫星实现)。GPS程序为世界各地的军事、民用和商业用户提供了关键功能,并且还是实现全球空中交通系统的现代化的支柱,但是,它并非是没有局限性。
为了测定地球上的位置,GPS接收器对由地球上空的GPS卫星所发出的信号进行精确计时,进而计算其位置。每颗卫星持续地传送消息,这些消息包括传送消息的时间和消息传送时的卫星位置。
接收器利用其接收的消息来确定每个消息的渡越时间并计算与每颗卫星的距离或间距。这些距离连同卫星的位置一起用来计算接收器的位置。卫星的位置和间距限定了以该卫星为中心的球体,其中球体的半径等于该间距。接收器的位置在该球体的表面上的某处。因此,利用四颗卫星,GPS接收器所指示的位置就在四个球体的表面的交集处或附近。在无误差的理想情况下,GPS接收器将位于四个表面的精确交集处。
最明显的误差源之一是GPS接收器的时钟。由于光速值c非常大,从GPS接收器至卫星的估计距离(间距)对GPS接收器时钟的误差非常敏感;例如,一微秒(0.000001秒)的误差对应于300米(980英尺)的误差。这表明,GPS接收器需要极其准确且昂贵的时钟才能进行工作;然而,制造商喜欢为大众市场打造廉价的GPS接收器。利用存在有四个间距的这一事实,这种困境得到了解决。
三个球体的表面是可能会相交的,这是因为前两个球体的交集圈通常是比较大的,并且由此,第三个球体表面有可能与这个大圈相交。如果时钟是错误的,那么,对应于第四颗卫星的球体的表面一开始与前三个卫星表面的交集的两个点中的任一点相交的可能性是极低的,这是因为任何时钟误差都会使其错过与一个点的相交。另一方面,如果已经找到了一个解决方案来使得所有四个球体表面以略微偏离完美相交的方式至少大致地相交,那么,很可能对接收器位置进行了准确的估计,并且,时钟也很可能是非常准确的。
当前GPS系统由三段构成:空间段、控制段和用户段。空间段(SS)如人们可想象由沿轨道运行的GPS卫星构成。轨道以地球为中心,非绕着地球旋转而是相对于遥远星星固定。轨道被布置成使得至少六颗卫星始终处于地球表面上的几乎任何地方的视线范围内。这一目标的结果是,四颗卫星在每个轨道内非均匀地间隔开(90度)。概括地,每个轨道上的卫星之间的角度差值为相距30度、105度、120度和105度,当然,总和为360度。
当前GPS系统由三段构成:空间段、控制段和用户段。如人们可能想象的那样,空间段(SS)由沿轨道运行的GPS卫星构成。轨道以地球为中心,并非是绕着地球旋转,而是相对于远距离的星星固定。轨道布置来使得至少六颗卫星始终都是处于地球表面上几乎所有地方的视线范围内。这样处理的结果是,在每条轨道内,四颗卫星不是均匀地间隔开(90度)。概括来说,每条轨道上的卫星之间的角度差为相距30度、105度、120度和105度,当然,总和为360度。
控制段由主控站(MCS)、备用主控站、四个专用地面天线和六个专用监测站构成。卫星的飞行路线通过专用监测站来追踪。然后,负责这些卫星的机构利用专用的或共用的地面天线,定期联系每颗GPS卫星进行导航更新。这些更新使得这些卫星上载有的原子时钟彼此同步至几纳秒内,并且还对每颗卫星的内部轨道模型的星历表进行调整。
用户段由安全GPS精确定位服务的几十万美国军事用户和盟国军事用户,以及标准定位服务的数千万民用用户、商业用户和科学用户构成。一般而言,GPS接收器由天线(调谐至由卫星传送的频率)、接收器处理器以及高稳定性的时钟(通常为晶体振荡器)构成。这些接收器还可包括用于向用户提供位置和速度信息的显示器。各个段将误差导入至等式中,并且,尽管GPS提供了关于对象的大致位置的可靠信息,但是却不能提供精确信息。此外,由于GPS要求观察至少4颗卫星中的每一颗的视线不会受到阻挡,因此,从根本上来说就对GPS产生了限制。
为了解决GPS的某些局限性,已经确定的是,基于间距信息(即,视频、雷达、声纳或激光数据)的定位能够实现位置上的改善,特别是在城市条件下或者具有可视特征的室外区域中。根据本发明的一个实施例,GPS技术与即时定位和地图构建进行无缝整合,以提供增强的导航、搜寻和探测。可通过激光或其他测距设备发现的清晰且持续的特征能够提供关于周围环境的非常可靠的数据。在持续存在的对象的位置已知的情形下,激光(或其他测距仪)可与GPS数据整合,进而缩小位置感知的变化。例如,如果GPS信号提供了几米范围内的一个位置,并且基于该位置,装置应能识别位置已知的两个或多个强力对象,那么,间距信息可用于改善GPS位置的精度。然而,这种技术却具有明确的局限性,特别是在用于系统进行定位的持续存在的障碍不存在时,并且,激光或间距技术通常会要求观察持续存在的对象的视线不会受到阻挡,以及所识别的对象的位置必须是已知的。
本发明所考虑的另一种类型的位置传感器为惯性传感器。惯性传感器连同无线电信标和GPS一起构成了大多数飞机导航系统的基础。惯性系统是基于运动感知来运转的;那就是测量从已知位置开始的加速度和位移。如果对象借助提供了线性加速度和角加速度以及运动定律的数据而知晓了其起始位置,则可确定对象从该已知位置开始的位移。通过应用动量守恒定律,机械和光学陀螺仪均可用于测量线性运动和角运动。不同于GPS或测距定位,惯性导航系统是独立自足式的。也就是说,它们不依赖于任何其他信息源来测定对象位置。例如,如果指示一个配备有惯性导航系统的装置从其当前位置前行至从其原点测量的另一个位置,则该装置将知晓其到达该位置的时间以及其在运动期间的任何时间相对于原点的位置。如果该装置位于开放场地中或者位于建筑物的地下室或洞穴中,这个问题就变得无关紧要了。然而,惯性导航系统还是取决于输入该系统(其初始位置)的初始数据和设备中随着时间推移的任何进动。所有惯性导航系统都会发生整合偏差:加速度和角速度测量中的小误差汇聚成逐渐变大的速度误差,这些逐渐变大的速度误差进一步形成了位置方面的更大误差。由于新位置是根据先前计算的位置和所测量的加速度和角速度计算得来的,所以,这些误差大致成比例地累积,直到输入初始位置的时间。因此,必须通过某些其他类型的导航系统的输入来周期性地校正位置。对象位置的精度是基于初始数据的精度和更新对象实际位置的点而发生变化。
一种通过其来测定位置的相关手段和本发明所考虑的一种手段为航位推算或路径整合。在导航中,路径整合是这样一种过程:利用先前测定的位置或方位来计算对象的当前位置,并且基于所经过的时间和路线的已知速度或估计速度来将该位置前移。动物和人类通过本能实践路径整合。例如,当你从桌子旁起身并沿着大厅走向咖啡室时,你记录了行进、转弯和停步的距离。如果你闭上眼睛尝试完成相同行程,虽然精度必然会受到影响,但大多数人都能够再现他们的路线和/或知晓他们的位置。
路径整合受到累积误差的影响。虽然对于大多数用途而言, GPS和其他位置资源的使用已经让简单的航位推算变得似乎有点过时,但是,航位推算能够提供非常准确的方向信息和位置信息。航位推算可以给出关于位置的最佳可利用信息,但是,由于受许多因素影响,也会出现明显的误差,这是因为对于要准确测定的位置来说,都必须准确地知晓所有时刻的速度和方向。例如,如果通过车轮的旋转次数来测量位移,则实际直径与假定直径之间的任何变化(也许是由于膨胀程度和磨损程度的缘故)都将变成一个误差源。由于每一个位置估计值都是相对于前一个估计值,因此,误差会不断累积。
可以实施航位推算来克服GPS技术的局限性。卫星微波信号在停车库和隧道中是不可用的,并且由于卫星视线受阻或多路径传播的缘故,卫星微波信号的质量在城市峡谷和树木附近通常会受到极大地影响。在航位推算导航系统中,该系统配备有掌握车轮直径和记录车轮旋转和转向的传感器。然后,该导航系统利用凯尔曼滤波器(一种算法,其利用随时间推移而观察到的一系列测量值,其中包含噪音(随机变化)和其他不准确值,并产生未知变量的估计值,这些估计值往往比仅基于单个测量值的那些估计值更精确)来将可用的传感器数据与偶尔不可用的位置信息整合成组合的位置方位。比如,利用这种方法,轿车的导航系统默认能够进入隧道或在原本会掩盖GPS信号的大型建筑物之间行进。
本发明的协作定位方式的另一个组件涉及到有源测距技术的使用,诸如超宽带(UWB)射频(RF)识别(ID)标签(统称为RFID)。RFID系统由标签、带天线的读取器、以及软件(如驱动程序和中间件)组成。RFID系统的主要功能是从标签(也称为应答器)中检索信息(ID)。标签通常是附在如货物或动物的对象上,如此便能够对视线之外的货物或动物进行定位。标签可包括除了ID之外的其他信息。如相关领域的技术人员将会理解的,其他有源测距技术同样适用于本发明并且在使用时进行了考虑。“标签”或“RFID标签”等术语的使用仅为示例性的,不应视为限制本发明的范围。
RFID读取器连同天线一起读取(或询问)标签。天线有时是被视为RFID系统的一个独立部分。然而,将其视为读取器和标签中的一个整体特征更为妥当,其原因在于,天线对于读取器和标签之间的通信是必不可少的。读取器和标签之间进行通信有两种方法:感应耦合和电磁波。在前一种情况下,读取器的天线线圈感应出标签的天线线圈中的磁场。然后,标签利用感应磁场能量将数据通信回读取器。由于这个原因,感应耦合仅应用于几十厘米远的通信。在后一种情况下,读取器以电磁波的形式辐射能量,而电磁波具有实现更远距离通信的条件。一部分能量由标签吸收,用以开启标签的电路。在标签唤醒之后,一些能量被反射回读取器。所反射的能量可进行调制,以传输标签中所包含的数据。
在本发明的一个实施方式中,RFID或UWB标签不仅仅与已知精确位置的一个静止基础设施相关联,而且还提供了对象之间的有源相对定位。此外,标签可连接至集中式追踪系统,以输送交互数据。由于移动对象与位置已知的标签进行交互,所以,可以对对象位置数据中的差异进行精确。同样,标签可在对象之间传递相对位置和相对运动。这类标签具有低可探测性,并且不会受视线限制,也不容易受到干扰。另外,根据安装的方式和实施标签的地形,标签及追踪系统可在任何距精确定位的半径的200英尺至2英里内实现用户/标签交互。目前,标签为配备有标签的各交互对象提供了大约+/-12cm的相对位置精度。如相关领域的技术人员将会理解的,术语对象的使用并非旨在以任何形式加以限制。尽管本发明以示例(其中,对象可由车辆或移动电话来表示)的方式进行了描述,但是,对象应理解为可实现本文给出的发明概念的任意实体。例如,对象可为遥控设备、车辆、飞机、轮船、自行车、或者相对于另一装置或实体移动的其他装置或实体。本文所述的协作和通信可包括跨越多种介质的多种通信模态。
如前所述,传统的传感器融合方式涉及连续地接收和发送需要高带宽通信系统的详细原始数据。高带宽通信系统非常昂贵,并且在设法得到即使是几种针对地理位置不同用户的模态的本地相关见解时,这种方式常常也会给用户或分析人员造成较大的工作量。此外,现有策略不会及时地回答问题“我从这去(或不去)哪里?”或“什么正向我移动过来?”。
图1呈现了根据本发明的一个实施例的用于协作空间定位的系统100的高级框图。根据本发明的一个实施例,对象110可通过接收一个或多个位置测定资源150的位置信息来使用协作空间定位。在本发明的一个实施例中,这些资源可包括全球定位卫星120、路径整合130、惯性导航系统140、超宽带标签定位160以及测距定位170。
如本文所述,本发明将各种形式的位置数据进行组合,以得出对象在其环境中的空间表示。在一个实例中,该表示可在全球范围内基于地理空间数据,然而,在其他实例中,该表示可基于一个不同的参照指标组,或者,对象可生成其自己的参照系。事实上,本发明考虑了以下情景:一个或多个对象或者对象组能够操作或生成被无缝整合的不同参照系(空间感知)。
在本发明的一个实施方式中,对象110接收帮助对象测定其空间位置的来自各种位置测定资源150的位置信息或数据。如相关领域的技术人员将会理解的,并且如上所述,每个位置测定资源150都具有优点和缺点。例如,GPS120要求观察(最佳)4颗沿轨道运行的卫星的视线不会受到阻挡,而每颗卫星传送单独信号和时间识别信号。基于所接收信号的接收延迟,接收器可计算出一个概率性位置。如果对象110进入建筑物或者进入这些卫星之间的视线将会受到阻挡或变得模糊的区域,那么,位置测定就变得不再可靠。此外,尽管全世界都认可GPS用来确定大体的位置,但是,GPS无法为精确移动提供足够的精度。
同样,对象110可接收来自惯性导航系统140的位置信息。惯性导航系统不同于GPS120,是对加速度和时间进行测量,以确定对象110从初始起始位置开始的相对位移。因此,进入建筑物、洞穴或树冠下方不会影响此类系统的运作。但是,该系统不仅受到其起始点精度的限制,而且还受到其维持稳定平台的能力的限制。如果系统初始点的位置存在有误差,那么系统基于移位运动的位置测定也会产生误差。另外还知道的是,这类平台会产生进动,意味着该系统随着时间推移会变得越来越不准确。如果起始点的精度不可靠,则该进动会被放大。如果在系统运作期间将其更新来提供其差异参数,则可假定该更新为准确的,并且因此,与系统位置的差别是基于该更新的,以及与系统认为应处于的位置的差别是基于该系统的偏移。之后,系统继续调整该偏移。然而,如果初始位置不准确,那么,更新会引入误差,而不是消除误差,从而使得该系统比起简单地放其不管来说变得更加不准确。如本领域的技术人员将会理解的,由于利用了GPS,惯性导航系统也有其局限性。
本发明整合了来自多个源的位置信息,以测定对象110的空间位置。GPS120、惯性导航系统140、路径整合130、测距定位170以及其他位置测定资源150通过协作空间定位过程来合成,从而得出最佳的、可靠的和准确的位置。这种合成包括基于每个源所感知的精度和历史差异,对其进行加权。尽管任何一个位置测定资源的精确程度和可靠性程度都是变化的,但是,这样做可以维持对象位置的测定和精度。根据本发明的另一个实施例,组合位置测定资源150的过程还可以是基于资源之间关于对象位置的认同或不认同。例如,如果四个位置资源中的三个认同对象的位置,则第四个测定可被当作为可能存在有误差。然而,当关于对象的不同位置存在有多种冲突或多种认同时,要确定依靠哪个资源就变得更困难。根据本发明的一个实施例,基于多个因子,将位置测定资源优先。如果在个体位置测定之间存在有冲突,那么,可以利用这种优先级计划来确定出依靠哪种资源(或资源的组合)。例如,对象位置的GPS测定(尽管不准确)通常会认同视觉探测系统的测定。但这两个系统并不认同激光系统所做出的测定,激光系统的测定虽然非常准确,但是对于其测量哪个目标是含糊不清的。因此,本发明的一个或多个实施例分配和评估各位置测定资源上的值,然后平衡这些测定,以得出最可能的位置。通过以这种方式来组合位置测定资源,那些进行了明确上报的传感器(诸如UWB标签、RFID标签、GPS等)就可用来提供目标的“大致”位置,然后,精度更高的资源(尽管有时不太明确)可用来精确位置信息。
例如,一个对象可利用UWB标签或GPS测定2米内另一个邻近对象或目标的位置。借助该信息,可将激光测距仪瞄向该大体位置,以将位置信息的精度缩小至毫米级。但是,如果独立地使用激光,则激光仅可识别左侧3米处的另一个目标,这是因为激光的视野非常窄。关于位置测定资源的协作,可以制定和建立规则。
本发明还获取并利用了系统100中其他对象的位置感知,这样便超出了感官数据融合的范畴。这种对等网络通信使得隔离对象不但能基于内部感知数据,而且还能基于一个或多个其他对象或节点的位置测定和数据,来对位置测定进行确定和/或精确。
根据本发明的一个实施例,并且如图1所示,可在其他协作空间定位对象110、180之间建立通信链接。在本发明的一个实施方式中,UWB标签160提供了一种通过其对系统100内两个或多个对象之间的数据和位置感知进行交换的手段。对象之间的数据交换的协作性质使得每个对象不仅独立地测定其相对位置,而且还通过链接至另一个对象的资源来获取其他资源和精度。此外,每个对象不仅可向另一对象提供其空间意义上的位置,而且还可提供其相对本地位置。例如,两个链接的对象可确定地知道它们1米范围内的空间位置,但是同时也能够提供精确到几厘米的相对位置。另外,链接至其他对象可使得单个对象能够测定其相对位置以及其地理空间位置(在一些实例中)。在本发明的其他实例中,其他对象之间的这种通信链接可用于提供其他数据,以增强内部的位置测定能力。此外,被输送的数据可以是各种特定性水平。例如,在本发明的一个实施例中,每个对象可独立地测定其空间位置。然后,该对象可将其空间位置的测定输送至相同参照系内的其他对象。另选地且根据本发明的另一个实施例,对象可输送关于其空间位置的具体位置数据,之后,该位置数据可由其他对象随意地使用。例如,一个对象可传达的是,在某个参照系内,其位置为具有一定差异程度的X。另选地,或另外,对象还可输送GPS信息、惯性信息、间距三角测量信息等,这样使得接收实体随后能够基于其需要来增强其自有空间感知的精度或数据,来使用或放弃这类具体信息。结合协作空间位置测定,对准确的相对位置数据进行组合,使得本发明的实施例能够准确地整合所组合的运动和活动,其中包括预测行为和交互。
尽管本发明已经且将会参考实施例进行特别地示出和描述,但是,本领域的技术人员应当理解的是,可在形式和细节上作出各种其他变化而不脱离本发明的精神和范围。
为了更好地理解本发明的协作空间定位及概率冲突解决系统的复杂性,将对以下的简化实例加以考虑。图2示出了一种临时城市环境,其中可实施根据本发明的一个实施例的基于对象行为测定和协作相对定位的冲突解决。
假设存在多个对象210、220、240、250、260、270,其中每个对象内部具有利用一个或多个位置资源来测定其空间位置的能力。例如,每个对象可具有GPS接收器、惯性系统、激光定位、航位推算技术等,并且配备有UWB标签进行交互通信。然而,每个对象利用其每一种资源的能力不同。例如,两个对象210、220可处于一位置(例如,建筑物中),在该位置处,GPS信号无法使用或者进行测距定位的条件有限,但是,每个对象相对于本地环境都具有准确的数据。本质上,他们不能独立地测定其地理空间位置。换言之,它们可能掌握有环境地图,但是它们并不知道它们在地图上的位置。第三和第四对象240、250都掌握了 GPS位置,但是,考虑到信号强度和干扰,其精度还尚待确定。然而,这两个对象240、250都在已知位置标记物230、235的范围内。这些标记物的空间位置是已知的,并且利用相对定位技术,靠近该标签的对象(尽管GPS的接收欠佳)可准确地测定出它们的位置。
如相关领域的技术人员将会理解的,基于间距信息测定空间位置需要三个独立的源。接收发射器的信号的对象可确定其与该发射器之间存在有一定间距。知晓发射器的位置之后,接收器可推断出其位置是在球体的表面上,该球体的半径为传输的范围并且该球体的原点为发射器的位置。接收两个此类源的信息实现了两个球体的相交,而这样的相交形成了一个圆。因此,本实例中的接收器驻留在相交圆的某处。理想情况下,三个相交的球体识别处接收器所驻留的点。但是,利用对对象空间位置的独立测定来减少其所在点的轨迹是可能的。接收两个已知位置230、235的间距信息的对象知道其处于由两个球体的交集所限定的圆上。但是,该对象自身掌握了关于其空间位置的信息,而该信息可与所接收的信息整合以精确其空间位置。
继续参见图2所示的实例,另外假设两个邻近对象240、250彼此通信并且均与固定标记物(路灯)230、235通信。但是,如先前所指出,两个对象240、250的独立地理空间资源(GPS)是不可靠的。然而,每个对象可充当位置数据的第三个源,以协助另一对象得出更加明确和精确的地理空间位置。如前所述,从固定位置标记物230、235接收的数据提供了圆的相交位置。从第一对象230的角度来看,另一对象250的间距信息可产生明确的地理空间位置。该信息结合其内部差异能够为对象230实现更好的且更加明确的位置测定。这种类型的对等网络空间位置可用于测定与固定标记物不进行任何通信的对象的位置。对象交互越多,位置就越准确。
根据本发明的一个实施例,由标记物230、235及其GPS(或与其他对象的交互)部分确定的一个对象240的位置信息可经由对等网络通信输送至其他对象270、250、220。标记物230、235附近的轿车250还掌握有标记物230、235和其他邻近对象所确定的准确位置数据。但是,十字路口的轿车270,并且更重要地,建筑物内的对象220可能会发现另一个对象所掌握的位置数据非常重要。利用这种相对位置数据,其他对象220可测定其空间位置,该空间位置随后通过对象的内部系统进行补充,帮助实现位置感知。此外,进一步隔离在建筑物中的对象210可利用经由串级链或网状网络中转的信息来获得准确的位置信息。
同样地,不能独立地根据GPS或其他源测定其位置的个体可利用邻近对象的已知的地理空间数据。根据本发明的一个实施例,尽管建筑物大厅内的人无法接收任何GPS数据,但是仍可测定其位置,这是因为,他能接收位置已知的其他邻近对象270、290、240、230、235的数据。知道了位置并掌握了当地环境的地图之后,他能够以较高的精度导航至没有任何传统地理空间支持的区域。另外,由于大厅中的人220现在获悉了他的地理空间位置,因此,他可将该信息输送至其他隔离对象210。例如,如果三楼的人210能够接收大厅中的人220和其他两人的数据,则他也可测定自己的地理空间位置。这个过程实现了串级链,从而基于他们自己已经根据间接源测定了地理空间位置的源来提供空间位置。
空间和相对位置数据可从其他隔离对象输送并且可在其他隔离对象之间输送。例如,位于停车库的轿车260可包括协作空间定位设备或系统,而该轿车的驾驶员所携带的移动电话也可包括同样的设备或系统。在驾驶时,轿车可收得GPS信号,并且在进入车库时,轿车可利用路径整合或惯性导航来大体地测定其在车库内的位置。这些对象利用固定对象或其他邻近对象的数据,能够测定和精确其空间位置。此外,如果建筑物内的个人210与轿车260在一天结束时还需要再次会合,则该个人还可建立与轿车260的相对定位数据。
根据本发明的一个实施例,图2中所示出的对象中的每一个都具有形成和掌握本地环境的中心取向的空间感知表示的能力。当一个对象掌握了在其周围的此类对象的相对定位和运动的表示之后,该对象能够自主地确定是否存在需要进行行为修改的概率冲突。对于本申请的目的,概率冲突为一种算法确定,其中空间表示范围内的两个对象将发生交互/碰撞/冲突。相关领域的技术人员将理解,实时基础上的数据收集和分析将产生统计概率,而非明确的事件确定。此外,针对一个对象或一个动作在统计学上显著的项目所进行的确定可以是彼此不同的。例如,对象正在行进的速度和对象的反应速度可能需要对更多潜在冲突进行考虑和作出响应,而移动速度更慢的或者有能力让自身快速地脱离环境的对象在采取动作之前就可能具有相当高的冲突可能性。
利用预定协议,本发明对可能的冲突后果进行持续检查,并且,一旦后果或交互符合或超出概率水平,本发明将执行如下过程:修改所涉及的一个或多个对象的行为。
例如,再次参考图2,设想携带手机240的人正在沿着人行道步行并预计在十字路口横穿街道。同时,汽车290朝向该十字路口驶来。两个对象都具有各种位置测定资源并且均配备有UWB标签,从而不仅对它们的位置精度进行更新和验证,而且彼此向对方传送其位置和相对运动。两个对象240、290形成它们自己的以对象为中心的空间感知表示,该空间感知表示包括其它对象的位置和行进运动。根据本发明的一个实施例,两个对象独立地确定出,两个对象240、290之间将发生冲突的概率比较高。根据本发明的一个实施例,一旦识别出了冲突并且该冲突达到了将发生冲突的特定可能性阈值,则每个对象可独立地修改其行为,以解决、防止或缓解该冲突。在这种情况下,手机可发出某种警报,帮助个人避免步入十字路口。汽车也可向驾驶员发出警报,以减速或让行。此外,如果冲突仍然存在,则汽车可启动以下处理过程---无论驾驶员采取的行动是什么,汽车都会减速或停止,以防止发生碰撞。如果一个对象在另一对象之前动作并解决或消除了冲突,则该另一对象可推断出无需进行进一步动作。
如上提及,本发明的一个方面是其协作地共享和利用空间数据和关联数据来识别和解决潜在冲突的能力。为了更好地理解本发明如何识别和解决这些概念,考虑以下内容。图3示出了对具有协作空间定位技术的多个对象的网状网络交互所进行的高级描述。在图3的上部,四个对象310、320、330、340处于彼此的协作范围内,并且各自通信地链接,从而形成相关领域的技术人员将认识到的网状网络。
围绕每个对象310、320、330、340的是表示每个对象其空间位置的独立测定的差异或误差的环315、325、335、345。另外,每个对象包括表示每个对象的相对运动的箭头350、360、370、380。随着对象进入彼此的通信范围内,新的对象加入了现有网状网络,同时其他对象退出该网络。虽然从形式上可将网状网络视为无限数量的节点,但这种网络不太可能可行。而更可能的情况是基于中央或区域控制节点的网状网络或具有有限数量节点的自主网状网络。在后一个实例中,一个节点建立一个控制节点,同时有限数量的客户端或从节点形成网状网络。随着新节点进入或节点退出这种关系,将对网状网络的控制重新进行评估,同样也对网状网络的交互和重叠重新进行评估。此外,节点可存在于两个或多个网状网络中,导致数据传输的重叠。显然,这种类型的网络内的数据包和数据冲突必须得到解决并且超出了本讨论的范围。对于本发明的目的,假设图3中示出的对象能够形成并维持可操作来支持网络中节点间的数据交互的网状网络。
这样做时,相关空间数据可从一个对象输送至另一个。图3下部对网状网络的描述示出了每个对象310、320、330、340基于新获得的空间和关联数据的修改差异315、325、335、345。例如,对象310的差异315能够基于从其他邻近对象新获得的信息而减小,进而形成新的差异317。随着网络发生改变,差异也可增大337。随着新节点390(及其差异395)进入网络,关联数据和空间数据的交换能够实现对每个对象测定其协作空间位置且(在一个实施例中)影响其行为的能力进行持续修改。
图4为描述了根据本发明的可用于协作位置信息的方法的一个实例的流程图。相关领域的技术人员将会理解的是,流程图的每个方框和流程图中这些方框的组合(以及本申请中其他流程图)可通过计算机程序指令来实现。这些计算机程序指令可被加载至计算机或其他可编程设备上以产生机器,使得在计算机或其他可编程设备上执行的指令形成用于实施一个或多个流程图方框中所指定的功能的装置。这些计算机程序指令还可存储于计算机可读存储器中,该计算机可读存储器可指导计算机或其他可编程设备以特定方式运行,使得存储于计算机可读存储器中的指令产生制造品,其中包括实施一个或多个流程图方框中所指定的功能的指令装置。计算机程序指令还可加载于计算机或其他可编程设备上,以在计算机中或者在其他可编程设备上执行一系列的操作步骤,生成计算机实施过程,进而使得在计算机或其他可编程设备上执行的指令提供用于实施一个或多个流程图方框中所指定的功能的步骤。
因此,流程图的方框支持用于执行指定功能的装置的组合和用于执行指定功能的步骤的组合。还将理解的是,流程图的每个方框和流程图中方框的组合可通过基于专用硬件或固件的计算机系统来实施,这些计算机系统执行指定功能或步骤,或者执行专用硬件和计算机指令的组合。
本说明书其中一部分是以数据运算的算法或符号表示来呈现的,而数据作为比特或二进制数字信号存储于机器存储器(例如,计算机存储器)中。这些算法或符号表示为数据处理领域的普通技术人员采用来将其工作实质传递至本领域的其他工作人员的技术的实例。如本文所用,“算法”为一系列得到所需结果的一致的运算或类似处理。在这种情况下,算法或运算包括对信息元素的处理。典型地但非必然地,这类元素可采取电信号、磁信号或光信号的形式,这些信号能够被存储、存取、传输、组合、比较或通过机器以其他方式处理。主要出于常用考虑,有时利用以下词语(如“数据”、“内容”、“比特”、“价值”、“元素”、“符号”、“字符”、“术语”、“数字”、“数值”、“词”等等)来指代此类信号是比较方便的。然而,这些特定词仅为方便的标签,并且与合适的信息元素相关联。
除非另外特别说明,本文中利用以下词语(如“处理”、“运算”、“计算”、“测定”、“呈现”、“显示”等等)所进行的论述可能涉及机器(例如,计算机)的动作或过程,该机器在一个或多个存储器(例如,易失性存储器、非易失性存储器或其组合)、寄存器或者其他接收、存储、发送或显示信息的机器部件中处理或转换呈现为物理(例如,电、磁或光)量的数据。
根据本发明的用于协作空间定位的示例性过程开始405于收集410来自一个或多个不同位置测定技术或资源的位置信息。这些资源可包括惯性系统、GPS、路径整合、测距定位等等。为对象测定每个位置信息资源的位置差异430,以使得每个资源所提供的信息可由对象进行权衡和评价。具有高准确度和可靠性的信息通常比准确度较差且可靠性较低的那些信息更多地接收权衡和评价。持续地对这些差异进行监测和更新,以优化所计算出的空间位置。
一旦位置信息进行了评估和权衡,则随后将被组合450,从而为对象测定其空间位置。除了每个信息源的个别差异之外,还对位置的总体测定进行约束,进而将对象通过其来输送自身位置的准确度输送至其他对象。
对象通信地联接470,以交换490空间和关联位置信息,这种信息随后可用于精确每个对象的空间位置。同时也会输送这种信息的准确度和可靠性,以使得接收对象可确定所输送信息的价值。
本发明将定位关联位置数据与关于空间定位的融合的传感器数据进行整合。通过这样做,对象不仅能够在各种环境中更准确地测定其空间位置和相对运动,而且还能在必要时,基于邻近对象的位置和相对运动来修改其行为。
图5是根据本发明的一个实施例的采用基于对象行为测定和协作相对定位的冲突解决的多个对象的高级图形化描述。在图5的描述中,六个(6)对象510、520、530、540、550、560在相同的地理位置中运转。相关领域的技术人员将领会到,就本发明的目的而言,“本地”地理位置仅仅受到通信技术的限制。在一个实例中,对象可以是彼此相隔几米之内,而在其它实例中,则可以是相隔几英里之内。
图5进一步表明了每个对象具有以该对象为中心的一定的感知范围。例如,假定中心对象510感知到了其余对象520、530、540、550、560中的每一个对象,同时,左下象限中的对象560具有仅足以捕获三个邻近对象510、540、550的信息的感知范围580。根据本发明的一个实施例,这些邻近对象510、540、550可以将信息中转到远处的对象560,以增强该对象测定其空间感知的能力。以这种方式,对象560能够获知并了解远处对象520的相对位置和运动。然后,对象560可独立地确定该轨迹是否重要或者确定是否应忽略该轨迹。也就是说,通过对等网络通信,一个对象560可感知另一个对象520,即使对象560不能独立地探测到对象520。此外,如果对象及其相对运动没有任何意义,则可忽略该对象或将其从空间表示中移除。然而,如果该对象520的相对位置、方向和速度是这样一种状态---如果该对象继续行进在当前路线上,则将会成为冲突,那么,本发明使得对象520、560中的任一个作出反应,即使这两个对象都不能独立地探测出另一个。例如,一个对象可能行进地非常快,以至于在另一个对象520在本地将其独立地识别出来时,冲突可能都已变得不可挽回了。
检测以及与邻近对象的交互使得每个对象能够形成针对其周围的空间表示并相应地作出反应。如图5所示并且根据本发明的一个实施例,邻近对象的每个对象的感知不仅包括相对位置,而且还包括对象的状态。即,对象的相对运动、速度、任务目标、能力等。在图5中,每个对象的运动以大箭头515、525、535、545、555、565表示。在对象进行交互并精确它们的空间位置时,它们进一步进行信息收集,比如,邻近对象行进的速度和方向。这使得每个对象都能够形成其环境的本地空间表示或感知以及对概率冲突进行搜索。
图6是可根据本发明的一个实施例来确定的,如图5所示的多个邻近对象的一种以对象为中心的关系表示。图6中所示出的效果图是以图5中最左边的对象540为中心。也就是说,从对象540的角度来看,图6的效果图提供了关于邻近对象的关系信息。虽然每个对象的空间表示可以表示相同的数据,但是每个空间表示却是不同且独立的。而且,每个对象在位置可靠性和准确性方面都存在着不同的差异。参考图6,中心对象540检测到五个(5)其它邻近对象。从中心对象540的角度来看,三个对象510、520、530在其左侧,并且,两个对象550、560在其右侧。所有的对象要么与其位置并排,要么在其位置的前方。因此,空间表示向中心对象540提供了关于每个邻近对象的关系位置数据。
每个邻近对象510、520、530、550、560的表示还包括对象属性,其中包括对象的运动。在本发明的本实施例中,每个邻近对象的相对运动由箭头615、625、635、655、665表示,其中,箭头的长度表示相对于中心对象的速度的速度以及方向645。例如,最左边的对象530的运动和中心对象540的运动基本平行。但是,通过比较两个方向箭头635、645的尺寸可以看出,最左边的对象530比起中心对象540来说要移动地慢得多。同样地,中心对象540和右下方的对象560的速度相似,但是每个面向的方向不同。在本发明的另一实施例中,图6所示的空间表示可以是纯粹地以对象为中心,而在另一个实施例中,该空间表示可以利用一个共同参照系。
在本发明的其它实施例中,图6中所示的空间表示还可以包括其他信息,比如,每个对象的位置可靠性的指示或者对象是否具有比另一个对象更高的任务优先级)。例如,一个对象能够以圆内的一个圆点示出,其中,该圆点表示该对象所测定出的空间位置、圆的尺寸以及该测定的差异。围绕圆点的小圆表明,该位置是高度可靠和准确的,而较大的圆意味着,尽管实际位置示出时是位于圆的中心,但是却可以是在圆内的任何位置处。
图7是图5和图6所示的多个邻近对象的另一种以对象为中心的关系表示,其示出了根据本发明的一个实施例的行为修改的一个实施例。在这种情况下,所示的空间表示基于图5的中心对象510。因此,三个对象540、550、560位于中心对象510的后面,并且,两个对象520、530位于对象510的前面。即使是在与不同的对象510的关系表示中,图7仍然包括了与图6一致的运动矢量。
除了相对位置信息(范围和方位)和行进速度之外,图7还包括行为信息。在这种情况下,中心对象510的任务目标(到达目的地)表示为星形720,并且,其到目标770的推荐路径用虚线710表示。此外,在推荐路径710旁边的是中心对象的运动向量715。图7还示出了邻近对象520表示为五边形780的任务目标以及该对象的运动矢量725。
根据本发明的一个实施例,每个对象对从邻近对象中的每一个对象处接收的状态信息进行优先并确定邻近对象之间是否存在有概率冲突。根据本发明的一个实施例,与每个对象中的空间感知引擎协作的行为引擎独立地判断出,如果对象保持它们的当前线路和速度,那么,对象之间可能会发生冲突,如碰撞。基于对象的交互和所传输的状态信息,每个对象对它们各自的目标770、780进行优先。图7中所示的中心对象感知到可能会发生碰撞以及其目标的优先程度更低。因此,行为引擎对通往次级路径750的推荐线路进行修改,或者,直到消除了碰撞的可能性时才停止。另一个具有较高优先级目标的邻近对象520保持在通往其目标780的推荐线路上。另一个具有更高优先级目标的邻近对象780保持其通往目标780的推荐线路。值得注意的是,在协调时,可以由每个对象独立地做出这种判断。针对行为修改优先化的目标所进行的对象之间的状态信息交换可以是基于各种因素。例如,当汽车向同时也有火车驶入的铁路道口接近时,该汽车所作出的反应可能有别于其在自行车道上与自行车产生冲突时所作出的反应。也许在这两种情况下,汽车都具有更高的目标优先级,但火车由于其质量、速度和改变其运动的能力,无法简单地改变其路线,或者,在短时间内明显不能改变其速度。在获知这些因素之后,汽车可改变其解决冲突的方式。由此,在本发明的又一个实施例中,当作出合适的响应时,将这些因素考虑为其它邻近对象和与其存在冲突的对象的特征或能力。因素可包括动量、易损性、机动性、价值、有效载重的重要性、时间灵敏度等。此类特征可传播至其它邻近对象。
本领域的技术人员将理解的是,当对象移动并且它们的空间关系发生改变时,个体的优先化和行为的修改也必须跟着进行改变。
图8示出了根据本发明的一个实施例的一种用于分布式定位和协作行为测定的系统的高级框图。根据本发明的一个实施例,一个或多个对象各自都可具有探测模块810,其通信地耦合至空间感知引擎820和行为引擎850。探测模块可操作来感测一个或多个邻近对象的存在,并且从那些对象中,不仅确定出对象的关系位置(范围和方位),而且还确定出某些状态信息。该信息可以包括对象的相对运动(速度和方向)以及对象的能力、对象的物理属性、任务参数等。探测模块也可以从对象获得空间信息,并且利用该信息,不仅建立了该对象的相对位置,而且还增强了接收对象自身的空间数据。在一个实施例中,可以通过超宽带射频识别标签(本文中也称为RFID标签)和其他对于相关领域的技术人员来说会是已知的装置来实现对象的检测和关系数据的确定。这些标签的交互和整合可用来在各种对象之间交流信息数据。
在一个实施例中,向空间感知引擎820传输由探测引擎获得的信息。空间感知引擎820形成其中有对象运行的环境的关系表示。在一个实施例中,空间表示是以对象为中心,向对象提供有关与其紧邻的其他对象的连续信息。每个对象产生并维持其自身的空间表示或地图以及其自身的定位方案。虽然没有必要将各种对象之间的表示合并到公共地图中,但是,表示可以包含帮助实现地图和每个对象的位置的关联的共同伪像或基准标记。例如,固定参照点的位置可以表示在几个对象的地图中,然后每个对象将其作为公共参照点。
在本发明的一个实施例中,空间感知引擎可提取间距数据和方位数据,以将这些数据用于能够提取随着时间推移的符号表示的追踪算法中,这些符号表示代表了环境中与输入该系统的实体定义相一致的变化。例如,本发明可作出不同的反应,具体是取决于对象是快速移动的大型车辆还是缓慢走动的人。这种表示的输出包括运动轨迹,该运动轨迹包括时间戳和数据退化的指示。例如,随着数据老化,该表示可变得越来越不可靠,从而修改响应。这些符号表示可独立于利用传输识别数据和状态数据的UWB标签所确定的表示。因此,当符号数据或原始数据与标签信息相关联时,该实体的路线和目标的可靠性得以增强。同样地,系统能够识别出未关联实体或未参与实体。
空间感知引擎820和检测模块810均对数据进行传递,并且通信地耦合到行为引擎850。行为引擎850和空间感知引擎820还通信地耦合到防护运动模块830。除了主体对象的行为属性之外,防护运动模块830还评估每个探测到的邻近对象的相对位置和状态,以确定是否存在任何概率冲突。例如,防护运动模块830可基于空间表示确定,其中一个邻近对象(与另一个对象完全不同)将与主体对象的当前路径产生冲突。在其它实施例中,防护运动模块830可确定的是,基于当前的轨迹,主体对象将会遇到可能会危及主体对象执行其任务的能力的已知危险源。在这种情况下,危险源可包括另一个对象、外围边界、固定障碍物和环境因素等。防护运动模块可设置有多个概率算法,以确定邻近对象的运动或其它已知危险源是否会影响对象执行其任务的能力或者是否会危及对象本身的健康和幸福。
行为引擎850可以采用这种信息来协调主体对象和/或邻近对象的动作,以便完成共同的任务。行为引擎还可以基于已知的任务目标和所感知到的冲突,在邻近对象之间选择性地对活动进行协调。行为引擎也可基于一个或多个邻近对象可能为未参与实体的这一感知,作出反应。基于所收集的空间数据或传感器数据,有可能确定出存在有邻近对象。然而,尽管能够追踪对象的运动以及对冲突进行预测,但是该对象作为非关联系统的状态可通过行为引擎驱动不同响应。
例如,根据本发明的一个实施例,模块可安装于与其它邻近对象交互的所关注的设施或环境中(游乐场或停车场)。由于所安装的对象保持在固定位置上,所以,其空间感知表示与环境的地理特征或建筑特征一致。此外,所安装的模块可配有各种间距/方位传感器,包括激光、超声波、立体视觉、雷达,等等。这些系统使得所安装的模块能够以形成其空间感知表示的固定坐标体系的形式探测和追踪其附近的对象。这些模块还可包括利用UWB射频识别(RFID)标签(其能够提供其他状态信息)与其它对象进行交互的能力。
这种状态信息可包括识别数据,该识别数据与预定义列表进行对比时可识别出具体的非列表对象。例如,所安装的模块可放置于限制了出入的安全设施中。虽然可通过其它手段来控制该区域的进入,但是本发明具有在实时基础上监测该环境中所有对象以验证每个对象的真实性的能力。此外,如果在环境中探测出非列表对象或未授权对象,则本发明可追踪其位置并就其位置和动作向当局发出警示。
根据一个实施例,这样做之后,本发明的所安装的模块还可包括将所收集数据输送至中央计算机或处理器的通信能力。关联引擎(未示出)可对间距和方位信息进行三角测量,并协调来自多个安装模块的数据,从而实现每个对象位置的关联和精确追踪。
这样一来,例如,在其中有三个安装模块位于不同的地理位置并且还有8个对象的房间中,本发明能够追踪和关联每个对象。假定8个对象中的7个包括有将这7个对象识别为授权实体的UWB标签。另一个对象要么不具有标签,要么就是该标签上的代码与授权列表不相关。每个安装模块收集每个对象的独立感知信息和与每个授权标签有关的感知信息。该信息通过中央处理器进行关联和比较,以将感知数据与UWB数据匹配。对于任何其位置是借助感官数据来识别,但是却不与授权UWB数据相关联的对象,都可视为未授权。之后,本发明可追踪该未授权对象,就违反对象向当局发出警示,和/或发出警报。并且,利用历史数据和预测算法,本发明可预测对象的运动。
本发明的一个或多个实施例可操作来持续地追踪所监测环境内的实体。当前技术监测安全设施的入口和出口。运动探测器和类似技术可识别对象的存在或对象的运动,但不能识别对象的位置。本发明能够持续监测限定参考系内多个对象的位置。这种位置技术可与身份数据相结合,以确定参考系内的每个对象是否具有正确的凭证。另选地,本发明可向某个区域内的个人发出警示,没有正确凭证的实体已进入本地环境的范围内。
同样地,对象的信息追踪可被动地进行,以获取其它有用数据。例如,在配有三个或多个测距资源的市场中,可对该市场内的每个实体的位置和移动进行跟踪。该数据单独可指出市场中最受关注的物品是哪些,或者反过来,表明哪些项目赢得了关注,但却没有提升销量。同样地,如果实体具有某种能够提供如性别、年龄或其它特征的状态信息的传输能力,则可对位置数据的收集进一步加以分类。在能够特定识别某个个体的情况下,可以基于其动作针对性地向该个体传递信息。例如,如果某人似乎反复多次停留在手表销售柜台,则可将针对性的广告引导至该个人或家庭。回想一下,本发明不依赖于GPS或类似技术,但可以将位置资源的平衡作为位置测定的基础。
本发明的另一个方面在于其基于空间感知和邻近对象的相对运动而修改对象行为的能力。如图8所示,行为引擎850联接至控制模块870,控制模块870向主体对象发起命令,实现各种动作。这些命令和动作还被传递至探测模块,从而在适当时传递至其它对象用于预测目的。防护运动模块830还联接至警示模块,该警示模块能够提供向其它对象或用户警示潜在冲突的手段。例如,如果对象为手机并且基于携带该手机的主人的运动,该对象很难直接修改用户的行为。然而,手机或类似装置可能能够向用户传递如下警示:已经识别出了需要立即引起注意的冲突。同样地,防护运动模块可向其它邻近对象发出已识别出了冲突的警示。虽然每个其它对象都在做出类似的独立确定,但是,可以通过这种警示来加强另一个对象对同一冲突的确定。。警示模块860还可向用户终端呈现冲突数据和空间感知数据,这些数据可与其它传感器数据合并,以向控制站的用户提供环境的全面表示。在这种模式下,用户可基于更大的整体环境感知和/或战略目标来修改一个或多个对象的任务目标或行为。
图9是根据本发明的用于基于对象行为测定和(必要时)协作相对定位的冲突解决的一个方法实施例的流程图。这样的过程以识别910邻近对象的存在作为开始905。利用本文中所述的且相关领域的技术人员已知的各种技术,每个对象对邻近对象的存在和相对位置进行感测。利用该数据,形成920每个邻近对象的关系位置。另外,从邻近对象接收930空间位置信息和状态信息。例如,主体对象可以确定,一个对象存在于相对方位120度的10米处。之后,该对象可以向主体对象传递其精确的空间位置和运动。基于此,主体对象能够更新其空间位置并且判断它们的路径是否将会交汇和冲突。
如此便形成940了可包括公共参照以及关于多个邻近对象的关系数据在内的本地环境的空间感知。空间感知表示随后可与对象的主要动作路线相关联960,以确定970是否存在任何概率冲突。如果此类冲突存在,则行为引擎可修改980该对象的行为以解决/防止该冲突。本发明的防护运动能力可用于协调和修改运动,如行进至期望的空间位置,从而在指定距离处跟随另一个对象或者搜寻特定区域/徘徊在特定区域,同时还使得与具有相同任务目标的其它对象的交互最小化,借此使地面覆盖范围最大化。本发明的系统还可用于追踪带标签的实体的位置并在那些实体进入(或离开)限制区域时向用户发出警示。例如,儿童离开游乐场的安全场所、未经授权进入工作设施的限制区域。系统还可向行人和轿车等发出盲角附近即将发生碰撞的警示、警告驾驶员即将进入学校区域以及甚至阻止汽车在该区域超出限速值。
根据本发明的另一个实施例,一个对象可包括多个标签或传感器,从而不但实现该对象的准确距离和间距测定,而且还实现该对象的某些部分的准确距离和间距测定。例如,大型车辆可能具有多个标签和定向天线,它们的朝向使得能够相对于危险源或冲突来确定该车辆的方向和精确位置。以这种方式,这种车辆中的用户或行为引擎能够确定,不仅仅是整个对象存在冲突,对象的某个部分也存在冲突。例如,设想一下卡车倒入狭窄的装货码头。装货码头包括标记该码头上的障碍物的危险源标签,而卡车包括其每个角落处的标签和天线。
当卡车驶入码头时,本发明的系统可操纵对象的运动,以防止与该卡车的任何特定部分发生碰撞。本发明将生物体所采用的认知技能应用于机械装置上。例如,设想一下一个人行走在纽约市的一条拥挤街道上。个体利用自己的感官收集与其地理空间位置有关的空间数据,另外还相对于其附近的其它移动对象收集关联感知。这个人的目标可能是从A点行进至B点,一共4个城市街区。要做到这点,这个人在街道上行走时可能已经确立了主要行进路线。一旦位于人行道上,这个人就必须快速地估计该人行道上的其他个体、推车、对象的运动和位置并避开他们。在一个典型的午后,不对附近行进的其他人作出调整是不可能沿着人行道直线行走的。
另外,当该个体来到十字路口时,他将再次利用感知数据和辅助信息(诸如人行横道信号)来确定他们是否应冒险走上人行横道,而在这期间,还观察本地环境的冲突情况。个体十分善于处理拥挤环境,或跟随另一个个体且不会靠得太近,或修改行进路线(如果确定了主要路线不可用的话)。本发明的实施例运用了基于对象行为测定和协作相对定位的冲突解决的逻辑,以增强用户或对象在解决概率冲突的同时实现任务目标的能力。
本发明的一个方面在于将感官数据进行融合,以提供最佳的且协作的位置测定,并且在需要时,实现冲突解决。做到这点不仅是要通过使用高度精确的感知平台,而且还要通过将该数据与明确性更强的平台进行融合。例如,建立“跟随”行为的早期方式是基于任何对象应行进至另一个对象的报告位置的这一观念。随着第一对象移动并报告了新的位置,跟随的对象将相应地修改其路线。位置测定中的大误差以及时间延迟使得这种方式不会成功。本发明通过平衡不同感知平台,解决了这个问题以及其它类似问题。例如,邻近对象(目标对象)不太精确的GPS位置测定可用来在出现不确定的各种精确和稳定目标之间消除不确定性。
尽管本发明已以一定程度的特殊性进行了描述和说明,但应理解的是,本公开仅以示例的方式做出,并且,本领域的技术人员可在不脱离本发明的精神和范围的前提下对部件的组合和布置作出许多改变。
以下简要描述了本发明的优选实施例。用于通过对象进行行为测定和冲突解决的一个方法实施例包括:
· 识别一个或多个邻近对象的存在;
· 形成包括所述一个或多个邻近对象的环境的本地空间感知,其中,所述本地空间感知包括所述一个或多个邻近对象中的每一个的相对间距、方位和运动;
· 使所述本地环境的所述本地空间感知与所述对象的主要动作路线相关联;
· 确定所述本地空间感知与所述对象的所述主要动作路线之间的一个或多个概率冲突;以及
· 响应于确定所述一个或多个概率冲突而修改所述对象的行为。
用于通过对象进行行为测定和冲突解决的方法实施例的其它优选特征包括:
· 其中,修改包括改变所述主要动作路线以解决所述一个或多个概率冲突;
· 其中,修改包括以次级动作路线取代所述主要动作路线,以解决所述一个或多个概率冲突;
· 其中,所述主要动作路线与任务目标相关,并且修改包括改变所述任务目标以解决所述一个或多个概率冲突;
· 其中,所述一个或多个概率冲突通过预定防护运动协议来确定;
· 其中,所述预定防护运动协议包括保持对象之间的最小安全间隔距离;
· 其中,所述一个或多个概率冲突为所述对象与一个或多个邻近对象之间的碰撞;
· 其中,所述一个或多个概率冲突为所述对象与已知危险源之间的碰撞;
· 其中,所述本地空间感知包括所述一个或多个邻近对象中的每一个的基于测距的追踪;
· 其中,所述一个或多个邻近对象的存在通过超宽带射频识别标签的交互来确定;
· 还包括接收来自所述一个或多个邻近对象中的每一个的状态数据;
· 其中,状态数据包括对象识别;
· 其中,形成包括使所述识别的一个或多个邻近对象中的每一个的对象识别与邻近对象的预定授权列表相关联;
· 其中,所述一个或多个概率冲突包括识别一个或多个邻近对象的未授权存在;
· 其中,响应于确定一个或多个概率冲突而启动用户警示系统。
在本发明的另一个优选实施例中,一种用于通过对象进行行为测定和冲突解决的系统包括:
· 探测模块,其可操作来探测一个或多个邻近对象的存在;
· 空间感知引擎,其通信地联接至所述探测模块并且可操作来形成所述一个或多个邻近对象的空间表示,并且其中,所述空间表示提供了关于所述一个或多个邻近对象中的每一个的相对位置信息和移动信息;
· 防护运动模块,其通信地联接至所述空间意识引擎并且可操作来识别一个或多个概率冲突;以及
· 行为引擎,其通信地联接至所述防护运动模块并且可操作来响应于所述一个或多个概率冲突的识别而修改对象行为。
一种用于通过对象进行行为测定和冲突解决的系统的其它特征包括:
· 其中,所述探测模块接收来自有源测距资源的位置信息;
· 其中,所述探测模块接收来自所述一个或多个邻近对象的共同位置信息;
· 其中,所述一个或多个概率冲突存在于所述对象与所述探测到的一个或多个邻近对象之间;
· 其中,所述防护运动模块包括一个或多个预定防护运动协议;
· 其中,所述一个或多个预定防护运动协议包括保持对象之间的最小间隔;
· 其中,所述一个或多个概率冲突为所述对象与所述一个或多个邻近对象之间的碰撞;
· 其中,所述一个或多个概率冲突为所述对象与已知危险源之间的碰撞;
· 其中,所述一个或多个概率冲突为探测所述空间表示中的未授权对象;
· 其中,所述行为是用于实现任务目标的主要动作路线;
· 其中,所述行为引擎修改所述对象和所述一个或多个邻近对象中的至少一个的共同任务目标;
· 其中,所述空间表示以对象为中心。
用于冲突识别和解决的本发明的另一个优选实施例包括:
· 多个探测模块,其分别可操作来探测一个或多个邻近对象的存在,其中,所述多个探测模块中的每一个包括接收器,其可操作来接收来自所述一个或多个邻近对象的状态信息;
· 空间感知引擎,其通信地联接至所述多个探测模块中的每一个并且可操作来形成所述一个或多个邻近对象的空间表示,并且其中,所述空间表示提供了关于所述一个或多个邻近对象中的每一个的相对位置信息和移动信息;
· 关联引擎,其联接至所述空间感知引擎并且可操作来使得相对位置信息和移动信息与所接收的状态信息相关联;
· 防护运动模块,其通信地联接至所述空间感知引擎和所述关联引擎并且可操作来识别一个或多个冲突;以及
· 行为引擎,其通信地联接至所述防护运动模块并且可操作来响应于所述一个或多个冲突的识别而修改行为。
一种用于冲突识别和解决的系统的其他特征包括:
· 其中,所述多个探测模块中的每一个可操作来独立地收集所述一个或多个邻近对象中的每一个的间距信息;
· 其中,状态信息包括识别数据;
· 其中,所述一个或多个冲突包括所述多个探测模块所探测的对象与所接收的状态信息之间的不关联。
在阅读本公开内容之后,本领域的技术人员通过本文公开的原理将会理解用于协作空间定位的系统和过程的其他替代结构和功能设计。因此,尽管已对具体实施例和应用进行了说明和描述,但应当理解,所公开的实施例不限于本文公开的精确构造和部件。在不脱离所附权利要求所限定的精神和范围的前提下,可以对本文公开的方法和设备的布置、操作以及细节做出对本领域的技术人员将会显而易见的各种修改、变化和变型。
熟悉本领域的技术人员还会理解的是,本发明可以以其他特定形式来体现而不脱离其精神或本质特性。同样地,模块、管理器、功能、系统、发动机、层、特征、属性、方法和其他方面的具体命名和划分为非强制性的或显著的,并且,实施本发明或其特征的机构可具有不同的名称、划分和/或格式。此外,对相关领域中的普通技术人员将显而易见的是,本发明的模块、管理器、功能、系统、发动机、层、特征、属性、方法和其他方面可实施为软件、硬件、固件或这三种的任何组合。当然,只要本发明的一个组件实施为软件,则该组件可实施为脚本、独立程序、较大程序的一部分、多个单独脚本和/或程序、动态或静态链接库、内核可加载模块、装置驱动程序、和/或计算机编程领域的技术人员现在或将来已知的每一种方式和其他任何方式。另外,本发明决不局限于任何特定编程语言的实施方式,或者决不用于任何特定的操作系统或环境。因此,本发明的公开内容旨在具有说明性,而不是对在以下权利要求中提出的本发明的范围进行限制。
在一优选的实施例中,本发明可以软件来全部或部分实施。体现本发明的软件编程代码通常由某些类型的长期、永久存储介质的微处理器访问,诸如闪存驱动器或硬盘驱动器。软件编程代码可体现于各种已知介质的任一种上,以与数据处理系统配合使用,诸如软盘、硬盘驱动器、CD-ROM等。这种代码可分布于此类介质上,或者可从某些类型的网络上的一个计算机系统的内存或存储器分布至其他计算机系统,以便于此类其他系统使用。另选地,编程代码可体现在装置的存储器中并且可由微处理器利用内部总线来访问。用于在存储器中、物理介质上体现软件编程代码和/或用于通过网络分布软件代码的技术和方法是众所周知的,并且在本文中不再进一步论述。
一般来说,程序模块包括执行具体任务或实施具体抽象数据类型的路径、程序、对象、组件、数据结构等。此外,本领域的技术人员将理解,本发明可以由其他计算机系统配置来实施,其中包括手持设备、多处理器系统、基于微处理器的或可编程的消费电子产品、网络PC、小型计算机、大型计算机等。本发明还可在通过远程处理装置来执行任务的分布式计算环境中来实施,这些远程处理装置通过通信网络链接。在分布式计算环境中,程序模块可位于本地和远程存储器存储装置中。
用于实施本发明的示例性系统包括通用计算装置(诸如传统个人计算机、个人通信装置等的形式),其中包括处理单元、系统存储器以及将各种系统组件(包括系统存储器)联接至处理单元的系统总线。系统总线可为几种类型的总线结构中的任一种,包括存储器总线或存储器控制器、外设总线以及利用各种总线架构中的任一种的本地总线。系统存储器一般包括只读存储器(ROM)和随机存取存储器(RAM)。包括帮助实现在个人计算机内的元件之间传输信息的基本程序(例如,在启动期间)的基本输入/输出系统(BIOS)存储于ROM中。个人计算机还可包括用于从硬盘读取或写入硬盘的硬盘驱动器、用于从移动式磁盘读取或写入该移动式磁盘的磁盘驱动器。硬盘驱动器和磁盘驱动器通过硬盘驱动器接口和磁盘驱动器接口分别连接至系统总线。驱动器及其相关计算机可读介质为个人计算机实现了对计算机可读指令、数据结构、程序模块和其他数据的非易失性存储。虽然本文所述的示例性环境采用的是硬盘和移动式磁盘,但本领域的技术人员应当理解的是,能够存储计算机可存取的数据的其他类型的计算机可读介质也可在示例性操作环境中使用。
如本文已描述的本发明的实施例可参考各种无线网络及其相关通信装置来实施。网络还可包括大型计算机或服务器,诸如网关计算机或应用服务器(其可访问数据存储库)。网关计算机用作各网络的进入点。网关借助通信链接可联接至另一个网络。网关利用通信链接还可直接地联接至一个或多个装置。另外,网关可间接地联接至一个或多个装置。网关计算机还可联接至存储装置,如数据存储库。
本发明的实施方式还在Web环境中执行,在该环境中,利用如超文本传输协议(HTTP)等协议,将软件安装包从Web服务器下载至通过因特网连接的一个或多个目标计算机(装置、对象)。另选地,本发明的实施方式还可在其他非Web网络环境(采用因特网、企业内部网或外部网,或任何其他网络)中执行,而在这种环境中,利用如远程方法调用(“RMI”)或公共对象请求代理体系结构(“CORBA”)等技术,将软件包进行分发,实现安装。环境的配置包括客户机/服务器网络以及多层环境。此外,可能出现的情况是,具体安装的客户机和服务器均驻留在同一个物理设备中,在这种情况下,就不再需要网络连接。(因此,可能正在接受询问的目标系统可以是在其上实施本发明的实施方式的本地装置。)
尽管上文已经结合了用于协作空间定位的技术来对本发明的原理进行了描述,但应当清楚理解的是,前述描述仅以示例的方式给出,而不是对本发明的范围进行限制。具体地讲,将认识到的是,前述公开内容的启示将向本领域的技术人员给出关于其他修改的提示。这类修改可包括本身为已知的并且可用来替代或附加于本文已描述的特征的其他特征。虽然权利要求在本申请中已经被制定为具体的特征组合,但是应当理解,本文的公开内容的范围也包括在此明确或隐含公开的任何新颖特征或任何新颖的特征组合或者对其的任意概括或修改,而这对于本领域的技术人员来说是显而易见的,无论此类概括或修改是否涉及当前在任何权利要求中请求保护的相同发明以及无论此类概括或修改是否缓和了与本发明所面对的技术问题相同的任何或所有技术问题。申请人据此保留如下权利:在本申请或从其衍生的任何进一步申请的审查期间,将新的权利要求制定为此类特征和/或此类特征的组合。
权利要求书(按照条约第19条的修改)
1.一种用于通过对象进行行为测定和冲突解决的方法,包括:
识别一个或多个邻近对象的存在;
形成包括所述一个或多个邻近对象的环境的本地空间感知,其中,所述本地空间感知包括所述一个或多个邻近对象中的每一个的相对间距、方位和运动;
建立所述对象与所述一个或多个邻近对象中的每一个之间的通信链接,其中,每个对象与每个其它对象共享对等网络关联数据;
使所述本地环境的所述本地空间感知与所述对象的主要动作路线相关联;
测定所述本地空间感知与所述对象的所述主要动作路线之间的一个或多个概率冲突;以及
响应于确定所述一个或多个概率冲突而修改所述对象的行为。
2.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,修改包括改变所述主要动作路线,以解决所述一个或多个概率冲突。
3.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,修改包括以次级动作路线取代所述主要动作路线,以解决所述一个或多个概率冲突。
4.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述主要动作路线与任务目标相关,并且修改包括改变所述任务目标以解决所述一个或多个概率冲突。
5.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突通过预定协议来确定。
6.根据权利要求5所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述预定协议包括保持对象之间的最小安全间隔距离。
7.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突为所述对象与一个或多个邻近对象之间的碰撞。
8.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突为所述对象与已知危险源之间的碰撞。
9.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述本地空间感知包括所述一个或多个邻近对象中的每一个的基于测距的追踪。
10.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个邻近对象的存在通过超宽带射频识别标签的交互来确定。
11.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,还包括经由所述通信链接接收来自所述一个或多个邻近对象中的每一个的状态数据。
12.根据权利要求11所述的用于通过对象进行行为测定和冲突解决的方法,其中,状态数据包括对象识别。
13.根据权利要求12所述的用于通过对象进行行为测定和冲突解决的方法,其中,形成包括使所述识别的一个或多个邻近对象中的每一个的对象识别与邻近对象的预定授权列表相关联。
14.根据权利要求13所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突包括识别一个或多个邻近对象的未授权存在。
15.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,响应于确定一个或多个概率冲突而启动用户警报系统。
16.一种用于通过对象进行行为测定和冲突解决的系统,包括:
探测模块,其可操作来探测一个或多个邻近对象的存在;
空间感知引擎,其通信地联接至所述探测模块并且可操作来形成所述一个或多个邻近对象的空间表示,并且其中,所述空间表示提供了关于所述一个或多个邻近对象中的每一个的相对位置信息和移动信息;
通信引擎,其可操作来建立所述对象与所述一个或多个邻近对象中的每一个之间的通信链接,其中,每个对象与每个其它对象共享对等网络位置信息和移动信息;
防护运动模块,其通信地联接至所述空间意识引擎并且可操作来识别一个或多个概率冲突;以及
行为引擎,其通信地联接至所述防护运动模块并且可操作来响应于所述一个或多个概率冲突的识别而修改对象行为。
17.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述探测模块接收来自有源测距资源的位置信息。
18.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述探测模块接收来自所述一个或多个邻近对象的共同位置信息。
19.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个概率冲突存在于所述对象与所述探测的一个或多个邻近对象之间。
20.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述防护运动模块包括一个或多个预定协议。
21.根据权利要求17所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个预定协议包括保持对象之间的最小间隔。
22.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个概率冲突为所述对象与所述一个或多个邻近对象之间的碰撞。
23.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个概率冲突为所述对象与已知危险源之间的碰撞。
24.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个概率冲突为探测所述空间表示中的未授权对象。
25.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述行为是用于实现任务目标的主要动作路线。
26.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述行为引擎修改所述对象和所述一个或多个邻近对象中的至少一个的共同任务目标。
27.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述空间表示以对象为中心。
28.一种用于冲突识别和解决的系统,包括:
多个探测模块,其分别可操作来探测一个或多个邻近对象的存在,其中,所述多个探测模块中的每一个包括接收器,其可操作来接收来自所述一个或多个邻近对象的对等网络状态信息和位置信息;
空间感知引擎,其通信地联接至所述多个探测模块中的每一个并且可操作来形成所述一个或多个邻近对象的空间表示,并且其中,所述空间表示提供了关于所述一个或多个邻近对象中的每一个的相对位置信息和移动信息;
关联引擎,其联接至所述空间感知引擎并且可操作来使得相对位置信息和移动信息与所接收的状态信息相关联;
防护运动模块,其通信地联接至所述空间感知引擎和所述关联引擎并且可操作来识别一个或多个冲突;以及
行为引擎,其通信地联接至所述防护运动模块并且可操作来响应于所述一个或多个冲突的识别而修改行为。
29.根据权利要求28所述的用于冲突识别和解决的系统,其中,所述多个探测模块中的每一个可操作来独立地收集所述一个或多个邻近对象中的每一个的间距信息。
30.根据权利要求28所述的用于冲突识别和解决的系统,其中,状态信息包括识别数据。
31.根据权利要求28所述的用于冲突识别和解决的系统,其中,所述一个或多个冲突包括所述多个探测模块所探测的对象与所接收的状态信息之间的不关联。

Claims (31)

1.一种用于通过对象进行行为测定和冲突解决的方法,包括:
识别一个或多个邻近对象的存在;
形成包括所述一个或多个邻近对象的环境的本地空间感知,其中,所述本地空间感知包括所述一个或多个邻近对象中的每一个的相对间距、方位和运动;
使所述本地环境的所述本地空间感知与所述对象的主要动作路线相关联;
确定所述本地空间感知与所述对象的所述主要动作路线之间的一个或多个概率冲突;以及
响应于确定所述一个或多个概率冲突而修改所述对象的行为。
2.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,修改包括改变所述主要动作路线,以解决所述一个或多个概率冲突。
3.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,修改包括以次级动作路线取代所述主要动作路线,以解决所述一个或多个概率冲突。
4.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述主要动作路线与任务目标相关,并且修改包括改变所述任务目标,以解决所述一个或多个概率冲突。
5.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突通过预定防护运动协议来确定。
6.根据权利要求5所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述预定防护运动协议包括保持对象之间的最小安全间隔距离。
7.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突为所述对象与一个或多个邻近对象之间的碰撞。
8.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突为所述对象与已知危险源之间的碰撞。
9.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述本地空间感知包括所述一个或多个邻近对象中的每一个的基于测距的追踪。
10.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个邻近对象的存在通过超宽带射频识别标签的交互来确定。
11.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,还包括接收来自所述一个或多个邻近对象中的每一个的状态数据。
12.根据权利要求11所述的用于通过对象进行行为测定和冲突解决的方法,其中,状态数据包括对象识别。
13.根据权利要求12所述的用于通过对象进行行为测定和冲突解决的方法,其中,形成包括使所述识别的一个或多个邻近对象中的每一个的对象识别与邻近对象的预定授权列表相关联。
14.根据权利要求13所述的用于通过对象进行行为测定和冲突解决的方法,其中,所述一个或多个概率冲突包括识别一个或多个邻近对象的未授权存在。
15.根据权利要求1所述的用于通过对象进行行为测定和冲突解决的方法,其中,响应于确定一个或多个概率冲突而启动用户警示系统。
16.一种用于通过对象进行行为测定和冲突解决的系统,包括:
探测模块,其可操作来探测一个或多个邻近对象的存在;
空间感知引擎,其通信地联接至所述探测模块并且可操作来形成所述一个或多个邻近对象的空间表示,并且其中,所述空间表示提供了关于所述一个或多个邻近对象中的每一个的相对位置信息和移动信息;
防护运动模块,其通信地联接至所述空间意识引擎并且可操作来识别一个或多个概率冲突;以及
行为引擎,其通信地联接至所述防护运动模块并且可操作来响应于所述一个或多个概率冲突的识别而修改对象行为。
17.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述探测模块接收来自有源测距资源的位置信息。
18.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述探测模块接收来自所述一个或多个邻近对象的共同位置信息。
19.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个概率冲突存在于所述对象与所述探测的一个或多个邻近对象之间。
20.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述防护运动模块包括一个或多个预定防护运动协议。
21.根据权利要求17所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个预定防护运动协议包括保持对象之间的最小间隔。
22.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个概率冲突为所述对象与所述一个或多个邻近对象之间的碰撞。
23.根据权利要求16所述的用于对对象的行为确定和冲突解决的系统,其中,所述一个或多个概率冲突为所述对象与已知危险源之间的碰撞。
24.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述一个或多个概率冲突为探测所述空间表示中的未授权对象。
25.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述行为是用于实现任务目标的主要动作路线。
26.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述行为引擎修改所述对象与所述一个或多个邻近对象中的至少一个的共同任务目标。
27.根据权利要求16所述的用于通过对象进行行为测定和冲突解决的系统,其中,所述空间表示以对象为中心。
28.一种用于冲突识别和解决的系统,包括:
多个探测模块,其分别可操作来探测一个或多个邻近对象的存在,其中,所述多个探测模块中的每一个包括接收器,其可操作来接收来自所述一个或多个邻近对象的状态信息;
空间感知引擎,其通信地联接至所述多个探测模块中的每一个并且可操作来形成所述一个或多个邻近对象的空间表示,并且其中,所述空间表示提供了关于所述一个或多个邻近对象中的每一个的相对位置信息和移动信息;
关联引擎,其联接至所述空间感知引擎并且可操作来使得相对位置信息和移动信息与所接收的状态信息相关联;
防护运动模块,其通信地联接至所述空间感知引擎和所述关联引擎并且可操作来识别一个或多个冲突;以及
行为引擎,其通信地联接至所述防护运动模块并且可操作来响应于所述一个或多个冲突的识别而修改行为。
29.根据权利要求28所述的用于冲突识别和解决的系统,其中,所述多个探测模块中的每一个可操作来独立地收集所述一个或多个邻近对象中的每一个的间距信息。
30.根据权利要求28所述的用于冲突识别和解决的系统,其中,状态信息包括识别数据。
31.根据权利要求28所述的用于冲突识别和解决的系统,其中,所述一个或多个冲突包括所述多个探测模块所探测的对象与所接收的状态信息之间的不关联。
CN201380034039.9A 2012-05-01 2013-05-01 基于对象行为测定和协作相对定位的冲突解决 Expired - Fee Related CN104685431B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201261641201P 2012-05-01 2012-05-01
US61/641,201 2012-05-01
US201261652347P 2012-05-29 2012-05-29
US61/652,347 2012-05-29
US201361773063P 2013-03-05 2013-03-05
US61/773,063 2013-03-05
US13/873,620 US9235212B2 (en) 2012-05-01 2013-04-30 Conflict resolution based on object behavioral determination and collaborative relative positioning
US13/873,620 2013-04-30
PCT/US2013/038982 WO2013166093A1 (en) 2012-05-01 2013-05-01 Conflict resolution based on object behavioral determination and collaborative relative positioning

Publications (2)

Publication Number Publication Date
CN104685431A true CN104685431A (zh) 2015-06-03
CN104685431B CN104685431B (zh) 2017-10-10

Family

ID=48783329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380034039.9A Expired - Fee Related CN104685431B (zh) 2012-05-01 2013-05-01 基于对象行为测定和协作相对定位的冲突解决

Country Status (10)

Country Link
US (2) US9235212B2 (zh)
EP (1) EP2845069A1 (zh)
JP (1) JP2015522797A (zh)
KR (1) KR20150040796A (zh)
CN (1) CN104685431B (zh)
AU (1) AU2013256372B2 (zh)
CA (1) CA2872419A1 (zh)
IN (1) IN2014DN09691A (zh)
MX (1) MX341062B (zh)
WO (1) WO2013166093A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845868A (zh) * 2017-02-28 2017-06-13 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种基于区域导航进场程序的安全间隔计算方法及装置
CN106908795A (zh) * 2017-02-28 2017-06-30 深圳天珑无线科技有限公司 探测装置、终端以及探测方法
CN108136265A (zh) * 2015-10-06 2018-06-08 马克里德斯有限及两合公司 交互式露天游乐设施,特别是过山车
CN108319806A (zh) * 2018-01-04 2018-07-24 中国人民解放军国防科技大学 一种机动弹道间空域冲突检测方法
CN108877297A (zh) * 2018-08-01 2018-11-23 Oppo广东移动通信有限公司 安全定位方法及相关产品
CN111928865A (zh) * 2020-09-23 2020-11-13 蘑菇车联信息科技有限公司 轨迹计算方法、装置、电子设备及存储介质
CN112131292A (zh) * 2020-09-16 2020-12-25 北京金堤征信服务有限公司 一种变更数据的结构化处理方法和装置
US11130501B2 (en) * 2017-07-04 2021-09-28 Baidu Online Network Technology (Beijing) Co., Ltd. System, method and apparatus for controlling autonomous driving vehicle
CN113728325A (zh) * 2019-02-20 2021-11-30 瓦肯技术有限责任公司 实时船舶导航跟踪
CN112131292B (zh) * 2020-09-16 2024-05-14 北京金堤征信服务有限公司 一种变更数据的结构化处理方法和装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130054023A1 (en) * 2011-08-30 2013-02-28 5D Robotics, Inc. Asynchronous Data Stream Framework
WO2014192369A1 (ja) * 2013-05-31 2014-12-04 日立オートモティブシステムズ株式会社 車両用危険報知制御装置
DE102014211166A1 (de) 2013-11-20 2015-05-21 Continental Teves Ag & Co. Ohg Verfahren, Fusionsfilter und System zur Fusion von Sensorsignalen mit unterschiedlichen zeitlichen Signalausgabeverzügen zu einem Fusionsdatensatz
CN109269494B (zh) * 2014-02-28 2022-08-02 原相科技股份有限公司 追踪系统
US9810783B2 (en) * 2014-05-15 2017-11-07 Empire Technology Development Llc Vehicle detection
US10149091B2 (en) * 2015-11-24 2018-12-04 Walmart Apollo, Llc Device and method for directing employee movement
DE102015122852A1 (de) * 2015-12-28 2017-06-29 Hochschule für Technik und Wirtschaft Dresden Sicherheitsarchitektur zur Verbesserung der Ortung von Verkehrsteilnehmern und zugehöriges Verfahren
CN105872371B (zh) * 2016-03-31 2019-04-02 纳恩博(北京)科技有限公司 一种信息处理方法和电子设备
US10019009B2 (en) * 2016-06-15 2018-07-10 Allstate Insurance Company Vehicle control systems
WO2018075611A1 (en) 2016-10-18 2018-04-26 Apium Inc. Swarm communication method and device
DE102016120060A1 (de) * 2016-10-20 2018-04-26 Deutsche Post Ag Abwehren einer Gefährdung
US10895971B2 (en) * 2017-05-12 2021-01-19 Irobot Corporation Methods, systems, and devices for mapping, controlling, and displaying device status
US10562538B2 (en) * 2017-11-22 2020-02-18 Uatc, Llc Object interaction prediction systems and methods for autonomous vehicles
US10437220B1 (en) * 2017-11-29 2019-10-08 Vivid Robotics, Inc. Distributed machine cooperation in assembly
US10706563B2 (en) * 2018-05-15 2020-07-07 Qualcomm Incorporated State and position prediction of observed vehicles using optical tracking of wheel rotation
CN110967012B (zh) * 2018-09-30 2022-11-08 北京京东振世信息技术有限公司 路径规划方法及系统、计算机系统和计算机可读存储介质
JP7206839B2 (ja) * 2018-11-21 2023-01-18 スズキ株式会社 車両用誤発進防止装置
JPWO2020179491A1 (zh) * 2019-03-06 2020-09-10
US10877634B1 (en) * 2019-10-03 2020-12-29 Raytheon Company Computer architecture for resource allocation for course of action activities
EP4178855A1 (en) * 2020-07-08 2023-05-17 Skyryse, Inc. Vehicle control and interface system
CA3226169A1 (en) * 2021-10-01 2023-04-06 Nicklas LANDMARK Method, localization controller and vehicle in a mining environment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146370A (ja) * 1993-11-25 1995-06-06 Fujitsu Ten Ltd 車両用警報装置
US5552767A (en) * 1994-02-14 1996-09-03 Toman; John R. Assembly for, and method of, detecting and signalling when an object enters a work zone
US20030191568A1 (en) * 2002-04-09 2003-10-09 Breed David S. Method and system for controlling a vehicle
EP1471481A2 (en) * 2003-04-22 2004-10-27 Samsung Electronics Co., Ltd. System and method for communicating vehicle management information between vehicles using an ad-hoc network
US20050060069A1 (en) * 1997-10-22 2005-03-17 Breed David S. Method and system for controlling a vehicle
WO2008005663A2 (en) * 2006-07-05 2008-01-10 Battelle Energy Alliance, Llc Robotic guarded motion system and method
EP2169503A2 (en) * 2008-09-11 2010-03-31 Deere & Company Multi-vehicle high intensity perception
US20100198513A1 (en) * 2009-02-03 2010-08-05 Gm Global Technology Operations, Inc. Combined Vehicle-to-Vehicle Communication and Object Detection Sensing
CN101866557A (zh) * 2010-06-08 2010-10-20 上海交通大学 汽车防撞通信系统
US20110046781A1 (en) * 2009-08-21 2011-02-24 Harris Corporation, Corporation Of The State Of Delaware Coordinated action robotic system and related methods
CN102314162A (zh) * 2010-07-05 2012-01-11 深圳华强游戏软件有限公司 具有防撞功能的轨道车系统
US8103438B2 (en) * 2007-09-26 2012-01-24 Trimble Navigation Limited Method and system for automatically directing traffic on a site

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922632B2 (en) * 2002-08-09 2005-07-26 Intersense, Inc. Tracking, auto-calibration, and map-building system
JP2004171269A (ja) * 2002-11-20 2004-06-17 Enii Kk 移動体衝突予測装置および移動体衝突予測方法
JP4055656B2 (ja) * 2003-05-30 2008-03-05 トヨタ自動車株式会社 衝突予測装置
JP4691993B2 (ja) * 2005-01-20 2011-06-01 株式会社豊田中央研究所 衝突危険性判断装置及び方法、衝突危険性判断プログラム、衝突危険性報知装置及び方法、及び衝突危険性報知プログラム
JP4735346B2 (ja) * 2006-03-09 2011-07-27 株式会社豊田中央研究所 運転支援装置及び運転支援システム
JP2008108086A (ja) * 2006-10-26 2008-05-08 Kyocera Corp 交通情報提供システム、交通情報提供装置及び交通情報提供方法
US20080288162A1 (en) * 2007-05-17 2008-11-20 Nokia Corporation Combined short range and long range communication for traffic analysis and collision avoidance
US8244469B2 (en) * 2008-03-16 2012-08-14 Irobot Corporation Collaborative engagement for target identification and tracking
US20100164789A1 (en) * 2008-12-30 2010-07-01 Gm Global Technology Operations, Inc. Measurement Level Integration of GPS and Other Range and Bearing Measurement-Capable Sensors for Ubiquitous Positioning Capability
US20100198512A1 (en) 2009-01-30 2010-08-05 Wentao Zhang Method and apparatus for providing reliable extended ephemeris quality indicators
JP2011242887A (ja) * 2010-05-14 2011-12-01 Toyota Motor Corp 衝突予測装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146370A (ja) * 1993-11-25 1995-06-06 Fujitsu Ten Ltd 車両用警報装置
US5552767A (en) * 1994-02-14 1996-09-03 Toman; John R. Assembly for, and method of, detecting and signalling when an object enters a work zone
US20050060069A1 (en) * 1997-10-22 2005-03-17 Breed David S. Method and system for controlling a vehicle
US20030191568A1 (en) * 2002-04-09 2003-10-09 Breed David S. Method and system for controlling a vehicle
EP1471481A2 (en) * 2003-04-22 2004-10-27 Samsung Electronics Co., Ltd. System and method for communicating vehicle management information between vehicles using an ad-hoc network
WO2008005663A2 (en) * 2006-07-05 2008-01-10 Battelle Energy Alliance, Llc Robotic guarded motion system and method
US8103438B2 (en) * 2007-09-26 2012-01-24 Trimble Navigation Limited Method and system for automatically directing traffic on a site
EP2169503A2 (en) * 2008-09-11 2010-03-31 Deere & Company Multi-vehicle high intensity perception
US20100198513A1 (en) * 2009-02-03 2010-08-05 Gm Global Technology Operations, Inc. Combined Vehicle-to-Vehicle Communication and Object Detection Sensing
US20110046781A1 (en) * 2009-08-21 2011-02-24 Harris Corporation, Corporation Of The State Of Delaware Coordinated action robotic system and related methods
CN101866557A (zh) * 2010-06-08 2010-10-20 上海交通大学 汽车防撞通信系统
CN102314162A (zh) * 2010-07-05 2012-01-11 深圳华强游戏软件有限公司 具有防撞功能的轨道车系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136265A (zh) * 2015-10-06 2018-06-08 马克里德斯有限及两合公司 交互式露天游乐设施,特别是过山车
CN108136265B (zh) * 2015-10-06 2019-12-13 马克里德斯有限及两合公司 交互式露天游乐设施,特别是过山车
CN106845868B (zh) * 2017-02-28 2018-06-29 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种基于区域导航进场程序的安全间隔计算方法及装置
CN106845868A (zh) * 2017-02-28 2017-06-13 中国人民解放军空军装备研究院雷达与电子对抗研究所 一种基于区域导航进场程序的安全间隔计算方法及装置
CN106908795A (zh) * 2017-02-28 2017-06-30 深圳天珑无线科技有限公司 探测装置、终端以及探测方法
US11130501B2 (en) * 2017-07-04 2021-09-28 Baidu Online Network Technology (Beijing) Co., Ltd. System, method and apparatus for controlling autonomous driving vehicle
CN108319806A (zh) * 2018-01-04 2018-07-24 中国人民解放军国防科技大学 一种机动弹道间空域冲突检测方法
CN108319806B (zh) * 2018-01-04 2020-10-13 中国人民解放军国防科技大学 一种机动弹道间空域冲突检测方法
CN108877297A (zh) * 2018-08-01 2018-11-23 Oppo广东移动通信有限公司 安全定位方法及相关产品
US11244569B2 (en) 2018-08-01 2022-02-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for safe positioning and related products
CN113728325A (zh) * 2019-02-20 2021-11-30 瓦肯技术有限责任公司 实时船舶导航跟踪
CN112131292A (zh) * 2020-09-16 2020-12-25 北京金堤征信服务有限公司 一种变更数据的结构化处理方法和装置
CN112131292B (zh) * 2020-09-16 2024-05-14 北京金堤征信服务有限公司 一种变更数据的结构化处理方法和装置
CN111928865A (zh) * 2020-09-23 2020-11-13 蘑菇车联信息科技有限公司 轨迹计算方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
US9235212B2 (en) 2016-01-12
MX341062B (es) 2016-08-05
CN104685431B (zh) 2017-10-10
JP2015522797A (ja) 2015-08-06
WO2013166093A4 (en) 2014-01-03
CA2872419A1 (en) 2013-11-07
IN2014DN09691A (zh) 2015-07-31
US20160202702A1 (en) 2016-07-14
AU2013256372A1 (en) 2014-11-20
EP2845069A1 (en) 2015-03-11
MX2014013273A (es) 2015-06-17
US20140052293A1 (en) 2014-02-20
WO2013166093A1 (en) 2013-11-07
KR20150040796A (ko) 2015-04-15
AU2013256372B2 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
CN104685431B (zh) 基于对象行为测定和协作相对定位的冲突解决
CN104685432A (zh) 分布式定位和协作行为测定
CN104685433A (zh) 协作空间定位
KR102565533B1 (ko) 자율 주행을 위한 항법 정보의 융합 프레임워크 및 배치 정렬
Potortì et al. Off-line evaluation of indoor positioning systems in different scenarios: The experiences from IPIN 2020 competition
Khattab et al. High accuracy GPS-free vehicle localization framework via an INS-assisted single RSU
Kealy et al. Collaborative navigation as a solution for PNT applications in GNSS challenged environments–report on field trials of a joint FIG/IAG working group
Jimoh et al. A vehicle tracking system using greedy forwarding algorithms for public transportation in urban arterial
US11668573B2 (en) Map selection for vehicle pose system
Omidvar et al. Deployment and testing of optimized autonomous and connected vehicle trajectories at a closed-course signalized intersection
Jeon et al. A smart bicycle that protects itself: active sensing and estimation for car-bicycle collision prevention
Motta et al. Overview of smart white canes: connected smart cane from front end to back end
EP4053761A1 (en) Providing access to an autonomous vehicle based on user's detected interest
Toledo-Moreo et al. Positioning and digital maps
Wang Vehicle positioning utilising radio frequency identification devices with geo-located roadside furniture upon urban-roads
Cherian Mobile crowdsensing applications for intelligent parking and mobility
Peltola et al. Towards seamless navigation
Chehri et al. Keep your distance, automated driving vehicle!—toward an accurate localization solutions for automotive applications
Dao A decentralized approach to dynamic collaborative driving coordination
Jørstad Smart Hospital: indoor positioning with BIM
Ochoa Metalevel Motion Planning for Unmanned Aircraft Systems: Metrics Definition and Algorithm Selection
Miah A low-cost intelligent localisation system to improve cyclist safety
Moreno Córdova CAMPOS: A context-aware model for positioning in outdoor environments that supports loosely coupled mobile activities
Akula Real-Time Context-Aware Computing with Applications in Civil Infrastructure Systems.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171010

Termination date: 20190501